
Open Watcom C/C++ Tools

User’s Guide

First Edition

Notice of Copyright

Copyright 2002-2006 the Open Watcom Contributors. Portions Copyright 1984-2002
Sybase, Inc. and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of anyone.

For more information please visit http://www.openwatcom.org/

Printed in U.S.A.

ii

Preface
The Open Watcom C/C++ Tools User’s Guide describes how to use Open Watcom’s software
development tools on Intel 80x86-based personal computers with DOS, Windows, or OS/2.
The Open Watcom C/C++ Tools User’s Guide describes the following tools:

• compile and link utility

• assembler

• object file library manager

• object file disassembler

• exe2bin utility

• far call optimization utility

• patch utility

• executable file strip utility

• make utility

• touch utility

Acknowledgements

This book was produced with the Open Watcom GML electronic publishing system, a
software tool developed by WATCOM. In this system, writers use an ASCII text editor to
create source files containing text annotated with tags. These tags label the structural
elements of the document, such as chapters, sections, paragraphs, and lists. The Open
Watcom GML software, which runs on a variety of operating systems, interprets the tags to
format the text into a form such as you see here. Writers can produce output for a variety of
printers, including laser printers, using separately specified layout directives for such things as
font selection, column width and height, number of columns, etc. The result is type-set
quality copy containing integrated text and graphics.

iii

July, 1997.

Trademarks Used in this Manual

OS/2 is a trademark of International Business Machines Corp. IBM is a registered trademark
of International Business Machines Corp.

Intel are registered trademarks of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. Windows
NT is a trademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

Phar Lap, 286|DOS-Extender, and 386|DOS-Extender are trademarks of Phar Lap Software,
Inc.

QNX is a registered trademark of QNX Software Systems Ltd.

UNIX is a registered trademark of The Open Group.

WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

iv

Table of Contents

The Open Watcom Compile and Link Utility ... 1

1 The Open Watcom C/C++ Compile and Link Utility ... 3
1.1 WCL/WCL386 Command Line Format ... 3
1.2 Open Watcom Compile and Link Options Summary 4
1.3 WCL/WCL386 Environment Variables ... 10
1.4 WCL/WCL386 Command Line Examples ... 11

2 The Open Watcom C/C++ POSIX-like Compiler Driver ... 15
2.1 owcc Command Line Format ... 15
2.2 owcc Options Summary .. 16
2.3 owcc Command Line Examples ... 21

The Open Watcom Assembler ... 25

3 The Open Watcom Assembler .. 27
3.1 Introduction .. 27
3.2 Assembly Directives and Opcodes ... 29
3.3 Unsupported Directives .. 38
3.4 Open Watcom Assembler Specific ... 38

3.4.1 Naming convention .. 39
3.4.2 Open Watcom "C" name mangler .. 39
3.4.3 Calling convention ... 40

3.5 Open Watcom Assembler Diagnostic Messages .. 40

Object File Utilities ... 51

4 The Open Watcom Library Manager .. 53
4.1 Introduction .. 53
4.2 The Open Watcom Library Manager Command Line 54
4.3 Open Watcom Library Manager Module Commands 56
4.4 Adding Modules to a Library File .. 56
4.5 Deleting Modules from a Library File .. 57
4.6 Replacing Modules in a Library File .. 57
4.7 Extracting a Module from a Library File .. 58
4.8 Creating Import Libraries ... 59
4.9 Creating Import Library Entries ... 60
4.10 Commands from a File or Environment Variable 61
4.11 Open Watcom Library Manager Options ... 61

4.11.1 Suppress Creation of Backup File - "b" Option 61

v

Table of Contents

4.11.2 Case Sensitive Symbol Names - "c" Option 61
4.11.3 Specify Output Directory - "d" Option .. 62
4.11.4 Specify Output Format - "f" Option ... 62
4.11.5 Generating Imports - "i" Option ... 62
4.11.6 Creating a Listing File - "l" Option .. 63
4.11.7 Display C++ Mangled Names - "m" Option 64
4.11.8 Always Create a New Library - "n" Option 64
4.11.9 Specifying an Output File Name - "o" Option 64
4.11.10 Specifying a Library Record Size - "p" Option 65
4.11.11 Operate Quietly - "q" Option ... 65
4.11.12 Strip Line Number Records - "s" Option 65
4.11.13 Trim Module Name - "t" Option .. 66
4.11.14 Operate Verbosely - "v" Option ... 66
4.11.15 Explode Library File - "x" Option .. 66

4.12 Librarian Error Messages ... 67

5 The Object File Disassembler ... 71
5.1 Introduction .. 71
5.2 Changing the Internal Label Character - "i=<char>" 72
5.3 The Assembly Format Option - "a" .. 72
5.4 The External Symbols Option - "e" .. 73
5.5 The No Instruction Name Pseudonyms Option - "fp" 74
5.6 The No Register Name Pseudonyms Option - "fr" 74
5.7 The Alternate Addressing Form Option - "fi" .. 74
5.8 The Uppercase Instructions/Registers Option - "fu" 74
5.9 The Listing Option - "l[=<list_file>]" .. 75
5.10 The Public Symbols Option - "p" ... 75
5.11 Retain C++ Mangled Names - "m" .. 76
5.12 The Source Option - "s[=<source_file>]" .. 76
5.13 An Example .. 77

6 Optimization of Far Calls .. 83
6.1 Far Call Optimizations for Non-Open Watcom Object Modules 84

6.1.1 The Open Watcom Far Call Optimization Enabling Utility 84

7 The Open Watcom Exe2bin Utility ... 87
7.1 The Open Watcom Exe2bin Utility Command Line 88
7.2 Exe2bin Messages .. 90

Executable Image Utilities .. 93

vi

Table of Contents

8 The Open Watcom Patch Utility ... 95
8.1 Introduction .. 95
8.2 Applying a Patch .. 95
8.3 Diagnostic Messages .. 96

9 The Open Watcom Strip Utility .. 99
9.1 Introduction .. 99
9.2 The Open Watcom Strip Utility Command Line .. 100
9.3 Strip Utility Messages .. 101

The Make/Touch Utilities .. 103

10 The Open Watcom Make Utility ... 105
10.1 Introduction .. 105
10.2 Open Watcom Make Reference .. 105

10.2.1 Open Watcom Make Command Line Format 105
10.2.2 Open Watcom Make Options Summary 106
10.2.3 Command Line Options ... 107
10.2.4 Special Macros ... 116

10.3 Dependency Declarations ... 117
10.4 Multiple Dependents ... 119
10.5 Multiple Targets ... 119
10.6 Multiple Rules .. 120
10.7 Command Lists ... 122
10.8 Final Commands (.AFTER) .. 123
10.9 Ignoring Dependent Timestamps (.ALWAYS) .. 124
10.10 Automatic Dependency Detection (.AUTODEPEND) 124
10.11 Initial Commands (.BEFORE) .. 125
10.12 Disable Implicit Rules (.BLOCK) .. 125
10.13 Ignoring Errors (.CONTINUE) .. 125
10.14 Default Command List (.DEFAULT) ... 125
10.15 Erasing Targets After Error (.ERASE) ... 126
10.16 Error Action (.ERROR) .. 127
10.17 Ignoring Target Timestamp (.EXISTSONLY) ... 127
10.18 Specifying Explicitly Updated Targets (.EXPLICIT) 127
10.19 Defining Recognized File Extensions (.EXTENSIONS) 128
10.20 Approximate Timestamp Matching (.FUZZY) .. 129
10.21 Preserving Targets After Error (.HOLD) ... 129
10.22 Ignoring Return Codes (.IGNORE) .. 130
10.23 Minimising Target Timestamp (.JUST_ENOUGH) 131
10.24 Updating Targets Multiple Times (.MULTIPLE) 131

vii

Table of Contents

10.25 Ignoring Target Timestamp (.NOCHECK) .. 133
10.26 Cache Search Path (.OPTIMIZE) ... 133
10.27 Preserving Targets (.PRECIOUS) .. 133
10.28 Name Command Sequence (.PROCEDURE) .. 134
10.29 Re-Checking Target Timestamp (.RECHECK) .. 134
10.30 Suppressing Terminal Output (.SILENT) ... 134
10.31 Defining Recognized File Extensions (.SUFFIXES) 135
10.32 Targets Without Any Dependents (.SYMBOLIC) 136
10.33 Macros .. 137
10.34 Implicit Rules ... 149
10.35 Double Colon Explicit Rules .. 159
10.36 Preprocessing Directives .. 161

10.36.1 File Inclusion .. 161
10.36.2 Conditional Processing ... 166
10.36.3 Loading Dynamic Link Libraries ... 171

10.37 Command List Directives ... 173
10.38 MAKEINIT File ... 175
10.39 Command List Execution ... 175
10.40 Compatibility Between Open Watcom Make and UNIX Make 183
10.41 Open Watcom Make Diagnostic Messages .. 184

11 The Touch Utility .. 189
11.1 Introduction .. 189
11.2 WTOUCH Operation .. 190

viii

The Open Watcom Compile and
Link Utility

The Open Watcom Compile and Link Utility

2

1 The Open Watcom C/C++ Compile and Link
Utility

The Open Watcom C/C++ Compile and Link Utility is designed for generating applications,
simply and quickly, using a single command line. On the command line, you can list source
file names as well as object file names. Source files are either compiled or assembled based
on file extension; object files and libraries are simply included in the link phase. Options can
be passed on to both the compiler and linker.

1.1 WCL/WCL386 Command Line Format

The format of the command line is:

WCL [files] [options]
WCL386 [files] [options]

The square brackets [] denote items which are optional.

WCL is the name of the Open Watcom Compile and Link utility that invokes the
16-bit compiler.

WCL386 is the name of the Open Watcom Compile and Link utility that invokes the
32-bit compiler.

The files and options may be specified in any order. The Open Watcom Compile and Link
utility uses the extension of the file name to determine if it is a source file, an object file, or a
library file. Files with extensions of "OBJ" and "LIB" are assumed to be object files and
library files respectively. Files with extensions of "ASM" are assumed to be assembler source
files and will be assembled by the Open Watcom Assembler. Files with any other extension,
including none at all, are assumed to be C/C++ source files and will be compiled. Pattern
matching characters ("*" and "?") may be used in the file specifications.

If no file extension is specified for a file name then the Open Watcom Compile and Link
utility will check for a file with one of the following extensions.

WCL/WCL386 Command Line Format 3

The Open Watcom Compile and Link Utility

Order Name.Ext Assumed to be
----- -------- ---------------

1. file.ASM Assembler source code
2. file.CXX C++ source code
3. file.CPP C++ source code
4. file.CC C++ source code
5. file.C C source code

It checks for each file in the order listed. By default, the Open Watcom Assembler will be
selected to compile files with the extension "ASM". By default, the Open Watcom C++
compiler will be selected to compile files with any of the extensions "CXX", "CPP" or "CC".
By default, the Open Watcom C compiler will be selected to compile a file with a "C"
extension. The default selection of compiler can be overridden by the "cc" and "cc++"
options, described below.

Options are prefixed with a slash (/) or a dash (−) and may be specified in any order. Options
can include any of the Open Watcom C/C++ compiler options plus some additional options
specific to the Open Watcom Compile and Link utility. A summary of options is displayed on
the screen by simply entering the "WCL" or "WCL386" command with no arguments.

1.2 Open Watcom Compile and Link Options Summary

General options: Description:

c compile the files only, do not link them
cc treat source files as C code
cc++ treat source files as C++ code
y ignore the WCL/WCL386 environment variable

Compiler options: Description:

0 (16-bit only) 8088 and 8086 instructions (default for 16-bit)
1 (16-bit only) 188 and 186 instructions
2 (16-bit only) 286 instructions
3 (16-bit only) 386 instructions
4 (16-bit only) 486 instructions
5 (16-bit only) Pentium instructions
6 (16-bit only) Pentium Pro instructions
3r (32-bit only) generate 386 instructions based on 386 instruction timings and

use register-based argument passing conventions

4 Open Watcom Compile and Link Options Summary

The Open Watcom C/C++ Compile and Link Utility

3s (32-bit only) generate 386 instructions based on 386 instruction timings and
use stack-based argument passing conventions

4r (32-bit only) generate 386 instructions based on 486 instruction timings and
use register-based argument passing conventions

4s (32-bit only) generate 386 instructions based on 486 instruction timings and
use stack-based argument passing conventions

5r (32-bit only) generate 386 instructions based on Intel Pentium instruction
timings and use register-based argument passing conventions (default for
32-bit)

5s (32-bit only) generate 386 instructions based on Intel Pentium instruction
timings and use stack-based argument passing conventions

6r (32-bit only) generate 386 instructions based on Intel Pentium Pro
instruction timings and use register-based argument passing conventions

6s (32-bit only) generate 386 instructions based on Intel Pentium Pro
instruction timings and use stack-based argument passing conventions

ad[=<file_name>] generate makefile style auto depend file
adbs force slashes generated in makefile style auto depend to backward
add[=<file_name>] specify source dependancy name generated in make-style autodep file
adhp[=<file_name>] specify path to use for headers which result with no path, and are

filename only.
adfs force slashes generated in makefile style auto depend to forward
adt[=<target_name>] specify target name generated in makefile style auto depend
bc build target is a console application
bd build target is a Dynamic Link Library (DLL)
bg build target is a GUI application
bm build target is a multi-thread environment
br build target uses DLL version of C/C++ run-time libraries
bt[=<os>] build target for operating system <os>
bw build target uses default windowing support
d0 (C++ only) no debugging information
d1 line number debugging information
d1+ (C only) line number debugging information plus typing information for

global symbols and local structs and arrays
d2 full symbolic debugging information
d2i (C++ only) d2 and debug inlines; emit inlines as external out-of-line

functions
d2s (C++ only) d2 and debug inlines; emit inlines as static out-of-line functions
d2t (C++ only) full symbolic debugging information, without type names
d3 full symbolic debugging with unreferenced type names ,*
d3i (C++ only) d3 plus debug inlines; emit inlines as external out-of-line

functions
d3s (C++ only) d3 plus debug inlines; emit inlines as static out-of-line functions

Open Watcom Compile and Link Options Summary 5

The Open Watcom Compile and Link Utility

d<name>[=text] preprocessor #define name [text]
d+ allow extended -d macro definitions
db generate browsing information
e<number> set error limit number (default is 20)
ecc set default calling convention to __cdecl
ecd set default calling convention to __stdcall
ecf set default calling convention to __fastcall
ecp set default calling convention to __pascal
ecr set default calling convention to __fortran
ecs set default calling convention to _Syscall
ecw set default calling convention to __watcall (default)
ee call epilogue hook routine
ef use full path names in error messages
ei force enum base type to use at least an int
em force enum base type to use minimum
en emit routine name before prologue
ep[<number>] call prologue hook routine with number of stack bytes available
eq do not display error messages (they are still written to a file)
er (C++ only) do not recover from undefined symbol errors
et Pentium profiling
ew (C++ only) generate less verbose messages
ez (32-bit only) generate Phar Lap Easy OMF-386 object file
fc=<file_name> (C++ only) specify file of command lines to be batch processed
fh[q][=<file_name>] use precompiled headers
fhd store debug info for pre-compiled header once (DWARF only)
fhr (C++ only) force compiler to read pre-compiled header
fhw (C++ only) force compiler to write pre-compiled header
fhwe (C++ only) don’t include pre-compiled header warnings when "we" is used
fi=<file_name> force file_name to be included
fo=<file_name> set object or preprocessor output file specification
fpc generate calls to floating-point library
fpi (16-bit only) generate in-line 80x87 instructions with emulation (default)

(32-bit only) generate in-line 387 instructions with emulation (default)
fpi87 (16-bit only) generate in-line 80x87 instructions

(32-bit only) generate in-line 387 instructions
fp2 generate in-line 80x87 instructions
fp3 generate in-line 387 instructions
fp5 generate in-line 80x87 instructions optimized for Pentium processor
fp6 generate in-line 80x87 instructions optimized for Pentium Pro processor
fpd enable generation of Pentium FDIV bug check code

6 Open Watcom Compile and Link Options Summary

The Open Watcom C/C++ Compile and Link Utility

fpr generate 8087 code compatible with older versions of compiler
fr=<file_name> set error file specification
ft (C++ only) try truncated (8.3) header file specification
fti (C only) track include file opens
fx (C++ only) do not try truncated (8.3) header file specification
fzh (C++ only) do not automatically append extensions for include files
fzs (C++ only) do not automatically append extensions for source files
g=<codegroup> set code group name
h{w,d,c} set debug output format (Open Watcom, Dwarf, Codeview)
i=<directory> add directory to list of include directories
j change char default from unsigned to signed
k (C++ only) continue processing files (ignore errors)
m{f,s,m,c,l,h} memory model — mf=flat ms=small mm=medium mc=compact ml=large

mh=huge (default is "ms" for 16-bit and Netware, "mf" for 32-bit)
nc=<name> set name of the code class
nd=<name> set name of the "data" segment
nm=<name> set module name different from filename
nt=<name> set name of the "text" segment
o{a,b,c,d,e,f,f+,h,i,i+,k,l,l+,m,n,o,p,r,s,t,u,x,z} control optimization
pil preprocessor ignores #line directives
p{e,l,c,w=<num>} preprocess file only, sending output to standard output; "c" include

comments; "e" encrypt identifiers (C++ only); "l" include #line directives;
w=<num> wrap output lines at <num> columns (zero means no wrap)

q operate quietly
r save/restore segment registers
ri return chars and shorts as ints
s remove stack overflow checks
sg generate calls to grow the stack
st touch stack through SS first
t=<num> (C++ only) set tab stop multiplier
u<name> preprocessor #undef name
v output function declarations to .def file (with typedef names)
vc... (C++ only) VC++ compatibility options
w<number> set warning level number (default is w1)
wcd=<num> warning control: disable warning message <num>
wce=<num> warning control: enable warning message <num>
we treat all warnings as errors
wo (C only) (16-bit only) warn about problems with overlaid code
wx set warning level to maximum setting
xd (C++ only) disable exception handling (default)
xdt (C++ only) disable exception handling (same as "xd")
xds (C++ only) disable exception handling (table-driven destructors)

Open Watcom Compile and Link Options Summary 7

The Open Watcom Compile and Link Utility

xr (C++ only) enable RTTI
xs (C++ only) enable exception handling
xst (C++ only) enable exception handling (direct calls for destruction)
xss (C++ only) enable exception handling (table-driven destructors)
z{a,e} disable/enable language extensions (default is ze)
zat (C++ only) disable alternative tokens
zc place literal strings in code segment
zd{f,p} allow DS register to "float" or "peg" it to DGROUP (default is zdp)
zdl (32-bit only) load DS register directly from DGROUP
zev (C only, Unix extension) enable arithmetic on void derived types
zf (C++ only) let scope of for loop initialization extend beyond loop
zf{f,p} allow FS register to be used (default for all but flat memory model) or not

be used (default for flat memory model)
zg output function declarations to .def (without typedef names)
zg{f,p} allow GS register to be used or not used
zk0 double-byte char support for Kanji
zk0u translate Kanji double-byte characters to UNICODE
zk1 double-byte char support for Chinese/Taiwanese
zk2 double-byte char support for Korean
zkl double-byte char support if current code page has lead bytes
zku=<codepage> load UNICODE translate table for specified code page
zl suppress generation of library file names and references in object file
zld suppress generation of file dependency information in object file
zlf add default library information to object files
zls remove automatically inserted symbols (such as runtime library references)
zm place each function in separate segment (near functions not allowed)
zmf place each function in separate segment (near functions allowed)
zp[{1,2,4,8,16}] set minimal structure packing (member alignment)
zpw output warning when padding is added in a struct/class
zq operate quietly
zri inline floating point rounding code
zro omit floating point rounding code
zs syntax check only
zt<number> set data threshold (default is zt32767)
zu do not assume that SS contains segment of DGROUP
zv (C++ only) enable virtual function removal optimization
zw Microsoft Windows prologue/epilogue code sequences
zW (16-bit only) Microsoft Windows optimized prologue/epilogue code

sequences
zWs (16-bit only) Microsoft Windows smart callback sequences
zz remove "@size" from __stdcall function names (10.0 compatible)

See the Open Watcom C/C++ User’s Guide for a full description of compiler options.

8 Open Watcom Compile and Link Options Summary

The Open Watcom C/C++ Compile and Link Utility

Linker options: Description:

bcl=<system name> Compile and link for the specified system name. See the section for link
option ’l=’ below and the linker user guide for available system names.
This is equivalent to specifying -bt=<system name> and -l=<system name>.

k<stack_size> set stack size
fd[=<directive_file>] keep directive file and, optionally, rename it (default name is

"__WCL__.LNK").
fe=<executable> name executable file
fm[=<map_file>] generate map file and name it (optional)
lp (16-bit only) create an OS/2 protected-mode program
lr (16-bit only) create a DOS real-mode program
l=<system_name> link a program for the specified system. Among the supported systems

are:

286 16-bit DOS executables (synonym for "DOS") under DOS and
NT hosted platforms; 16-bit OS/2 executables (synonym for
"OS2") under 32-bit OS/2 hosted OS/2 session.

386 32-bit DOS executables (synonym for "DOS4G") under DOS;
32-bit NT character-mode executables (synonym for "NT")
under Windows NT; 32-bit OS/2 executables (synonym for
"OS2V2") under 32-bit OS/2 hosted OS/2 session.

COM 16-bit DOS "COM" files
DOS 16-bit DOS executables
DOS4G 32-bit Tenberry Software DOS Extender executables
DOS4GNZ 32-bit Tenberry Software DOS Extender non-zero base

executables
NETWARE 32-bit Novell NetWare 386 NLMs
NOVELL 32-bit Novell NetWare 386 NLMs (synonym for NETWARE)
NT 32-bit Windows NT character-mode executables
NT_DLL 32-bit Windows NT DLLs
NT_WIN 32-bit Windows NT windowed executables
OS2 16-bit OS/2 V1.x executables
OS2_DLL 16-bit OS/2 DLLs
OS2_PM 16-bit OS/2 PM executables
OS2V2 32-bit OS/2 executables
OS2V2_DLL 32-bit OS/2 DLLs
OS2V2_PM 32-bit OS/2 PM executables
PHARLAP 32-bit PharLap DOS Extender executables
QNX 16-bit QNX executables
QNX386 32-bit QNX executables
TNT 32-bit Phar Lap TNT DOS-style executable

Open Watcom Compile and Link Options Summary 9

The Open Watcom Compile and Link Utility

WIN386 32-bit extended Windows 3.x executables/DLLs
WIN95 32-bit Windows 9x executables/DLLs
WINDOWS 16-bit Windows executables
WINDOWS_DLL 16-bit Windows Dynamic Link Libraries
X32R 32-bit FlashTek (register calling convention) executables
X32RV 32-bit FlashTek Virtual Memory (register calling convention)

executables
X32S 32-bit FlashTek (stack calling convention) executables
X32SV 32-bit FlashTek Virtual Memory (stack calling convention)

executables

These names are among the systems identified in the Open Watcom Linker
initialization file, "WLSYSTEM.LNK". The Open Watcom Linker
"SYSTEM" directives, found in this file, are used to specify default link
options for particular (operating) systems. Users can augment the Open
Watcom Linker initialization file with their own system definitions and
these may be specified as an argument to the "l=" option. The
"system_name" specified in the "l=" option is used to create a "SYSTEM
system_name" Open Watcom Linker directive when linking the application.

x make names case sensitive
@<directive_file> include additional directive file
"linker directives" allows use of any linker directive

1.3 WCL/WCL386 Environment Variables

The WCL environment variable can be used to specify commonly used WCL options. The
WCL386 environment variable can be used to specify commonly used WCL386 options.
These options are processed before options specified on the command line.

Example:
C>set wcl=/d1 /ot

C>set wcl386=/d1 /ot

The above example defines the default options to be "d1" (include line number debugging
information in the object file), and "ot" (favour time optimizations over size optimizations).

Whenever you wish to specify an option that requires the use of an "=" character, you can use
the "#" character in its place. This is required by the syntax of the "SET" command.

Once the appropriate environment variable has been defined, those options listed become the
default each time the WCL or WCL386 command is used.

10 WCL/WCL386 Environment Variables

The Open Watcom C/C++ Compile and Link Utility

The WCL environment variable is used by WCL only. The WCL386 environment variable is
used by WCL386 only. Both WCL and WCL386 pass the relevant options to the Open
Watcom C/C++ compiler and linker. This environment variable is not examined by the Open
Watcom C/C++ compiler or the linker when invoked directly.

Hint: If you are running DOS and you use the same WCL or WCL386 options all the
time, you may find it handy to place the "SET WCL" or "SET WCL386" command in
your DOS system initialization file, AUTOEXEC.BAT. If you are running OS/2 and you
use the same WCL or WCL386 options all the time, you may find it handy to place the
"SET WCL" or "SET WCL386" command in your OS/2 system initialization file,
CONFIG.SYS.

1.4 WCL/WCL386 Command Line Examples

For most small applications, the WCL or WCL386 command will suffice. We have only
scratched the surface in describing the capabilities of the WCL and WCL386 commands. The
following examples describe the WCL and WCL386 commands in more detail.

Suppose that your application is contained in three files called apdemo.c, aputils.c, and
apdata.c. We can compile and link all three files with one command.

Example 1:
C>wcl /d2 apdemo.c aputils.c apdata.c
C>wcl386 /d2 apdemo.c aputils.c apdata.c

The executable program will be stored in apdemo.exe since apdemo appeared first in the
list. Each of the three files is compiled with the "d2" debug option. Debugging information is
included in the executable file.

We can issue a simpler command if the current directory contains only our three C/C++
source files.

Example 2:
C>wcl /d2 *.c
C>wcl386 /d2 *.c

WCL or WCL386 will locate all files with the ".c" filename extension and compile each of
them. The name of the executable file will depend on which of the C/C++ source files is
found first. Since this is a somewhat haphazard approach to naming the executable file, WCL
and WCL386 have an option, "fe", which will allow you to specify the name to be used.

WCL/WCL386 Command Line Examples 11

The Open Watcom Compile and Link Utility

Example 3:
C>wcl /d2 /fe=apdemo *.c
C>wcl386 /d2 /fe=apdemo *.c

By using the "fe" option, the executable file will always be called apdemo.exe regardless of
the order of the C/C++ source files in the directory.

If the directory contains other C/C++ source files which are not part of the application then
other tricks may be used to identify a subset of the files to be compiled and linked.

Example 4:
C>wcl /d2 /fe=apdemo ap*.c
C>wcl386 /d2 /fe=apdemo ap*.c

Here we compile only those C/C++ source files that begin with the letters "ap".

In our examples, we have recompiled all the source files each time. In general, we will only
compile one of them and include the object code for the others.

Example 5:
C>wcl /d2 /fe=apdemo aputils.c ap*.obj
C>wcl386 /d2 /fe=apdemo aputils.c ap*.obj

The source file aputils.c is recompiled and apdemo.obj and apdata.obj are
included when linking the application. The ".obj" filename extension indicates that this file
need not be compiled.

Example 6:
C>wcl /fe=demo *.c utility.obj
C>wcl386 /fe=demo *.c utility.obj

All of the C/C++ source files in the current directory are compiled and then linked with
utility.obj to generate demo.exe.

Example 7:
C>set wcl=/mm /d1 /ox /k4096
C>wcl /fe=grdemo gr*.c graph.lib /fd=grdemo

C>set wcl386=/d1 /ox /k4096
C>wcl386 /fe=grdemo gr*.c graph.lib /fd=grdemo

All C/C++ source files beginning with the letters "gr" are compiled and then linked with
graph.lib to generate grdemo.exe which uses a 4K stack. The temporary linker
directive file that is created by WCL or WCL386 will be kept and renamed to grdemo.lnk.

12 WCL/WCL386 Command Line Examples

The Open Watcom C/C++ Compile and Link Utility

Example 8:
C>set libos2=c:\watcom\lib286\os2;c:\os2
C>set lib=c:\watcom\lib286\dos;c:\watcom\lib286
C>set wcl=/mm /lp
C>wcl grdemo1 \watcom\lib286\os2\graphp.obj phapi.lib

The file grdemo1 is compiled for the medium memory model and then linked with
graphp.obj and phapi.lib to generate grdemo1.exe which is to be used with Phar
Lap’s 286 DOS Extender. The "lp" option indicates that an OS/2 format executable is to be
created. The file graphp.obj in the directory "\WATCOM\LIB286\OS2" contains special
initialization code for Phar Lap’s 286 DOS Extender. The file phapi.lib is part of the
Phar Lap 286 DOS Extender package. The LIBOS2 environment variable must include the
location of the OS/2 libraries and the LIB environment variable must include the location of
the DOS libraries (in order to locate graph.lib). The LIBOS2 environment variable must
also include the location of the OS/2 file doscalls.lib which is usually "C:\OS2".

For more complex applications, you should use the "Make" utility.

WCL/WCL386 Command Line Examples 13

The Open Watcom Compile and Link Utility

14 WCL/WCL386 Command Line Examples

2 The Open Watcom C/C++ POSIX-like
Compiler Driver

The Open Watcom C/C++ POSIX-like Compiler Driver is designed for generating
applications, simply and quickly, using a single command line. On the command line, you
can list source file names as well as object file names. Source files are either compiled or
assembled based on file extension; object files and libraries are simply included in the link
phase. Options can be passed on to both the compiler and linker.

2.1 owcc Command Line Format

The format of the command line is:

owcc [options] [files]

The square brackets [] denote items which are optional.

The files and options may be specified in any order. The owcc utility uses the extension of
the file name to determine if it is a source file, an object file, or a library file. Files with
extensions of "o" and "lib" are assumed to be object files and library files respectively. Files
with extensions of "asm" are assumed to be assembler source files and will be assembled by
the Open Watcom Assembler. Files with any other extension, including none at all, are
assumed to be C/C++ source files and will be compiled. Pattern matching characters ("*" and
"?") may be used in the file specifications.

If no file extension is specified for a file name then the owcc utility will check for a file with
one of the following extensions.

owcc Command Line Format 15

The Open Watcom Compile and Link Utility

Order Name.Ext Assumed to be
----- -------- ---------------

1. file.asm Assembler source code
2. file.cxx C++ source code
3. file.cpp C++ source code
4. file.cc C++ source code
5. file.c C source code

It checks for each file in the order listed. By default, the Open Watcom Assembler will be
selected to compile files with the extension "asm". By default, the Open Watcom C++
compiler will be selected to compile files with any of the extensions "cxx", "cpp" or "cc". By
default, the Open Watcom C compiler will be selected to compile a file with a "c" extension.
The default selection of compiler can be overridden by the "-x" option, described below.

Options are prefixed with a dash (−) and may be specified in any order. Option names were
chosen to resemble those of the GNU Compiler Collection (a.k.a. GCC). They are translated
into Open Watcom C/C++ options, or to directives for the Open Watcom C/C++ wlink utility,
accordingly. A summary of options is displayed on the screen by running the compiler driver
like this: "owcc -?". If run without any arguments the compiler driver just displays its name
and hints towards the "-?" option.

2.2 owcc Options Summary

General options: Description:

c compile the files only, do not link them
S compile the source file(s), then run the Open Watcom C/C++ disassembler

on the generated object file(s) instead of linking them. Please note that this
leaves you with both an object file and an assembly source file. Unix
compilers traditionally compile by generating asm source and pass that to
the assembler, so there, the "-S" option is done by stopping short of
assembling the file. Open Watcom C/C++ compiles directly to object files,
so we need the disassembler to achieve a similar effect.

x {c,c++} treat all source files as written in the specified programming language,
regardless of filename suffix.

o <filename> Change the name of the generated file. If only the preprocessor is run, this
sends the preprocessed output to a file instead of the standard output stream.
If only compilation is done, this allows to change the name of the object file.
If compilation and disassembly is done, this changes the name of the
assembly source file. If owcc runs the linker, this changes the name of the
generated executable or DLL.

16 owcc Options Summary

The Open Watcom C/C++ POSIX-like Compiler Driver

v operate verbosely, displaying the actual command lines used to invoke the
compiler and linker, and passing flags to them to operate verbosely, too.

zq operate quietly (default). This is the opposite of the "-v" option.

Compiler options: Description:

mtune=i{0,1,2,3,4,5,6}86 which x86 CPU type to optimize for
mregparm=1 use register-based argument passing conventions (default)
mregparm=0 use stack-based argument passing conventions
MMD generate auto depend makefile fragment
MF <file> change name of makefile style auto depend file. Without this option, the

filename is the same as the the base name of the source file, with a suffix of
".d".

MT <target> specify target name generated in makefile style auto depend different than
that of the object file name

mconsole build target is a console application
shared build target is a Dynamic Link Library (DLL)
mwindows build target is a GUI application
mthreads build target is a multi-thread environment
mrtdll build target uses DLL version of C/C++ run-time libraries
mdefault-windowing build target uses default windowing support
g0 (C++ only) no debugging information
g1 line number debugging information
g1+ (C only) line number debugging information plus typing information for

global symbols and local structs and arrays
g2 full symbolic debugging information
g2i (C++ only) d2 and debug inlines; emit inlines as external out-of-line

functions
g2s (C++ only) d2 and debug inlines; emit inlines as static out-of-line functions
g2t (C++ only) full symbolic debugging information, without type names
g3 full symbolic debugging with unreferenced type names ,*
g3i (C++ only) d3 plus debug inlines; emit inlines as external out-of-line

functions
g3s (C++ only) d3 plus debug inlines; emit inlines as static out-of-line functions
g{w,d,c} set debug output format (Open Watcom, Dwarf, Codeview)
D<name>[=text] preprocessor #define name [text]
D+ allow extended -D macro definitions
fbrowser generate browsing information
Wstop-after-errors=<number> set error limit number (default is 20)
mabi={cdecl,stdcall,fastcall,pascal,fortran,syscall,watcall} set default calling convention
fhook-epilogue call epilogue hook routine
fmessage-full-path use full path names in error messages

owcc Options Summary 17

The Open Watcom Compile and Link Utility

fno-short-enum force enum base type to use at least an int
fshort-enum force enum base type to use minimum
femit-names emit routine name before prologue
fhook-prologue[=<number>] call prologue hook routine with number of stack bytes available
include <file_name> force file_name to be included in front of the source file text
fo=<file_name> set object or preprocessor output file specification
msoft-float generate calls to floating-point library
fpmath=287 generate in-line 80x87 instructions
fpmath=387 generate in-line 387 instructions
fptune=586 generate in-line 80x87 instructions optimized for Pentium processor
fptune=686 generate in-line 80x87 instructions optimized for Pentium Pro processor
fr=<file_name> enable error file creation and specify its name
H (C only) track include file opens
I add directory to the list of include directories
fsigned-char change char default from unsigned to signed
k (C++ only) continue processing files (ignore errors)
mcmodel={f,s,m,c,l,h} select a memory model from these choices:

f flat
s small
m medium
c compact
l large
h huge
t compile code for the small memory model and then use the

Open Watcom Linker to generate a "COM" file

The default is small for 16-bit and Netware, flat for 32-bit targets.
O0 turn off all optimization
O1 enable some optimazion
O2 enable most of the usual optimizations
O3 enable even more optimizations
fno-strict-aliasing relax alias checking
fguess-branch-probability branch prediction
fno-optimize-sibling-calls disable call/ret optimization
finline-functions expand functions inline
finline-limit=num which functions to expand inline
fno-omit-frame-pointer generate traceable stack frames
fno-omit-leaf-frame-pointer generate more stack frames
frerun-optimizer enable repeated optimizations
finline-intrinsics[-max] inline intrinsic functions [-max: more aggressively]
fschedule-prologue control flow entry/exit seq.

18 owcc Options Summary

The Open Watcom C/C++ POSIX-like Compiler Driver

floop-optimize perform loop optimizations
funroll-loops perform loop unrolling
finline-math generate inline math functions
funsafe-math-optimizations numerically unstable floating-point
ffloat-store improve floating-point consistency
fschedule-insns re-order instructions to avoid stalls
fkeep-duplicates ensure unique addresses for functions
fignore-line-directives preprocessor ignores #line directives
E preprocess sources, sending output to standard output or filename selected

via -o
C include original comments in -E output
P don’t include #line directives in -E output
fcpp-wrap=<num> wrap output lines at <num> columns (zero means no wrap)
ftabstop=<num> (C++ only) set tab stop multiplier
fno-stack-check remove stack overflow checks
fgrow-stack generate calls to grow the stack
fstack-probe touch stack through SS first
U <name> preprocessor #undef name
fwrite-def output function declarations to .def file (with typedef names)
w turn off all warnings (same as Wlevel0)
Wall turn on most warnings, but not all (same as Wlevel4)
Wlevel<number> set warning level number (default is w1)
Wextra set warning level to maximum setting
Wno-n<num> warning control: disable warning message <num>
Wn<num> warning control: enable warning message <num>
Werror treat all warnings as errors
Woverlay (C only) warn about problems with overlaid code
frtti (C++ only) enable RTTI
fno-eh (C++ only) disable exception handling (default)
feh (C++ only) enable exception handling
feh-direct (C++ only) enable exception handling (direct calls for destruction)
feh-table (C++ only) enable exception handling (table-driven destructors)
std={c89,c99,ow} select language dialect; c89 is (almost) strictly ANSI/ISO standard C89

only, c99 enables C99 support (may be incomplete), ow enables all Open
Watcom C/C++ extensions.

fno-writable-strings place literal strings in code segment
fvoid-ptr-arithmetics (C only, Unix extension) enable arithmetic on void derived types
fwrite-def-without-typedefs output function declarations to .def (without typedef names)
fnostdlib suppress generation of library file names and references in object file
ffunction-sections place each function in separate segment (near functions not allowed)
fpack-struct=[{1,2,4,8,16}] set minimal structure packing (member alignment)
Wpadded output warning when padding is added in a struct/class

owcc Options Summary 19

The Open Watcom Compile and Link Utility

finline-fp-rounding inline floating point rounding code
fomit-fp-rounding omit floating point rounding code
fsyntax-only syntax check only

See the Open Watcom C/C++ User’s Guide for a full description of compiler options.

Linker options: Description:

b <target name> Compile and link for the specified target system name. See the section
linker user guide for available system names. The linker will effectively
receive a -l=<target name> option. owcc looks up <system name> in a
specification table "specs.owc" to find out which of the Open Watcom C
utilities to run. One those options will be -bt=<os>, where <os> is the
generic target platform name, and usually less specific than the linker
<system name>. Among the supported systems are:

286 16-bit DOS executables (synonym for "DOS") under DOS and
NT hosted platforms; 16-bit OS/2 executables (synonym for
"OS2") under 32-bit OS/2 hosted OS/2 session.

386 32-bit DOS executables (synonym for "DOS4G") under DOS;
32-bit NT character-mode executables (synonym for "NT")
under Windows NT; 32-bit OS/2 executables (synonym for
"OS2V2") under 32-bit OS/2 hosted OS/2 session.

COM 16-bit DOS "COM" files
DOS 16-bit DOS executables
DOS4G 32-bit Tenberry Software DOS/4G DOS Extender executables
DOS4GNZ 32-bit Tenberry Software DOS/4G DOS Extender non-zero

base executables
NETWARE 32-bit Novell NetWare 386 NLMs
NOVELL 32-bit Novell NetWare 386 NLMs (synonym for NETWARE)
NT 32-bit Windows NT character-mode executables
NT_DLL 32-bit Windows NT DLLs
NT_WIN 32-bit Windows NT windowed executables
OS2 16-bit OS/2 V1.x executables
OS2_DLL 16-bit OS/2 DLLs
OS2_PM 16-bit OS/2 PM executables
OS2V2 32-bit OS/2 executables
OS2V2_DLL 32-bit OS/2 DLLs
OS2V2_PM 32-bit OS/2 PM executables
PHARLAP 32-bit PharLap DOS Extender executables
QNX 16-bit QNX executables
QNX386 32-bit QNX executables

20 owcc Options Summary

The Open Watcom C/C++ POSIX-like Compiler Driver

TNT 32-bit Phar Lap TNT DOS-style executable
WIN386 32-bit extended Windows 3.x executables/DLLs
WIN95 32-bit Windows 9x executables/DLLs
WINDOWS 16-bit Windows executables
WINDOWS_DLL 16-bit Windows Dynamic Link Libraries
X32R 32-bit FlashTek (register calling convention) executables
X32RV 32-bit FlashTek Virtual Memory (register calling convention)

executables
X32S 32-bit FlashTek (stack calling convention) executables
X32SV 32-bit FlashTek Virtual Memory (stack calling convention)

executables

These names are among the systems identified in the Open Watcom Linker
initialization file, "wlsystem.lnk". The Open Watcom Linker "SYSTEM"
directives, found in this file, are used to specify default link options for
particular (operating) systems. Users can augment the Open Watcom Linker
initialization file with their own system definitions and these may be
specified as an argument to the "l=" option. The "system_name" specified
in the "l=" option is used to create a "SYSTEM system_name" Open
Watcom Linker directive when linking the application.

mstack-size=<size> set stack size
fd[=<directive_file>] keep linker directive file generated by this tool and, optionally, rename

it (default name is "__owcc__.lnk").
fm[=<map_file>] generate map file, optionally specify its name.
s strip symbolic information not strictly required to run from executable.
Wl,"directives" send any supplementary directives directly to the linker
Wl,@<file> include additional linker directives from <file>. This is actually just a

special case of -Wl used to pass the linker’s @ directive to pull in directives
from <file>

2.3 owcc Command Line Examples

For most small applications, the owcc command will suffice. We have only scratched the
surface in describing the capabilities of the owcc command. The following examples describe
the owcc commands in more detail.

Suppose that your application is contained in three files called apdemo.c, aputils.c, and
apdata.c. We can compile and link all three files with one command.

owcc Command Line Examples 21

The Open Watcom Compile and Link Utility

Example 1:
C>owcc -g apdemo.c aputils.c apdata.c

The executable program will be stored in a.out. Each of the three files is compiled with
the "g" debug option. Debugging information is included in the executable file.

We can issue a simpler command if the current directory contains only our three C/C++
source files.

Example 2:
C>owcc -g *.c

owcc will locate all files with the ".c" filename extension and compile each of them. The
default name of the executable file will be a.out. Since it is only possible to have one
executable with the name a.out in a directory, owcc has an option, "o", which will allow
you to specify the name to be used.

Example 3:
C>owcc -g -o apdemo *.c

By using the "o" option, the executable file will always be called apdemo.

If the directory contains other C/C++ source files which are not part of the application then
other tricks may be used to identify a subset of the files to be compiled and linked.

Example 4:
C>owcc -g -o apdemo ap*.c

Here we compile only those C/C++ source files that begin with the letters "ap".

In our examples, we have recompiled all the source files each time. In general, we will only
compile one of them and include the object code for the others.

Example 5:
C>owcc -g -o apdemo aputils.c ap*.obj

The source file aputils.c is recompiled and apdemo.obj and apdata.obj are
included when linking the application. The ".obj" filename extension indicates that this file
need not be compiled.

Example 6:
C>owcc -o demo *.c utility.obj

22 owcc Command Line Examples

The Open Watcom C/C++ POSIX-like Compiler Driver

All of the C/C++ source files in the current directory are compiled and then linked with
utility.obj to generate demo. The temporary linker directive file that is created by
owcc will be kept and renamed to grdemo.lnk.

For more complex applications, you should use a "Make" utility.

owcc Command Line Examples 23

The Open Watcom Compile and Link Utility

24 owcc Command Line Examples

The Open Watcom Assembler

The Open Watcom Assembler

26

3 The Open Watcom Assembler

3.1 Introduction

This chapter describes the Open Watcom Assembler. It takes as input an assembler source
file (a file with extension ".asm") and produces, as output, an object file.

The Open Watcom Assembler command line syntax is the following.

WASM [options] [d:][path]filename[.ext] [options] [@env_var]

The square brackets [] denote items which are optional.

WASM is the name of the Open Watcom Assembler.

d: is an optional drive specification such as "A:", "B:", etc. If not specified, the
default drive is assumed.

path is an optional path specification such as "\PROGRAMS\ASM\". If not
specified, the current directory is assumed.

filename is the file name of the assembler source file to be assembled.

ext is the file extension of the assembler source file to be assembled. If omitted, a
file extension of ".asm" is assumed. If the period "." is specified but not the
extension, the file is assumed to have no file extension.

options is a list of valid options, each preceded by a slash ("/") or a dash ("−"). Options
may be specified in any order.

The options supported by the Open Watcom Assembler are:

Introduction 27

The Open Watcom Assembler

{0,1,2,3,4,5,6}{p}{r,s}

0 same as ".8086"
1 same as ".186"
2{p} same as ".286" or ".286p"
3{p} same as ".386" or ".386p" (also defines "__386__" and changes the

default USE attribute of segments from "USE16" to "USE32")
4{p} same as ".486" or ".486p" (also defines "__386__" and changes the

default USE attribute of segments from "USE16" to "USE32")
5{p} same as ".586" or ".586p" (also defines "__386__" and changes the

default USE attribute of segments from "USE16" to "USE32")
6{p} same as ".686" or ".686p" (also defines "__386__" and changes the

default USE attribute of segments from "USE16" to "USE32")
p protect mode
add r defines "__REGISTER__"
add s defines "__STACK__"

Example:
-2 -3p -4pr -5p

bt=<os> defines "__<os>__" and checks the "<os>_INCLUDE" environment variable for
include files

c do not output OMF COMENT records that allow WDISASM to figure out when
data bytes have been placed in a code segment

d<name>[=text] define text macro
d1 line number debugging support
e stop reading assembler source file at END directive. Normally, anything

following the END directive will cause an error.
e<number> set error limit number
fe=<file_name> set error file name
fo=<file_name> set object file name
fi=<file_name> force <file_name> to be included
fpc same as ".no87"
fpi inline 80x87 instructions with emulation
fpi87 inline 80x87 instructions
fp0 same as ".8087"
fp2 same as ".287" or ".287p"
fp3 same as ".387" or ".387p"
fp5 same as ".587" or ".587p"
fp6 same as ".687" or ".687p"
i=<directory> add directory to list of include directories
j or s force signed types to be used for signed values
m{t,s,m,c,l,h,f} memory model: (Tiny, Small, Medium, Compact, Large, Huge, Flat)

28 Introduction

The Open Watcom Assembler

-mt Same as ".model tiny"
-ms Same as ".model small"
-mm Same as ".model medium"
-mc Same as ".model compact"
-ml Same as ".model large"
-mh Same as ".model huge"
-mf Same as ".model flat"

Each of the model directives also defines "__<model>__" (e.g., ".model small"
defines "__SMALL__"). They also affect whether something like "foo proc" is
considered a "far" or "near" procedure.

nd=<name> set data segment name
nm=<name> set module name
nt=<name> set name of text segment
o allow C form of octal constants
zcm set C name mangler to MASM compatible mode
zld remove file dependency information
zq or q operate quietly
zz remove "@size" from STDCALL function names
zzo don’t mangle STDCALL symbols (WASM backward compatible)
? or h print this message
w<number> set warning level number
we treat all warnings as errors
wx set warning level to maximum setting

3.2 Assembly Directives and Opcodes

It is not the intention of this chapter to describe assembly-language programming in any
detail. You should consult a book that deals with this topic. However, we present an
alphabetically ordered list of the directives, opcodes and register names that are recognized by
the assembler.

Assembly Directives and Opcodes 29

The Open Watcom Assembler

.186 .286 .286c .286p .287
.386
.386p .387 .486 .486p .586
.586p
.686 .686p .8086 .8087 aaa
aad
aam aas abs adc add
addpd
addps addr addsd addss
addsubpd addsubps
ah al alias align .alpha
and
andnpd andnps andpd andps arpl
assume
ax basic bh bl bound
bp
.break bsf bsr bswap bt
btc
btr bts bx byte c
call
callf casemap catstr cbw cdq
ch
cl clc cld clflush cli
clts
cmc cmova cmovae cmovb cmovbe
cmovc
cmove cmovg cmovge cmovl cmovle
cmovna
cmovnae cmovnb cmovnbe cmovnc cmovne
cmovng
cmovnge cmovnl cmovnle cmovno cmovnp
cmovns
cmovnz cmovo cmovp cmovpe cmovpo
cmovs
cmovz cmp cmpeqpd cmpeqps
cmpeqsd cmpeqss
cmplepd cmpleps cmplesd cmpless
cmpltpd cmpltps
cmpltsd cmpltss cmpneqpd cmpneqps
cmpneqsd cmpneqss
cmpnlepd cmpnleps cmpnlesd cmpnless
cmpnltpd cmpnltps
cmpnltsd cmpnltss cmpordpd cmpordps
cmpordsd cmpordss
cmppd cmpps cmps cmpsb cmpsd
cmpss
cmpsw cmpunordpd cmpunordps cmpunordsd

30 Assembly Directives and Opcodes

The Open Watcom Assembler

cmpunordss cmpxchg
cmpxchg8b .code comisd comiss comm
comment
common compact .const .continue cpuid
cr0
cr2 cr3 cr4 .cref cs
cvtdq2pd
cvtdq2ps cvtpd2dq cvtpd2pi cvtpd2ps
cvtpi2pd cvtpi2ps
cvtps2dq cvtps2pd cvtps2pi cvtsd2si
cvtsd2ss cvtsi2sd
cvtsi2ss cvtss2sd cvtss2si cvttpd2dq
cvttpd2pi cvttps2dq
cvttps2pi cvttsd2si cvttss2si cwd cwde
cx
daa das .data .data? db
dd
dec df dh di div
divpd
divps divsd divss dl
.dosseg dosseg
dp dq dr0 dr1 dr2
dr3
dr6 dr7 ds dt dup
dw

Assembly Directives and Opcodes 31

The Open Watcom Assembler

dword dx eax ebp ebx
echo
ecx edi edx .else else
elseif
emms end .endif endif endm
endp
ends .endw enter eq equ
equ2
.err .errb .errdef .errdif
.errdifi .erre
.erridn .erridni .errnb .errndef .errnz
error
es esi esp even .exit
exitm
export extern externdef extrn f2xm1
fabs
fadd faddp far .fardata
.fardata? farstack
fbld fbstp fchs fclex fcmovb
fcmovbe
fcmove fcmovnb fcmovnbe fcmovne
fcmovnu fcmovu
fcom fcomi fcomip fcomp fcompp
fcos
fdecstp fdisi fdiv fdivp fdivr
fdivrp
femms feni ffree fiadd ficom
ficomp
fidiv fidivr fild fimul
fincstp finit
fist fistp fisttp fisub fisubr
flat
fld fld1 fldcw fldenv
fldenvd fldenvw
fldl2e fldl2t fldlg2 fldln2 fldpi
fldz
fmul fmulp fnclex fndisi fneni
fninit
fnop fnrstor fnrstord fnrstorw fnsave
fnsaved
fnsavew fnstcw fnstenv fnstenvd
fnstenvw fnstsw
for forc fortran fpatan fprem
fprem1
fptan frndint frstor frstord
frstorw fs
fsave fsaved fsavew fscale fsetpm
fsin

32 Assembly Directives and Opcodes

The Open Watcom Assembler

fsincos fsqrt fst fstcw fstenv
fstenvd
fstenvw fstp fstsw fsub fsubp
fsubr
fsubrp ftst fucom fucomi
fucomip fucomp
fucompp fwait fword fxam fxch
fxrstor
fxsave fxtract fyl2x fyl2xp1 ge
global
group gs gt haddpd haddps
high
highword hlt hsubpd hsubps huge
idiv
.if if if1 if2 ifb
ifdef
ifdif ifdifi ife ifidn ifidni
ifnb
ifndef ignore imul in inc
include
includelib ins insb insd insw
int
into invd invlpg invoke iret
iretd

Assembly Directives and Opcodes 33

The Open Watcom Assembler

iretdf iretf irp irpc ja
jae
jb jbe jc jcxz je
jecxz
jg jge jl jle jmp
jmpf
jna jnae jnb jnbe jnc
jne
jng jnge jnl jnle jno
jnp
jns jnz jo jp jpe
jpo
js jz .k3d label lahf
lar
large lddqu ldmxcsr lds le
lea
leave length lengthof les
.lfcond lfence
lfs lgdt lgs lidt .list
.listall
.listif .listmacro .listmacroall lldt lmsw
local
lock lods lodsb lodsd lodsw
loop
loopd loope looped loopew loopne
loopned
loopnew loopnz loopnzd loopnzw loopw
loopz
loopzd loopzw low lowword
lroffset lsl
lss lt ltr macro mask
maskmovdqu
maskmovq maxpd maxps maxsd maxss
medium
memory mfence minpd minps minsd
minss
mm0 mm1 mm2 mm3 mm4
mm5
mm6 mm7 .mmx mod .model
monitor
mov movapd movaps movd
movddup movdq2q
movdqa movdqu movhlps movhpd movhps
movlhps
movlpd movlps movmskpd movmskps
movntdq movnti
movntpd movntps movntq movq
movq2dq movs

34 Assembly Directives and Opcodes

The Open Watcom Assembler

movsb movsd movshdup movsldup movss
movsw
movsx movupd movups movzx mul
mulpd
mulps mulsd mulss mwait name
ne
near nearstack neg .no87
.nocref .nolist
nop not nothing offset opattr
option
or org orpd orps osdososos2
out outs outsb outsd outsw
oword
packssdw packsswb packuswb paddb paddd
paddq
paddsb paddsw paddusb paddusw paddw
page
pand pandn para pascal pause
pavgb
pavgusb pavgw pcmpeqb pcmpeqd
pcmpeqw pcmpgtb
pcmpgtd pcmpgtw pextrw pf2id pf2iw
pfacc

Assembly Directives and Opcodes 35

The Open Watcom Assembler

pfadd pfcmpeq pfcmpge pfcmpgt pfmax
pfmin
pfmul pfnacc pfpnacc pfrcp
pfrcpit1 pfrcpit2
pfrsqit1 pfrsqrt pfsub pfsubr pi2fd
pi2fw
pinsrw pmaddwd pmaxsw pmaxub pminsw
pminub
pmovmskb pmulhrw pmulhuw pmulhw pmullw
pmuludq
pop popa popad popcontext popf
popfd
por prefetch prefetchnta prefetcht0
prefetcht1 prefetcht2
prefetchw private proc proto psadbw
pshufd
pshufhw pshuflw pshufw pslld pslldq
psllq
psllw psrad psraw psrld psrldq
psrlq
psrlw psubb psubd psubq psubsb
psubsw
psubusb psubusw psubw pswapd ptr
public
punpckhbw punpckhdq punpckhqdq punpckhwd
punpcklbw punpckldq
punpcklqdq punpcklwd purge push pusha
pushad
pushcontext pushd pushf pushfd pushw
pword
pxor qword .radix rcl rcpps
rcpss
rcr rdmsr rdpmc rdtsc
readonly record
rep repe .repeat repeat repne
repnz
rept repz ret retd retf
retfd
retn rol ror rsm
rsqrtps rsqrtss
sahf sal .sall sar sbb
sbyte
scas scasb scasd scasw sdword
seg
segment .seq seta setae setb
setbe
setc sete setg setge setl
setle

36 Assembly Directives and Opcodes

The Open Watcom Assembler

setna setnae setnb setnbe setnc
setne
setng setnge setnl setnle setno
setnp
setns setnz seto setp setpe
setpo
sets setz .sfcond sfence sgdt
shl
shld short shr shrd shufpd
shufps
si sidt size sizeof sldt
small
smsw sp sqrtpd sqrtps sqrtsd
sqrtss
ss st .stack .startup stc
std
stdcall sti stmxcsr stos stosb
stosd
stosw str struc struct sub
subpd
subps subsd subss subtitle subttl
sword
syscall sysenter sysexit tbyte test
textequ
.tfcond this tiny title tr3
tr4
tr5 tr6 tr7 typedef
ucomisd ucomiss
union unpckhpd unpckhps unpcklpd
unpcklps .until
use16 use32 uses vararg verr
verw
wait watcomcwbinvd.whilewidth
word
wrmsr xadd xchg .xcref xlat
xlatb
.xlist .xmm xmm0 xmm1 .xmm2
xmm2
.xmm3 xmm3 xmm4 xmm5 xmm6
xmm7
xor xorpd xorps

Assembly Directives and Opcodes 37

The Open Watcom Assembler

3.3 Unsupported Directives

Other assemblers support directives that this assembler does not. The following is a list of
directives that are ignored by the Open Watcom Assembler (use of these directives results in a
warning message).

.alpha .cref .lfcond .list
.listall .listif .listmacro .listmacroall
.nocref .nolist page .sall
.seq .sfcond subtitle subttl
.tfcond title .xcref .xlist

The following is a list of directives that are flagged by the Open Watcom Assembler (use of
these directives results in an error message).

addr .break casemap catstr
.continue echo .else endmacro
.endif .endw .exit high
highword .if invoke low
lowword lroffset mask opattr
option popcontext proto purge
pushcontext .radix record .repeat
.startup this typedef union
.until .while width

3.4 Open Watcom Assembler Specific

There are a few specific features in Open Watcom Assembler

38 Open Watcom Assembler Specific

The Open Watcom Assembler

3.4.1 Naming convention

Procedure Variable
Convention Name Name
--------------- ---------- ---------
C ’*’ ’*’
C (MASM) ’*’’*’seenote1WATCOMC’*’’*’
SYSCALL ’*’ ’*’
STDCALL ’*@nn’’*’
STDCALL ’*’’*’seenote2
STDCALL ’*’ ’*’ see note 3
BASIC ’^’ ’^’
FORTRAN ’^’ ’^’
PASCAL ’^’ ’^’

Notes:

1. WASM uses MASM compatible names when -zcm command line option is used.

2. In STDCALL procedures name ’nn’ is overall parametrs size in bytes. ’@nn’ is
suppressed when -zz command line option is used (WATCOM 10.0 compatibility).

3. STDCALL symbols mangling is suppressed by -zzo command line option (WASM
backward compatible).

3.4.2 Open Watcom "C" name mangler

Command line Procedure Others

option Name Names
--------------- ---------- ---------
0,1,2 ’*’’*’3,4,5,6withr’*’’*’
3,4,5,6 with s ’*’ ’*’

Open Watcom Assembler Specific 39

The Open Watcom Assembler

3.4.3 Calling convention

Parameters Parameters Cleanup
caller
Convention Vararg passed by order stack
----------- ------ ------------ -------------

C yes stack right to left noWATCOMCyesregistersrighttoleftno
SYSCALL yes stack right to left no
STDCALL yes stack right to left yes see
note 1
BASIC no stack left to right yes
FORTRAN no stack left to right yes
PASCAL no stack left to right yes

Notes:

1. For STDCALL procedures WASM automaticaly cleanup caller stack, except case
when vararg parameter is used.

3.5 Open Watcom Assembler Diagnostic Messages

1 Size doesn’t match with previous definition

2 Invalid instruction with current CPU setting

3 LOCK prefix is not allowed on this instruction

4 REP prefix is not allowed on this instruction

5 Invalid memory pointer

6 Cannot use 386 addressing mode with current CPU setting

7 Too many base registers

8 Invalid index register

9 Scale factor must be 1, 2, 4 or 8

10 invalid addressing mode with current CPU setting

40 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

11 ESP cannot be used as index

12 Too many base/index registers

13 Memory offset cannot reference to more than one label

14 Offset must be relocatable

15 Memory offset expected

16 Invalid indirect memory operand

17 Cannot mix 16 and 32-bit registers

18 CPU type already set

19 Unknown directive

20 Expecting comma

21 Expecting number

22 Invalid label definition

23 Invalid use of SHORT, NEAR, FAR operator

24 No memory

25 Cannot use 386 segment register with current CPU setting

26 POP CS is not allowed

27 Cannot use 386 register with current CPU setting

28 Only MOV can use special register

29 Cannot use TR3, TR4, TR5 in current CPU setting

30 Cannot use SHORT with CALL

31 Only SHORT displacement is allowed

32 Syntax error

Open Watcom Assembler Diagnostic Messages 41

The Open Watcom Assembler

33 Prefix must be followed by an instruction

34 No size given before ’PTR’ operator

35 Invalid IMUL format

36 Invalid SHLD/SHRD format

37 Too many commas

38 Syntax error: Unexpected colon

39 Operands must be the same size

40 Invalid instruction operands

41 Immediate constant too large

42 Can not use short or near modifiers with this instruction

43 Jump out of range

44 Displacement cannot be larger than 32k

45 Initializer value too large

46 Symbol already defined

47 Immediate data too large

48 Immediate data out of range

49 Can not transfer control to stack symbol

50 Offset cannot be smaller than WORD size

51 Can not take offset of stack symbol

52 Can not take segment of stack symbol

53 Segment too large

54 Offset cannot be larger than 32k

42 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

55 Operand 2 too big

56 Operand 1 too small

57 Too many arithmetic operators

58 Too many open square brackets

59 Too many close square brackets

60 Too many open brackets

61 Too many close brackets

62 Invalid number digit

63 Assembler Code is too long

64 Brackets are not balanced

65 Operator is expected

66 Operand is expected

67 Too many tokens in a line

68 Bracket is expected

69 Illegal use of register

70 Illegal use of label

71 Invalid operand in addition

72 Invalid operand in subtraction

73 One operand must be constant

74 Constant operand is expected

75 A constant operand is expected in addition

76 A constant operand is expected in subtraction

Open Watcom Assembler Diagnostic Messages 43

The Open Watcom Assembler

77 A constant operand is expected in multiplication

78 A constant operand is expected in division

79 A constant operand is expected after a positive sign

80 A constant operand is expected after a negative sign

81 Label is not defined

82 More than one override

83 Label is expected

84 Only segment or group label is allowed

85 Only register or label is expected in override

86 Unexpected end of file

87 Label is too long

88 This feature has not been implemented yet

89 Internal Error #1

90 Can not take offset of group

91 Can not take offset of segment

92 Invalid character found

93 Invalid operand size for instruction

94 This instruction is not supported

95 size not specified -- BYTE PTR is assumed

96 size not specified -- WORD PTR is assumed

97 size not specified -- DWORD PTR is assumed

500 Segment parameter is defined already

44 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

501 Model parameter is defined already

502 Syntax error in segment definition

503 ’AT’ is not supported in segment definition

504 Segment definition is changed

505 Lname is too long

506 Block nesting error

507 Ends a segment which is not opened

508 Segment option is undefined

509 Model option is undefined

510 No segment is currently opened

511 Lname is used already

512 Segment is not defined

513 Public is not defined

514 Colon is expected

515 A token is expected after colon

516 Invalid qualified type

517 Qualified type is expected

518 External definition different from previous one

519 Memory model is not found in .MODEL

520 Cannot open include file

521 Name is used already

522 Library name is missing

Open Watcom Assembler Diagnostic Messages 45

The Open Watcom Assembler

523 Segment name is missing

524 Group name is missing

525 Data emitted with no segment

526 Seglocation is expected

527 Invalid register

528 Cannot address with assumed register

529 Invalid start address

530 Label is already defined

531 Token is too long

532 The line is too long after expansion

533 A label is expected after colon

534 Must be associated with code

535 Procedure must have a name

536 Procedure is alreadly defined

537 Language type must be specified

538 End of procedure is not found

539 Local variable must immediately follow PROC or MACRO statement

540 Extra character found

541 Cannot nest procedures

542 No procedure is currently defined

543 Procedure name does not match

544 Vararg requires C calling convention

46 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

545 Model declared already

546 Model is not declared

547 Backquote expected

548 COMMENT delimiter expected

549 End directive required at end of file

550 Nesting level too deep

551 Symbol not defined

552 Insert Stupid warning #1 here

553 Insert Stupid warning #2 here

554 Spaces not allowed in command line options

555 Error:

556 Source File

557 No filename specified.

558 Out of Memory

559 Cannot Open File -

560 Cannot Close File -

561 Cannot Get Start of Source File -

562 Cannot Set to Start of Source File -

563 Command Line Contains More Than 1 File To Assemble

564 include path %s.

565 Unknown option %s. Use /? for list of options.

566 read more command line from %s.

Open Watcom Assembler Diagnostic Messages 47

The Open Watcom Assembler

567 Internal error in %s(%u)

568 OBJECT WRITE ERROR !!

569 NO LOR PHARLAP !!

570 Parameter Required

571 Expecting closing square bracket

572 Expecting file name

573 Floating point instruction not allowed with /fpc

574 Too many errors

575 Build target not recognised

576 Public constants should be numeric

577 Expecting symbol

578 Do not mix simplified and full segment definitions

579 Parms passed in multiple registers must be accessed separately, use %s

580 Ten byte variables not supported in register calling convention

581 Parameter type not recognised

582 forced error:

583 forced error: Value not equal to 0 : %d

584 forced error: Value equal to 0: %d

585 forced error: symbol defined: %s

586 forced error: symbol not defined: %s

587 forced error: string blank : <%s>

588 forced error: string not blank : <%s>

48 Open Watcom Assembler Diagnostic Messages

The Open Watcom Assembler

589 forced error: strings not equal : <%s> : <%s>

590 forced error: strings equal : <%s> : <%s>

591 included by file %s(%d)

592 macro called from file %s(%d)

593 Symbol %s not defined

594 Extending jump

595 Ignoring inapplicable directive

596 Unknown symbol class ’%s’

597 Symbol class for ’%s’ already established

598 number must be a power of 2

599 alignment request greater than segment alignment

600 ’%s’ is already defined

601 %u unclosed conditional directive(s) detected

Open Watcom Assembler Diagnostic Messages 49

The Open Watcom Assembler

50 Open Watcom Assembler Diagnostic Messages

Object File Utilities

Object File Utilities

52

4 The Open Watcom Library Manager

4.1 Introduction

The Open Watcom Library Manager can be used to create and update object library files. It
takes as input an object file or a library file and creates or updates a library file. For OS/2,
Win16 and Win32 applications, it can also create import libraries from Dynamic Link
Libraries.

An object library is essentially a collection of object files. These object files generally contain
utility routines that can be used as input to the Open Watcom Linker to create an application.
The following are some of the advantages of using library files.

1. Only those modules that are referenced will be included in the executable file. This
eliminates the need to know which object files should be included and which ones
should be left out when linking an application.

2. Libraries are a good way of organizing object files. When linking an application,
you need only list one library file instead of several object files.

The Open Watcom Library Manager currently runs under the following operating systems.

• DOS

• OS/2

• QNX

• Windows

Introduction 53

Object File Utilities

4.2 The Open Watcom Library Manager Command Line

The following describes the Open Watcom Library Manager command line.

WLIB [options_1] lib_file [options_2] [cmd_list]

The square brackets "[]" denote items which are optional.

lib_file is the file specification for the library file to be processed. If no file extension is
specified, a file extension of "lib" is assumed.

options_1 is a list of valid options. Options may be specified in any order. If you are using
a DOS, OS/2 or Windows-hosted version of the Open Watcom Library
Manager, options are preceded by a "/" or "—" character. If you are using a
UNIX-hosted version of the Open Watcom Library Manager, options are
preceded by a "—" character.

options_2 is a list of valid options. These options are only permitted if you are running a
DOS, OS/2 or Windows-hosted version of the Open Watcom Library Manager
and must be preceded by a "/" character. The "—" character cannot be used as
an option delimiter for options following the library file name since it will be
interpreted as a delete command.

cmd_list is a list of commands to the Open Watcom Library Manager specifying what
operations are to be performed. Each command in cmd_list is separated by a
space.

The following is a summary of valid options. Items enclosed in square brackets "[]" are
optional. Items separated by an or-bar "|" and enclosed in parentheses "()" indicate that one of
the items must be specified. Items enclosed in angle brackets "<>" are to be replaced with a
user-supplied name or value (the "<>" are not included in what you specify).

? display the usage message
b suppress creation of backup file
c perform case sensitive comparison
d=<output_directory>

directory in which extracted object modules will be placed
fa output AR format library
fm output MLIB format library

54 The Open Watcom Library Manager Command Line

The Open Watcom Library Manager

fo output OMF format library
h display the usage message
ia generate AXP import records
ii generate X86 import records
ip generate PPC import records
ie generate ELF import records
ic generate COFF import records
io generate OMF import records
i(r|n)(n|o) imports for the resident/non-resident names table are to be imported by

name/ordinal.
l[=<list_file>]

create a listing file
m display C++ mangled names
n always create a new library
o=<output_file>

set output file name for library
p=<record_size>

set library page size (supported for "OMF" library format only)
q suppress identification banner
s strip line number records from object files (supported for "OMF" library format

only)
t remove path information from module name specified in THEADR records

(supported for "OMF" library format only)
v do not suppress identification banner
x extract all object modules from library
zld strip file dependency info from object files (supported for "OMF" library format

only)

The following sections describe the operations that can be performed on a library file. Note
that before making a change to a library file, the Open Watcom Library Manager makes a
backup copy of the original library file unless the "o" option is used to specify an output
library file whose name is different than the original library file, or the "b" option is used to
suppress the creation of the backup file. The backup copy has the same file name as the
original library file but has a file extension of "bak". Hence, lib_file should not have a file
extension of "bak".

The Open Watcom Library Manager Command Line 55

Object File Utilities

4.3 Open Watcom Library Manager Module Commands

The following is a summary of basic Open Watcom Library Manager module manipulation
commands:

+ add module to a library
- remove module from a library
* or : extract module from a library (: is used with a UNIX-hosted version of the

Open Watcom Library Manager, otherwise * is used)
++ add import library entry

4.4 Adding Modules to a Library File

An object file can be added to a library file by specifying a +obj_file command where
obj_file is the file specification for an object file. If you are using a DOS, OS/2 or
Windows-hosted version of the Open Watcom Library Manager, a file extension of "obj" is
assumed if none is specified. If you are using a UNIX-hosted version of the Open Watcom
Library Manager, a file extension of "o" is assumed if none is specified. If the library file
does not exist, a warning message will be issued and the library file will be created.

Example:
wlib mylib +myobj

In the above example, the object file "myobj" is added to the library file "mylib.lib".

When a module is added to a library, the Open Watcom Library Manager will issue a warning
if a symbol redefinition occurs. This will occur if a symbol in the module being added is
already defined in another module that already exists in the library file. Note that the module
will be added to the library in any case.

It is also possible to combine two library files together. The following example adds all
modules in the library "newlib.lib" to the library "mylib.lib".

56 Adding Modules to a Library File

The Open Watcom Library Manager

Example:
wlib mylib +newlib.lib

Note that you must specify the "lib" file extension. Otherwise, the Open Watcom Library
Manager will assume you are adding an object file.

4.5 Deleting Modules from a Library File

A module can be deleted from a library file by specifying a -mod_name command where
mod_name is the file name of the object file when it was added to the library with the
directory and file extension removed.

Example:
wlib mylib -myobj

In the above example, the Open Watcom Library Manager is instructed to delete the module
"myobj" from the library file "mylib.lib".

It is also possible to specify a library file instead of a module name.

Example:
wlib mylib -oldlib.lib

In the above example, all modules in the library file "oldlib.lib" are removed from the library
file "mylib.lib". Note that you must specify the "lib" file extension. Otherwise, the Open
Watcom Library Manager will assume you are removing an object module.

4.6 Replacing Modules in a Library File

A module can be replaced by specifying a -+mod_name or +-mod_name command. The
module mod_name is deleted from the library. The object file "mod_name" is then added to
the library.

Replacing Modules in a Library File 57

Object File Utilities

Example:
wlib mylib -+myobj

In the above example, the module "myobj" is replaced by the object file "myobj".

It is also possible to merge two library files.

Example:
wlib mylib -+updlib.lib

In the above example, all modules in the library file "updlib.lib" replace the corresponding
modules in the library file "mylib.lib". Any module in the library "updlib.lib" not in library
"mylib.lib" is added to the library "mylib.lib". Note that you must specify the "lib" file
extension. Otherwise, the Open Watcom Library Manager will assume you are replacing an
object module.

4.7 Extracting a Module from a Library File

A module can be extracted from a library file by specifying a *mod_name [=file_name]
command for a DOS, OS/2 or Windows-hosted version of the Open Watcom Library Manager
or a :mod_name [=file_name] command for a UNIX-hosted version of the Open Watcom
Library Manager. The module mod_name is not deleted but is copied to a disk file. If
mod_name is preceded by a path specification, the output file will be placed in the directory
identified by the path specification. If mod_name is followed by a file extension, the output
file will contain the specified file extension.

Example:
wlib mylib *myobj DOS, OS/2 or Windows-hosted

or
wlib mylib :myobj UNIX-hosted

In the above example, the module "myobj" is copied to a disk file. The disk file will be an
object file with file name "myobj". If you are running a DOS, OS/2 or Windows-hosted
version of the Open Watcom Library Manager, a file extension of "obj" will be used. If you
are running a UNIX-hosted version of the Open Watcom Library Manager, a file extension of
"o" will be used.

58 Extracting a Module from a Library File

The Open Watcom Library Manager

Example:
wlib mylib *myobj.out DOS, OS/2 or Windows-hosted

or
wlib mylib :myobj.out UNIX-hosted

In the above example, the module "myobj" will be extracted from the library file "mylib.lib"
and placed in the file "myobj.out"

The following form of the extract command can be used if the module name is not the same as
the output file name.

Example:
wlib mylib *myobj=newmyobj.out DOS, OS/2 or
Windows-hosted

or
wlib mylib :myobj=newmyobj.out UNIX-hosted

You can extract a module from a file and have that module deleted from the library file by
specifying a *-mod_name command for a DOS, OS/2 or Windows-hosted version of the
Open Watcom Library Manager or a :-mod_name command for a UNIX-hosted version of
the Open Watcom Library Manager. The following example performs the same operations as
in the previous example but, in addition, the module is deleted from the library file.

Example:
wlib mylib *-myobj.out DOS, OS/2 or Windows-hosted

or
wlib mylib :-myobj.out UNIX-hosted

Note that the same result is achieved if the delete operator precedes the extract operator.

4.8 Creating Import Libraries

The Open Watcom Library Manager can also be used to create import libraries from Dynamic
Link Libraries. Import libraries are used when linking OS/2, Win16 or Win32 applications.

Creating Import Libraries 59

Object File Utilities

Example:
wlib implib +dynamic.dll

In the above example, the following actions are performed. For each external symbol in the
specified Dynamic Link Library, a special object module is created that identifies the external
symbol and the actual name of the Dynamic Link Library it is defined in. This object module
is then added to the specified library. The resulting library is called an import library.

Note that you must specify the "dll" file extension. Otherwise, the Open Watcom Library
Manager will assume you are adding an object file.

4.9 Creating Import Library Entries

An import library entry can be created and added to a library by specifying a command of the
following form.

 ++sym.dllname[.[altsym].exportname][.ordinal]
where description:

sym is the name of a symbol in a Dynamic Link Library.

dll_name is the name of the Dynamic Link Library that defines sym.

altsym is the name of a symbol in a Dynamic Link Library. When omitted, the default
symbol name is sym.

export_name is the name that an application that is linking to the Dynamic Link Library uses
to reference sym. When omitted, the default export name is sym.

ordinal is the ordinal value that can be used to identify sym instead of using the nameexportname.
Example:wlibmath++sin.trig.sin.1
In the above example, an import library entry will be created for symbol sin and added to the
library "math.lib". The symbol sin is defined in the Dynamic Link Library called "trig.dll"
assin. When an application is linked with the library "math.lib", the resulting
executable file will contain an import by ordinal value 1. If the ordinal value was omitted, the
resulting executable file would contain an import by name sin.

60 Creating Import Library Entries

The Open Watcom Library Manager

4.10 Commands from a File or Environment Variable

The Open Watcom Library Manager can be instructed to process all commands in a disk file
or environment variable by specifying the @name command where name is a file
specification for the command file or the name of an environment variable. A file extension
of "lbc" is assumed for files if none is specified. The commands must be one of those
previously described.

Example:
wlib mylib @mycmd

In the above example, all commands in the environment variable "mycmd" or file
"mycmd.lbc" are processed by the Open Watcom Library Manager.

4.11 Open Watcom Library Manager Options

The following sections describe the list of options allowed when invoking the Open Watcom
Library Manager.

4.11.1 Suppress Creation of Backup File - "b" Option

The "b" option tells the Open Watcom Library Manager to not create a backup library file. In
the following example, the object file identified by "new" will be added to the library file
"mylib.lib".

Example:
wlib -b mylib +new

If the library file "mylib.lib" already exits, no backup library file ("mylib.bak") will be
created.

4.11.2 Case Sensitive Symbol Names - "c" Option

The "c" option tells the Open Watcom Library Manager to use a case sensitive compare when
comparing a symbol to be added to the library to a symbol already in the library file. This
will cause the names "myrtn" and "MYRTN" to be treated as different symbols. By default,
comparisons are case insensitive. That is the symbol "myrtn" is the same as the symbol
"MYRTN".

Open Watcom Library Manager Options 61

Object File Utilities

4.11.3 Specify Output Directory - "d" Option

The "d" option tells the Open Watcom Library Manager the directory in which all extracted
modules are to be placed. The default is to place all extracted modules in the current
directory.

In the following example, the module "mymod" is extracted from the library "mylib.lib". If
you are running a DOS, OS/2 or Windows-hosted version of the Open Watcom Library
Manager, the module will be placed in the file "\obj\mymod.obj". If you are running a
UNIX-hosted version of the Open Watcom Library Manager, the module will be placed in the
file "/o/mymod.o".

Example:
wlib -d=\obj mymod DOS, OS/2 or Windows-hosted

or
wlib -d=/o mymod UNIX-hosted

4.11.4 Specify Output Format - "f" Option

The "f" option tells the Open Watcom Library Manager the format of the output library. The
default output format is determined by the type of object files that are added to the library
when it is created. The possible output format options are:

fa output AR format library

fm output MLIB format library

fo output OMF format library

4.11.5 Generating Imports - "i" Option

The "i" option can be used to describe type of import library to create.

ia generate AXP import records

ii generate X86 import records

ip generate PPC import records

ie generate ELF import records

62 Open Watcom Library Manager Options

The Open Watcom Library Manager

ic generate COFF import records

io generate OMF import records

When creating import libraries from Dynamic Link Libraries, import entries for the names in
the resident and non-resident names tables are created. The "i" option can be used to describe
the method used to import these names.

iro Specifying "iro" causes imports for names in the resident names table to be
imported by ordinal.

irn Specifying "irn" causes imports for names in the resident names table to be
imported by name. This is the default.

ino Specifying "ino" causes imports for names in the non-resident names table to be
imported by ordinal. This is the default.

inn Specifying "inn" causes imports for names in the non-resident names table to be
imported by name.

Example:
wlib -iro -inn implib +dynamic.dll

Note that you must specify the "dll" file extension for the Dynamic Link Library. Otherwise
an object file will be assumed.

4.11.6 Creating a Listing File - "l" Option

The "l" (lower case "L") option instructs the Open Watcom Library Manager to produce a list
of the names of all symbols that can be found in the library file to a listing file. The file name
of the listing file is the same as the file name of the library file. The file extension of the
listing file is "lst".

Example:
wlib -l mylib

In the above example, the Open Watcom Library Manager is instructed to list the contents of
the library file "mylib.lib" and produce the output to a listing file called "mylib.lst".

An alternate form of this option is�l=listfile. With this form, you can specify the
name of the listing file. When specifying a listing file name, a file extension of "lst" is
assumed if none is specified.

Open Watcom Library Manager Options 63

Object File Utilities

Example:
wlib -l=mylib.out mylib

In the above example, the Open Watcom Library Manager is instructed to list the contents of
the library file "mylib.lib" and produce the output to a listing file called "mylib.out".

You can get a listing of the contents of a library file to the terminal by specifying only the
library name on the command line as demonstrated by the following example.

Example:
wlib mylib

4.11.7 Display C++ Mangled Names - "m" Option

The "m" option instructs the Open Watcom Library Manager to display C++ mangled names
rather than displaying their demangled form. The default is to interpret mangled C++ names
and display them in a somewhat more intelligible form.

4.11.8 Always Create a New Library - "n" Option

The "n" option tells the Open Watcom Library Manager to always create a new library file. If
the library file already exists, a backup copy is made (unless the "b" option was specified).
The original contents of the library are discarded and a new library is created. If the "n"
option was not specified, the existing library would be updated.

Example:
wlib -n mylib +myobj

In the above example, a library file called "mylib.lib" is created. It will contain a single object
module, namely "myobj", regardless of the contents of "mylib.lib" prior to issuing the above
command. If "mylib.lib" already exists, it will be renamed to "mylib.bak".

4.11.9 Specifying an Output File Name - "o" Option

The "o" option can be used to specify the output library file name if you want the original
library to remain unchanged and a new library created.

64 Open Watcom Library Manager Options

The Open Watcom Library Manager

Example:
wlib -o=newlib lib1 +lib2.lib

In the above example, the modules from "lib1.lib" and "lib2.lib" are added to the library
"newlib.lib". Note that since the original library remains unchanged, no backup copy is
created. Also, if the "l" option is used to specify a listing file, the listing file will assume the
file name of the output library.

4.11.10 Specifying a Library Record Size - "p" Option

The "p" option specifies the record size in bytes for each record in the library file. The record
size must be a power of 2 and in the range 16 to 32768. If the record size is less than 16, it
will be rounded up to 16. If the record size is greater than 16 and not a power of 2, it will be
rounded up to the nearest power of 2. The default record size is 256 bytes.

Each entry in the dictionary of a library file contains an offset from the start of the file which
points to a module. The offset is 16 bits and is a multiple of the record size. Since the default
record size is 256, the maximum size of a library file for a record size of 256 is 256*64K. If
the size of the library file increases beyond this size, you must increase the record size.

Example:
wlib -p=512 lib1 +lib2.lib

In the above example, the Open Watcom Library Manager is instructed to create/update the
library file "lib1.lib" by adding the modules from the library file "lib2.lib". The record size of
the resulting library file is 512 bytes.

4.11.11 Operate Quietly - "q" Option

The "q" option suppressing the banner and copyright notice that is normally displayed when
the Open Watcom Library Manager is invoked.

Example:
wlib -q -l mylib

4.11.12 Strip Line Number Records - "s" Option

The "s" option tells the Open Watcom Library Manager to remove line number records from
object files that are being added to a library. Line number records are generated in the object
file if the "d1" option is specified when compiling the source code.

Open Watcom Library Manager Options 65

Object File Utilities

Example:
wlib -s mylib +myobj

4.11.13 Trim Module Name - "t" Option

The "t" option tells the Open Watcom Library Manager to remove path information from the
module name specified in THEADR records in object files that are being added to a library.
The module name is created from the file name by the compiler and placed in the THEADR
record of the object file. The module name will contain path information if the file name
given to the compiler contains path information.

Example:
wlib -t mylib +myobj

4.11.14 Operate Verbosely - "v" Option

The "v" option enables the display of the banner and copyright notice when the Open Watcom
Library Manager is invoked.

Example:
wlib -v -l mylib

4.11.15 Explode Library File - "x" Option

The "x" option tells the Open Watcom Library Manager to extract all modules from the
library. Note that the modules are not deleted from the library. Object modules will be placed
in the current directory unless the "d" option is used to specify an alternate directory.

In the following example all modules will be extracted from the library "mylib.lib" and placed
in the current directory.

Example:
wlib -x mylib

In the following example, all modules will be extracted from the library "mylib.lib". If you
are running a DOS, OS/2 or Windows-hosted version of the Open Watcom Library Manager,
the module will be placed in the "\obj" directory. If you are running a UNIX-hosted version
of the Open Watcom Library Manager, the module will be placed in the file "/o" directory.

66 Open Watcom Library Manager Options

The Open Watcom Library Manager

Example:
wlib -x -d=\obj mylib DOS, OS/2 or Windows-hosted

or
wlib -x -d=/o mylib UNIX-hosted

4.12 Librarian Error Messages

The following messages may be issued by the Open Watcom Library Manager.

Error! Could not open object file ’%s’.
Object file ’%s’ could not be found. This message is usually issued when an
attempt is made to add a non-existent object file to the library.

Error! Could not open library file ’%s’.
The specified library file could not be found. This is usually issued for input
library files. For example, if you are combining two library files, the library file
you are adding is an input library file and the library file you are adding to or
creating is an output library file.

Error! Invalid object module in file ’%s’ not added.
The specified file contains an invalid object module.

Error! Dictionary too large. Recommend split library into two libraries.
The size of the dictionary in a library file cannot exceed 64K. You must split
the library file into two separate library files.

Error! Redefinition of module ’%s’ in file ’%s’.
This message is usually issued when an attempt is made to add a module to a
library that already contains a module by that name.

Warning! Redefinition of symbol ’%s’ in file ’%s’ ignored.
This message is issued if a symbol defined by a module already in the library is
also defined by a module being added to the library.

Error! Library too large. Recommend split library into two libraries or try a larger
page_bound than %xH.

The record size of the library file does not allow the library file to increase
beyond its current size. The record size of the library file must be increased
using the "p" option.

Error! Expected ’%s’ in ’%s’ but found ’%s’.
An error occurred while scanning command input.

Librarian Error Messages 67

Object File Utilities

Warning! Could not find module ’%s’ for deletion.
This message is issued if an attempt is made to delete a module that does not
exist in the library.

Error! Could not find module ’%s’ for extraction.
This message is issued if an attempt is made to extract a module that does not
exist in the library.

Error! Could not rename old library for backup.
The Open Watcom Library Manager creates a backup copy before making any
changes (unless the "b" option is specified). This message is issued if an error
occurred while trying to rename the original library file to the backup file name.

Warning! Could not open library ’%s’ : will be created.
The specified library does not exist. It is usually issued when you are adding to
a non-existent library. The Open Watcom Library Manager will create the
library.

Warning! Output library name specification ignored.
This message is issued if the library file specified by the "o" option could not be
opened.

Warning! Could not open library ’%s’ and no operations specified: will not be created.
This message is issued if the library file specified on the command line does not
exist and no operations were specified. For example, asking for a listing file of a
non-existent library will cause this message to be issued.

Warning! Could not open listing file ’%s’.
The listing file could not be opened. For example, this message will be issued
when a "disk full" condition is present.

Error! Could not open output library.
The output library could not be opened.

Error! Unable to write to output library.
An error occurred while writing to the output library.

Error! Unable to write to extraction file ’%s’.
This message is issued when extracting an object module from a library file and
an error occurs while writing to the output file.

Error! Out of Memory.
There was not enough memory to process the library file.

68 Librarian Error Messages

The Open Watcom Library Manager

Error! Could not open file ’%s’.
This message is issued if the output file for a module that is being extracted from
a library could not be opened.

Error! Library ’%s’ is invalid. Contents ignored.
The library file does not contain the correct header information.

Error! Library ’%s’ has an invalid page size. Contents ignored.
The library file has an invalid record size. The record size is contained in the
library header and must be a power of 2.

Error! Invalid object record found in file ’%s’.
The specified file contains an invalid object record.

Error! No library specified on command line.
This message is issued if a library file name is not specified on the command
line.

Error! Expecting library name.
This message is issued if the location of the library file name on the command
line is incorrect.

Warning! Invalid file name ’%s’.
This message is issued if an invalid file name is specified. For example, a file
name longer that 127 characters is not allowed.

Error! Could not open command file ’%s’.
The specified command file could not be opened.

Error! Could not read from file ’%s’. Contents ignored as command input.
An error occurred while reading a command file.

Librarian Error Messages 69

Object File Utilities

70 Librarian Error Messages

5 The Object File Disassembler

5.1 Introduction

This chapter describes the Open Watcom Disassembler. It takes as input an object file (a file
with extension ".obj") and produces, as output, the Intel assembly language equivalent. The
Open Watcom compilers do not produce an assembly language listing directly from a source
program. Instead, the Open Watcom Disassembler can be used to generate an assembly
language listing from the object file generated by the compiler.

The Open Watcom Disassembler command line syntax is the following.

WDIS [options] [d:][path]filename[.ext] [options]

The square brackets [] denote items which are optional.

WDIS is the name of the Open Watcom Disassembler.

d: is an optional drive specification such as "A:", "B:", etc. If not specified, the
default drive is assumed.

path is an optional path specification such as "\PROGRAMS\OBJ\". If not specified,
the current directory is assumed.

filename is the file name of the object file to disassemble.

ext is the file extension of the object file to disassemble. If omitted, a file extension
of ".obj" is assumed. If the period "." is specified but not the extension, the file
is assumed to have no file extension.

options is a list of valid options, each preceded by a slash ("/") or a dash ("−"). Options
may be specified in any order.

The options supported by the Open Watcom Disassembler are:

Introduction 71

Object File Utilities

a write assembly instructions only to the listing file
e include list of external names
fp do not use instruction name pseudonyms
fr do not use register name pseudonyms [Alpha only]
fi use alternate indexing format [80(x)86 only]
fu instructions/registers in upper case
i=<char> redefine the initial character of internal labels (default: L)
l[=<list_file>]

create a listing file
m leave C++ names mangled
p include list of public names
s[=<source_file>]

using object file source line information, imbed original source lines into the
output file

The following sections describe the list of options.

5.2 Changing the Internal Label Character - "i=<char>"

The "i" option permits you to specify the first character to be used for internal labels. Internal
labels take the form "Ln" where "n" is one or more digits. The default character "L" can be
changed using the "i" option. The replacement character must be a letter (a-z, A-Z). A
lowercase letter is converted to uppercase.

Example:
C>wdis calendar /i=x

5.3 The Assembly Format Option - "a"

The "a" option controls the format of the output produced to the listing file. When specified,
the Open Watcom Disassembler will produce a listing file that can be used as input to an
assembler.

72 The Assembly Format Option - "a"

The Object File Disassembler

Example:
C>wdis calendar /a /l=calendar.asm

In the above example, the Open Watcom Disassembler is instructed to disassemble the
contents of the file calendar.obj and produce the output to the file calendar.asm so
that it can be assembled by an assembler.

5.4 The External Symbols Option - "e"

The "e" option controls the amount of information produced in the listing file. When
specified, a list of all externally defined symbols is produced in the listing file.

Example:
C>wdis calendar /e

In the above example, the Open Watcom Disassembler is instructed to disassemble the
contents of the file calendar.obj and produce the output, with a list of all external
symbols, on the screen. A sample list of external symbols is shown below.

List of external symbols

Symbol
----------------iob0000032f 00000210 000001f4 00000158 00000139CHK

00000381 00000343 000002eb 00000237 000000cb 00000006Box000000f2Calendar000000a70000007900000049ClearScreen00000016fflush00000334 00000215 000001f9 0000015d 0000013eint386000003af 00000372Line000002db 000002b5 00000293 00000274 0000025alocaltime00000028memset00000308PosCursor0000031e000001e10000014800000123000000b6printf00000327 00000208 000001ec 00000150 00000131strlen00000108time0000001d
--

Each externally defined symbol is followed by a list of location counter values indicating
where the symbol is referenced.

The "e" option is ignored when the "a" option is specified.

The External Symbols Option - "e" 73

Object File Utilities

5.5 The No Instruction Name Pseudonyms Option -
"fp"

By default, AXP instruction name pseudonyms are emitted in place of actual instruction
names. The Open Watcom AXP Assembler accepts instruction name pseudonyms. The "fp"
option instructs the Open Watcom Disassembler to emit the actual instruction names instead.

5.6 The No Register Name Pseudonyms Option - "fr"

By default, AXP register names are emitted in pseudonym form. The Open Watcom AXP
Assembler accepts register pseudonyms. The "fr" option instructs the Open Watcom
Disassembler to display register names in their non-pseudonym form.

5.7 The Alternate Addressing Form Option - "fi"

The "fi" option causes an alternate syntactical form of the based or indexed addressing mode
of the 80x86 to be used in an instruction. For example, the following form is used by default
for Intel instructions.

mov ax,-2[bp]

If the "fi" option is specified, the following form is used.

mov ax,[bp-2]

5.8 The Uppercase Instructions/Registers Option - "fu"

The "fu" option instructs the Open Watcom Disassembler to display instruction and register
names in uppercase characters. The default is to display them in lowercase characters.

74 The Uppercase Instructions/Registers Option - "fu"

The Object File Disassembler

5.9 The Listing Option - "l[=<list_file>]"

By default, the Open Watcom Disassembler produces its output to the terminal. The "l"
(lowercase L) option instructs the Open Watcom Disassembler to produce the output to a
listing file. The default file name of the listing file is the same as the file name of the object
file. The default file extension of the listing file is .lst.

Example:
C>wdis calendar /l

In the above example, the Open Watcom Disassembler is instructed to disassemble the
contents of the file calendar.obj and produce the output to a listing file called
calendar.lst.

An alternate form of this option is "l=<list_file>". With this form, you can specify the name
of the listing file. When specifying a listing file, a file extension of .lst is assumed if none
is specified.

Example:
C>wdis calendar /l=calendar.lis

In the above example, the Open Watcom Disassembler is instructed to disassemble the
contents of the file calendar.obj and produce the output to a listing file called
calendar.lis.

5.10 The Public Symbols Option - "p"

The "p" option controls the amount of information produced in the listing file. When
specified, a list of all public symbols is produced in the listing file.

Example:
C>wdis calendar /p

In the above example, the Open Watcom Disassembler is instructed to disassemble the
contents of the file calendar.obj and produce the output, with a list of all exported
symbols, to the screen. A sample list of public symbols is shown below.

The following is a list of public symbols in 80x86 code.

The Public Symbols Option - "p" 75

Object File Utilities

List of public symbols

SYMBOL SECTION OFFSET
--main TEXT 000002C0
void near Box(int, int, int, int)TEXT 00000093
void near Calendar(int, int, int, int, int, char near *)TEXT 0000014AvoidnearClearScreen()TEXT 00000000
void near Line(int, int, int, char, char, char)TEXT 00000036
void near PosCursor(int, int)TEXT 0000001A

The following is a list of public symbols in Alpha AXP code.

List of public symbols

SYMBOL SECTION OFFSET
--
main .text 000004F0
void near Box(int, int, int, int)

.text 00000148
void near Calendar(int, int, int, int, int, char near *)

.text 00000260
void near ClearScreen() .text 00000000
void near Line(int, int, int, char, char, char)

.text 00000060
void near PosCursor(int, int)

.text 00000028

The "p" option is ignored when the "a" option is specified.

5.11 Retain C++ Mangled Names - "m"

The "m" option instructs the Open Watcom Disassembler to retain C++ mangled names rather
than displaying their demangled form. The default is to interpret mangled C++ names and
display them in a somewhat more intelligible form.

5.12 The Source Option - "s[=<source_file>]"

The "s" option causes the source lines corresponding to the assembly language instructions to
be produced in the listing file. The object file must contain line numbering information. That
is, the "d1" or "d2" option must have been specified when the source file was compiled. If no
line numbering information is present in the object file, the "s" option is ignored.

76 The Source Option - "s[=<source_file>]"

The Object File Disassembler

The following defines the order in which the source file name is determined when the "s"
option is specified.

1. If present, the source file name specified on the command line.
2. The name from the module header record.
3. The object file name.

In the following example, we have compiled the source file mysrc.c with "d1" debugging
information. We then disassemble it as follows:

Example:
C>wdis mysrc /s /l

In the above example, the Open Watcom Disassembler is instructed to disassemble the
contents of the file mysrc.obj and produce the output to the listing file mysrc.lst. The
source lines are extracted from the file mysrc.c.

An alternate form of this option is "s=<source_file>". With this form, you can specify the
name of the source file.

Example:
C>wdis mysrc /s=myprog.c /l

The above example produces the same result as in the previous example except the source
lines are extracted from the file myprog.c.

5.13 An Example

Consider the following program contained in the file hello.c.

#include <stdio.h>

void main()
{

printf("Hello world\n");
}

Compile it with the "d1" option. An object file called hello.obj will be produced. The
"d1" option causes line numbering information to be generated in the object file. We can use
the Open Watcom Disassembler to disassemble the contents of the object file by issuing the
following command.

An Example 77

Object File Utilities

C>wdis hello /l /e /p /s /fu

The output will be written to a listing file called hello.lst (the "l" option was specified").
It will contain a list of external symbols (the "e" option was specified), a list of public symbols
(the "p" option was specified) and the source lines corresponding to the assembly language
instructions (the "s" option was specified). The source input file is called hello.c. The
register names will be displayed in upper case (the "fu" option was specified). The output,
shown below, is the result of using the Open Watcom C++ compiler.

The following is a disassembly of 80x86 code.

Module: HELLO.CGROUP:’DGROUP’CONST,CONST2,DATA,BSSSegment:TEXTDWORDUSE320000001Abytes
#include <stdio.h>

void main()
0000 main:
0000 68 08 00 00 00 PUSH 0x000000080005E800000000CALLCHK
{

printf("Hello world\n");
000A 68 00 00 00 00 PUSH offset L$1000FE800000000CALLprintf
0014 83 C4 04 ADD ESP,0x00000004

}
0017 31 C0 XOR EAX,EAX
0019 C3 RETRoutineSize:26bytes,RoutineBase:TEXT+0000
No disassembly errors

List of external references

SYMBOL
-------CHK

0006printf 0010

Segment: CONST DWORD USE32 0000000D bytes
0000 L$1:
0000 48 65 6C 6C 6F 20 77 6F 72 6C 64 0A 00 Hello world..

BSS Size: 0 bytes

78 An Example

The Object File Disassembler

List of public symbols

SYMBOL SECTION OFFSET
--main TEXT 00000000

The following is a disassembly of Alpha AXP code.
 .newsection.text,"crx4"
#include <stdio.h>

void main()
0000 main:
0000 23DEFFF0 LDA SP,-0x10(SP)
0004 B75E0000 STQ RA,(SP)

{
printf("Hello world\n");

0008 261F0000 LDAH A0,h^L$0(R31)
000C 22100000 LDA A0,l^L$0(A0)
0010 43F00010 SEXTL A0,A0
0014 D3400000 BSR RA,j^printf

}
0018 201F0000 MOV 0x00000000,V0
001C A75E0000 LDQ RA,(SP)
0020 23DE0010 LDA SP,0x10(SP)
0024 6BFA8001 RET (RA)

Routine Size: 40 bytes, Routine Base: .text + 0000

No disassembly errors

An Example 79

Object File Utilities

List of external references

SYMBOL

printf 0014 .newsection.const,"drw4"
0000 L$0:
0000 48 65 6C 6C 6F 20 77 6F 72 6C 64 0A 00 00 00 00 Hello world......newsection.const2,"drw4".newsection.data,"drw4".newsection.bss,"urw4"
0000 .bss:

BSS Size: 0 bytes .newsection.pdata,"dr2"
0000 // Procedure descriptor for main

main // BeginAddress : 0
main+0x28 // EndAddress : 40
00000000 // ExceptionHandler : 0
00000000 // HandlerData : 0
main+0x8 // PrologEnd : 8.newsection.drectve,"iRr0"

0000 2D 64 65 66 61 75 6C 74 6C 69 62 3A 63 6C 69 62 -defaultlib:clib
0010 20 2D 64 65 66 61 75 6C 74 6C 69 62 3A 70 6C 69 -defaultlib:pli
0020 62 20 2D 64 65 66 61 75 6C 74 6C 69 62 3A 6D 61 b -defaultlib:ma
0030 74 68 20 00 th .

List of public symbols

SYMBOL SECTION OFFSET
--
main .text 00000000

Let us create a form of the listing file that can be used as input to an assembler.

C>wdis hello /l=hello.asm /r /a

The output will be produced in the file hello.asm. The output, shown below, is the result
of using the Open Watcom C++ compiler.

The following is a disassembly of 80x86 code.

80 An Example

The Object File Disassembler

.387
.386p PUBLICmainEXTRNCHK:BYTEEXTRNprintf:BYTEEXTRNwcpp3datainitfsroot:BYTEEXTRNcstart:BYTE
DGROUP
GROUPCONST,CONST2,DATA,BSSTEXTSEGMENT DWORD PUBLIC USE32 ’CODE’ASSUMECS:TEXT,DS:DGROUP,SS:DGROUPmain:

PUSH 0x00000008CALLnearptrCHK
PUSH offset L$1CALLnearptrprintf
ADD ESP,0x00000004
XOR EAX,EAX
RETTEXTENDS

CONST SEGMENT DWORD PUBLIC USE32 ’DATA’
L$1:

DB 0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20, 0x77, 0x6f
DB 0x72, 0x6c, 0x64, 0x0a, 0x00

CONST ENDS
CONST2 SEGMENT DWORD PUBLIC USE32 ’DATA’
CONST2 ENDSDATASEGMENT DWORD PUBLIC USE32 ’DATA’DATAENDSBSS

SEGMENT DWORD PUBLIC USE32 ’BSS’BSS
ENDS

END

The following is a disassembly of Alpha AXP code.

.globl main
.extrn printf
.extrn cstart.newsection.text,"crx4"
main:

LDA $SP,-0x10($SP)
STQ $RA,($SP)
LDAH $A0,h^‘L$0‘($ZERO)
LDA $A0,l^‘L$0‘($A0)
SEXTL $A0,$A0
BSR $RA,j^printf
MOV 0x00000000,$V0
LDQ $RA,($SP)
LDA $SP,0x10($SP)
RET $ZERO,($RA),0x00000001

An Example 81

Object File Utilities.newsection.const,"drw4"
‘L$0‘:

.asciiz "Hello world\n"

.byte 0x00, 0x00, 0x00.newsection.pdata,"dr2"
// 0000 Procedure descriptor for main
.long main // BeginAddress : 0
.long main+0x28 // EndAddress : 40
.long 00000000 // ExceptionHandler : 0
.long 00000000 // HandlerData : 0
.long main+0x8 // PrologEnd : 8.newsection.drectve,"iRr0"
.asciiz "-defaultlib:clib -defaultlib:plib

-defaultlib:math "

82 An Example

6 Optimization of Far Calls

Optimization of far calls can result in smaller executable files and improved performance. It
is most useful when the automatic grouping of logical segments into physical segments takes
place. Note that, by default, automatic grouping is performed by the Open Watcom Linker.

The Open Watcom C, C++ and FORTRAN 77 compilers automatically enable the far call
optimization. The Open Watcom Linker will optimize far calls to procedures that reside in the
same physical segment as the caller. For example, a large code model program will probably
contain many far calls to procedures in the same physical segment. Since the segment address
of the caller is the same as the segment address of the called procedure, only a near call is
necessary. A near call does not require a relocation entry in the relocation table of the
executable file whereas a far call does. Thus, the far call optimization will result in smaller
executable files that will load faster. Furthermore, a near call will generally execute faster
than a far call, particularly on 286 and 386-based machines where, for applications running in
protected mode, segment switching is fairly expensive.

The following describes the far call optimization. The call far label instruction is converted
to one of the following sequences of code.

push cs seg ss
call near label push cs
nop call near label

Notes:

1. The nop or seg ss instruction is present since a call far label instruction is five
bytes. The push cs instruction is one byte and the call near label instruction is
three bytes. The seg ss instruction is used because it is faster than the nop
instruction.

2. The called procedure will still use a retf instruction but since the code segment and
the near address are pushed on the stack, the far return will execute correctly.

3. The position of the padding instruction is chosen so that the return address is word
aligned. A word aligned return address improves performance.

Optimization of Far Calls 83

Object File Utilities

4. When two consecutive call far label instructions are optimized and the first call
far label instruction is word aligned, the following sequence replaces both call far
label instructions.

push cs
call near label1
seg ss
push cs
seg cs
call near label2

5. If your program contains only near calls, this optimization will have no effect.

A far jump optimization is also performed by the Open Watcom Linker. This has the same
benefits as the far call optimization. A jmp far label instruction to a location in the same
segment will be replaced by the following sequence of code.

jmp near label
mov ax,ax

Note that for 32-bit segments, this instruction becomes mov eax,eax.

6.1 Far Call Optimizations for Non-Open Watcom
Object Modules

The far call optimization is automatically enabled when object modules created by the Open
Watcom C, C++, or FORTRAN 77 compilers are linked. These compilers mark those
segments in which this optimization can be performed. The following utility can be used to
enable this optimization for object modules that have been created by other compilers or
assemblers.

6.1.1 The Open Watcom Far Call Optimization Enabling Utility

Only DOS, OS/2 and Windows-hosted versions of the Open Watcom Far Call Optimization
Enabling Utility are available. A QNX-hosted version is not necessary since QNX-hosted
development tools that generate object files, generate the necessary information that enables
the far call optimization.

The format of the Open Watcom Far Call Optimization Enabling Utility is as follows. Items
enclosed in square brackets are optional; items enclosed in braces may be repeated zero or
more times.

84 Far Call Optimizations for Non-Open Watcom Object Modules

Optimization of Far Calls

FCENABLE { [option] [file] }

where description:

option is an option and must be preceded by a dash (’-’) or slash (’/’).

file is a file specification for an object file or library file. If no file extension is
specified, a file extension of "obj" is assumed. Wild card specifiers may be
used.

The following describes the command line options.

b Do not create a backup file. By default, a backup file will be created. The
backup file name will have the same file name as the input file and a file
extension of "bob" for object files and "bak" for library files.

c Specify a list of class names, each separated by a comma. This enables the far
call optimization for all segments belonging to the specified classes.

s Specify a list of segment names, each separated by a comma. This enables the
far call optimization for all specified segments.

x Specify a list of ranges, each separated by a comma, for which no far call
optimizations are to be made. A range has the following format.

 segnamestart�end
orsegnamestart:length

seg_name is the name of a segment. start is an offset into the specified segment
defining the start of the range. end is an offset into the specified segment
defining the end of the range. length is the number of bytes from start to be
included in the range. All values are assumed to be hexadecimal.

Notes:

1. If more than one class list or segment list is specified, only the last one is used. A
class or segment list applies to all object and library files regardless of their
position relative to the class or segment list.

Far Call Optimizations for Non-Open Watcom Object Modules 85

Object File Utilities

2. A range list applies only to the first object file following the range specification. If
the object file contains more than one module, the range list will only apply to the
first module in the object file.

The following examples illustrate the use of the Open Watcom Far Call Optimization
Enabling Utility.

Example:
fcenable /c code *.obj

In the above example, the far call optimization will be enabled for all segments belonging to
the "code" class.

Example:fcenable/stext*.obj
In the above example, the far call optimization will be enabled for all segments with name
"_text".

Example:
fcenable /x special 0:400 asmfile.obj

In the above example, the far call optimization will be disabled for the first 1k bytes of the
segment named "special" in the object file "asmfile".

Example:
fcenable /x special 0-ffffffff asmfile.obj

In the above example, the far call optimization will be disabled for the entire segment named
"special" in the object file "asmfile".

86 Far Call Optimizations for Non-Open Watcom Object Modules

7 The Open Watcom Exe2bin Utility

The exe2bin utility strips off the header of a DOS executable file and applies any necessary
fixups. In addition, it is able to display the header and relocations of an executable file in
human readable format.

When DOS executes a program (supplied as an ".exe" file) it first reads the header of the
executable file and ensures there is enough memory to load the program. If there is, DOS
loads the file — excluding the header — to memory. Before jumping to the entry point, DOS
has to adjust a number of certain locations that depend on the load address of the program.
These adjustments consist of the addition of the load address to each entry in the above
mentioned list of relocations. These relocations are part of the header of an executable file.
The load address may vary from invocation to invocation, this creates the need for the
existence of relocations.

As exe2bin strips the executable header, the relocations are lost (among other things). This
would render the resulting output useless, if exe2bin were not to apply the relocations as part
of the conversion process. Just like DOS, exe2bin therefore needs to know the load address.
This is supplied via an argument to exe2bin.

Some programs do not rely on the address they are being loaded at, and consequently do not
contain any relocations. In this case exe2bin merely copies the contents of the input file (apart
from the header) to the output file.

The phrase "binary part" (also "binary data") is used as a technical term in the documentation
of exe2bin. It denotes the data following the header. The length of the binary data is
determined by the header entries "Size mod 512", "Number of pages" and "Size of header". It
is not directly related to the actual size of the input file.

Note: Although Open Watcom Exe2bin is capable of producing DOS ".COM"
executables, this functionality is only provided for compatibility with other tools. The
preferred way of generating ".COM" executables is to use the Open Watcom Linker with
directive "format dos com". Refer to the Open Watcom Linker Guide for details.

The Open Watcom Exe2bin Utility 87

Object File Utilities

7.1 The Open Watcom Exe2bin Utility Command Line

The format of the Open Watcom Exe2bin command line is as follows. Items enclosed in
square brackets ("[]") are optional.

EXE2BIN [options] exe_file [bin_file]

where description:

options is a list of options, each preceded by a dash ("−"). On non-UNIX platforms, a
slash ("/") may be also used instead of a dash. Options may be specified in any
order. Supported options are:

h display the executable file header

r display the relocations of the executable file

l=<seg> specify the load address of the binary file

x enable extended capabilities of Open Watcom Exe2bin

exe_file is a file specification for a 16-bit DOS executable file used as input. If no file
extension is specified, a file extension of ".exe" is assumed. Wild card specifiers
may not be used.

bin_file is an optional file specification for a binary output file. If no file name is given,
the extension of the input file is replaced by "bin" and taken as the name for the
binary output file.

Description:

1. If are any relocations in the input file, the /l option becomes mandatory (and is
useless otherwise).

2. If exe2bin is called without the /x option, certain restrictions to the input file apply
(apart from being a valid DOS executable file):

• the size of the binary data must be <= 64 KByte

• no stack must be defined, i.e. ss:sp = 0x0000:0x0000

88 The Open Watcom Exe2bin Utility Command Line

The Open Watcom Exe2bin Utility

• the code segment must be always zero, i.e. cs = 0x0000

• the initial instruction pointer must be either ip = 0x0000 or ip = 0x0100

None of the above restrictions apply if the /x option is supplied.

3. If cs:ip = 0x0000:0x0100 and the /x option is not specified, no relocations are
allowed in the input file. Furthermore, exe2bin skips another 0x100 bytes
following the header (in addition to the latter).

This behaviour allows the creation of DOS ".COM" executables and is
implemented for backward compatibility. It is however strongly suggested to use
the Open Watcom Linker instead (together with directive "format dos com"
).

The examples below illustrate the use of Open Watcom Exe2bin.

Example:
exe2bin prog.exe

Strips off the executable header from prog.exe and writes the binary part to prog.bin.
If there are any relocations in prog.exe or if the input file violates any of the restrictions
listed above, the execution of exe2bin fails.

Example:
exe2bin -x prog.exe

Same as above but the "-x" option relaxes certain restrictions.

Note: Even if exe2bin is sucessfully invoked with identical input files as in the preceding
examples (i.e. with vs. without /x) the output files may differ. This happens when cs:ip =
0x0000:0x0100 causes exe2bin to skip additional 0x100 bytes from the input file, if the
user did not specify /x.

The Open Watcom Exe2bin Utility Command Line 89

Object File Utilities

Example:
exe2bin /h prog.exe test.bin

Displays the header of prog.exe , strips it off and copies the binary part to test.bin.

Example:
exe2bin /h /r /x /l=0xE000 bios.exe bios.rom

Displays the header and the relocations (if any) of bios.exe strips the header and applies
any fixups to (i.e. relocates) bios.exe as if it were to be loaded at 0xE000:0x0000. The
result will be written to bios.rom

The above command line may serve as an example of creating a 128 KByte BIOS image for
the PC-AT architecture.

7.2 Exe2bin Messages

This is a list of the diagnostic messages exe2bin may display, accompanied by more verbose
descriptions and some possible causes.

Error opening %s for reading.
The input executable file could not be opened for reading.

Check that the input file exists and exe2bin has read permissions.

Error opening %s for writing.
The output binary file could not be opened for writing.

Make sure the media is not write protected, has enough free space to hold the
output file, and exe2bin has write permissions.

Error allocating file I/O buffer.
There is not enough free memory to allocate a file buffer.

Error reading while copying data.
An error occured while reading the binary part of the input file.

This is most likely due to a corrupted executable header. Run exe2bin with the
/h option and check the size reported. The size of the input file must be at least
("Number of pages" - 1) * 512 + "Size mod 512". Omit decrementing the
number of pages if "Size mod 512" happens to equal zero.

90 Exe2bin Messages

The Open Watcom Exe2bin Utility

Error writing while copying data.
The output binary file can not be written to.

Make sure the media has enough free space to hold the output file and is not
removed while writing to it.

Error. %s has no valid executable header.
The signature (the first two bytes of the input file) does not match "MZ".

exe2bin can only use valid DOS executable files as input.

Error allocating/reading reloc-table.
There is either not enough free memory to allocate a buffer for the relocations
(each relocation takes about 4 bytes) or there was an error while reading from
the input file.

Error. Option "-l=<seg>" mandatory (there are relocations).
The executable file contains relocations. Therefore, exe2bin needs to know the
segment the binary output file is supposed to reside at.

Either provide a segment as an argument to the /l option or rewrite your
executable file to not contain any relocations.

Error: Binary part exceeds 64 KBytes.
The binary part of the input file is larger than 64 KBytes.

The restriction applies because the /x option was not specified. Check if the
extended behaviour is suitable or rewrite the program to shorten the binary part.

Error: Stack segment defined.
The header defines an initial stack, i.e. ss:sp != 0x0000:0x0000.

The restriction applies because the /x option was not specified. Check if the
extended behaviour is suitable or rewrite the program to not have a segment of
class "stack".

Error: CS:IP neither 0x0000:0x0000 nor 0x0000:0x0100.
The header defines an initial cs:ip not matching any of the two values.

The restriction applies because the /x option was not specified. Check if the
extended behaviour is suitable or rewrite the program to have a different entry
point (cf. Open Watcom Linker "option start").

Exe2bin Messages 91

Object File Utilities

Error: com-file must not have relocations.
Although the binary part is <= 64 KByte in length, there is no stack defined and
the cs:ip is 0x0000:0x0100, i.e. exe2bin assumes you try to generate a ".COM"
executable, there are relocations in the input file.

".COM" files are not allowed to contain relocations. Either produce an ".EXE"
file instead or rewrite the program to avoid the need for relocations. In order to
do the latter, look for statements that refer to segments or groups such as movax,TEXT or mov ax, DGROUP.

92 Exe2bin Messages

Executable Image Utilities

Executable Image Utilities

94

8 The Open Watcom Patch Utility

8.1 Introduction

The Open Watcom Patch Utility is a utility program which may be used to apply patches or
bug fixes to Open Watcom’s compilers and its associated tools. As problems are reported and
fixed, patches are created and made available on Open Watcom’s BBS, Open Watcom’s FTP
site, or CompuServe for users to download and apply to their copy of the tools.

8.2 Applying a Patch

The format of the BPATCH command line is:

BPATCH [options] patch_file

The square brackets [] denote items which are optional.

where description:

options is a list of valid Open Watcom Patch Utility options, each preceded by a dash
("−"). Options may be specified in any order. The possible options are:

-p Do not prompt for confirmation

-b Do not create a .BAK file

-q Print current patch level of file

patch_file is the file specification for a patch file provided by Open Watcom.

Suppose a patch file called "wlink.a" is supplied by Open Watcom to fix a bug in the file
"WLINK.EXE". The patch may be applied by typing the command:

bpatch wlink.a

Applying a Patch 95

Executable Image Utilities

The Open Watcom Patch Utility locates the file C:\WATCOM\BINW\WLINK.EXE using the
PATH environment variable. The actual name of the executable file is extracted from the file
wlink.a. It then verifies that the file to be patched is the correct one by comparing the size
of the file to be patched to the expected size. If the file sizes match, the program responds
with:

Ok to modify ’C:\WATCOM\BINW\WLINK.EXE’? [y|n]

If you respond with "yes", BPATCH will modify the indicated file. If you respond with "no",
BPATCH aborts. Once the patch has been applied the resulting file is verified. First the file
size is checked to make sure it matches the expected file size. If the file size matches, a
check-sum is computed and compared to the expected check-sum.

Notes:

1. If an error message is issued during the patch process, the file that you specified to
be patched will remain unchanged.

2. If a sequence of patch files exist, such as "wlink.a", "wlink.b" and "wlink.c", the
patches must be applied in order. That is, "wlink.a" must be applied first followed
by "wlink.b" and finally "wlink.c".

8.3 Diagnostic Messages

If the patch cannot be successfully applied, one of the following error messages will be
displayed.

Usage: BPATCH {-p} {-q} {-b} <file>
-p = Do not prompt for confirmation
-b = Do not create a .BAK file
-q = Print current patch level of file
The command line was entered with no arguments.

File ’%s’ has not been patched
This message is issued when the "-q" option is used and the file has not been
patched.

File ’%s’ has been patched to level ’%s’
This message is issued when the "-q" option is used and the file has been
patched to the indicated level.

96 Diagnostic Messages

The Open Watcom Patch Utility

File ’%s’ has already been patched to level ’%s’ - skipping
This message is issued when the file has already been patched to the same level
or higher.

Command line may only contain one file name
More than one file name is specified on the command line. Make sure that "/" is
not used as an option delimiter.

Command line must specify a file name
No file name has been specified on the command line.

’%s’ is not a Open Watcom patch file
The patch file is not of the required format. The required header information is
not present.

’%s’ is not a valid Open Watcom patch file
The patch file is not of the required format. The required header information is
present but the remaining contents of the file have been corrupted.

’%s’ is the wrong size (%lu1). Should be (%lu2)
The size of the file to be patched (%lu1) is not the same as the expected size
(%lu2).

Cannot find ’%s’
Cannot find the executable to be patched.

Cannot open ’%s’
An error occurred while trying to open the patch file, the file to be patched or the
resulting file.

Cannot read ’%s’
An input error occurred while reading the old version of the file being patched.

Cannot rename ’%s’ to ’%s’
The file to be patched could not be renamed to the backup file name or the
resulting file could not be renamed to the name of the file that was patched.

Cannot write to ’%s’
An output error occurred while writing to the new version of the file to be
patched.

I/O error processing file ’%s’
An error occurred while seeking in the specified file.

Diagnostic Messages 97

Executable Image Utilities

No memory for %s
An attempt to allocate memory dynamically failed.

Patch program aborted!
This message is issued if you answered no to the "OK to modify" prompt.

Resulting file has wrong checksum (%lu) - Should be (%lu2)
The check-sum of the resulting file (%lu) does not match the expected
check-sum (%lu2). This message is issued if you have patched the wrong
version.

Resulting file has wrong size (%lu1) - Should be (%lu2)
The size of the resulting file (%lu1) does not match the expected size (%lu2).
This message is issued if you have patched the wrong version.

98 Diagnostic Messages

9 The Open Watcom Strip Utility

9.1 Introduction

The Open Watcom Strip Utility may be used to manipulate information that is appended to the
end of an executable file. The information can be either one of two things:

1. Symbolic debugging information
2. Resource information

This information can be added or removed from the executable file. Symbolic debugging
information is placed at the end of an executable file by the Open Watcom Linker or the Open
Watcom Strip Utility. Resource information is placed at the end of an executable by a
resource compiler or the Open Watcom Strip Utility.

Once a program has been debugged, the Open Watcom Strip Utility allows you to remove the
debugging information from the executable file so that you do not have to remove the
debugging directives from the linker directive file and link your program again. Removal of
the debugging information reduces the size of the executable image.

All executable files generated by the Open Watcom Linker can be specified as input to the
Open Watcom Strip Utility. Note that for executable files created for Novell’s NetWare
operating system, debugging information created using the "NOVELL" option in the
"DEBUG" directive cannot be removed from the executable file. You must remove the
"DEBUG" directive from the directive file and re-link your application.

The Open Watcom Strip Utility currently runs under the following operating systems.

• DOS

• OS/2

• QNX

• Windows NT/2000/XP

• Windows 95/98/Me

Introduction 99

Executable Image Utilities

9.2 The Open Watcom Strip Utility Command Line

The Open Watcom Strip Utility command line syntax is:

WSTRIP [options] input_file [output_file] [info_file]

where:

[] The square brackets denote items which are optional.

options

/n (noerrors) Do not issue any diagnostic message.

/q (quiet) Do not print any informational messages.

/r (resources) Process resource information rather than debugging
information.

/a (add) Add information rather than remove information.

input_file is a file specification for the name of an executable file. If no file extension is
specified, the Open Watcom Strip Utility will assume one of the following
extensions: "exe", "dll", "exp", "rex", "nlm", "dsk", "lan", "nam", "msl", "cdm",
"ham", "qnx" or no file extension. Note that the order specified in the list of file
extensions is the order in which the Open Watcom Strip Utility will select file
extensions.

output_file is an optional file specification for the output file. If no file extension is
specified, the file extension specified in the input file name will be used for the
output file name. If "." is specified, the input file name will be used.

info_file is an optional file specification for the file in which the debugging or resource
information is to be stored (when removing information) or read (when adding
information). If no file extension is specified, a file extension of "sym" is
assumed for debugging information and "res" for resource information. To
specify the name of the information file but not the name of an output file, a "."
may be specified in place of output_file.

100 The Open Watcom Strip Utility Command Line

The Open Watcom Strip Utility

Description:

1. If the "r" (resource) option is not specified then the default action is to add/remove
symbolic debugging information.

2. If the "a" (add) option is not specified then the default action is to remove
information.

3. If output_file is not specified, the debugging or resource information is added to or
removed from input_file.

4. If output_file is specified, input_file is copied to output_file and the debugging or
resource information is added to or removed from output_file. input_file remains
unchanged.

5. If info_file is specified then the debugging or resource information that is added to
or removed from the executable file is read from or written to this file. The
debugging or resource information may be appended to the executable by
specifying the "a" (add) option. Also, the debugging information may be appended
to the executable by concatenating the debugging information file to the end of the
executable file (the files must be treated as binary files).

6. During processing, the Open Watcom Strip Utility will create a temporary file,
ensuring that a file by the chosen name does not already exist.

9.3 Strip Utility Messages

The following messages may be issued by the Open Watcom Strip Utility.

Usage: WSTRIP [options] input_file [output_file] [info_file]
options: (-option is also accepted)
 /n don’t print warning messages
 /q don’t print informational messages
 /r process resource information rather than debugging information
 /a add information rather than delete information
input_file: executable file
output_file: optional output executable or ’.’
info_file: optional output debugging or resource information file
 or input debugging or resource informational file
The command line was entered with no arguments.

Strip Utility Messages 101

Executable Image Utilities

Too low on memory
There is not enough free memory to allocate file buffers.

Unable to find ’%s’
The specified file could not be located.

Cannot create temporary file
All the temporary file names are in use.

Unable to open ’%s’ to read
The input executable file cannot be opened for reading.

’%s’ is not a valid executable file
The input file has invalid executable file header information.

’%s’ does not contain debugging information
There is nothing to strip from the specified executable file.

Seek error on ’%s’
An error occurred during a seek operation on the specified file.

Unable to create output file ’%s’
The output file could not be created. Check that the output disk is not
write-protected or that the specified output file is not marked "read-only".

Unable to create symbol file ’%s’
The symbol file could not be created.

Error reading ’%s’
An error occurred while reading the input executable file.

Error writing to ’%s’
An error occurred while writing the output executable file or the symbol file.
Check the amount of free space on the output disk. If the input and output files
reside on the same disk, there might not be enough room for a second copy of
the executable file during processing.

Cannot erase file ’%s’
The input executable file is probably marked "read-only" and therefore could not
be erased (the input file is erased whenever the output file has the same name).

Cannot rename file ’%s’
The output executable file could not be renamed. Ordinarily, this should never
occur.

102 Strip Utility Messages

The Make/Touch Utilities

The Make/Touch Utilities

104

10 The Open Watcom Make Utility

10.1 Introduction

The Open Watcom Make utility is useful in the development of programs and text processing
but is general enough to be used in many different applications. Make uses the fact that each
file has a time-stamp associated with it that indicates the last time the file was updated. Make
uses this time-stamp to decide which files are out of date with respect to each other. For
instance, if we have an input data file and an output report file we would like the output report
file to accurately reflect the contents of the input data file. In terms of time-stamps, we would
like the output report to have a more recent time-stamp than the input data file (we will say
that the output report file should be "younger" than the input data file). If the input file had
been modified then we would know from the younger time-stamp (in comparison to the report
file) that the report file was out of date and should be updated. Make may be used in this and
many other situations to ensure that files are kept up to date.

Some readers will be quite familiar with the concepts of the Make file maintenance tool.
Open Watcom Make is patterned after the Make utility found on UNIX systems. The next
major section is simply intended to summarize, for reference purposes only, the syntax and
options of Make’s command line and special macros. Subsequent sections go into the
philosophy and capabilities of Open Watcom Make. If you are not familiar with the
capabilities of the Make utility, we recommend that you skip to the next major section entitled
"Dependency Declarations" and read on.

10.2 Open Watcom Make Reference

The following sub-sections serve as a reference guide to the Open Watcom Make utility.

10.2.1 Open Watcom Make Command Line Format

The formal Open Watcom Make command line syntax is shown below.

Open Watcom Make Reference 105

The Make/Touch Utilities

WMAKE [options] [macro_defs] [targets]

As indicated by the square brackets [], all items are optional.

options is a list of valid Open Watcom Make options, each preceded by a slash ("/") or a
dash ("−"). Options may be specified in any order.

macro_defs is a list of valid Open Watcom Make macro definitions. Macro definitions are
of the form:

A=B

and are readily identified by the presence of the "=" (the "#" character may be
used instead of the "=" character if necessary). Surround the definition with
quotes (") if it contains blanks (e.g., "debug_opt=debug all"). The macro
definitions specified on the command line supersede any macro definitions
defined in makefiles. Macro names are case-insensitive unless the "ms" option
is used to select Microsoft NMAKE mode.

targets is one or more targets described in the makefile.

10.2.2 Open Watcom Make Options Summary

In this section, we present a terse summary of the Open Watcom Make options. This
summary is displayed on the screen by simply entering "WMAKE ?" on the command line.

Example:
C>wmake ?

/a make all targets by ignoring time-stamps
/b block/ignore all implicit rules
/c do not verify the existence of files made
/d debug mode - echo all work as it progresses
/e always erase target after error/interrupt (disables prompting)
/f the next parameter is a name of dependency description file
/h do not print out Make identification lines (no header)
/i ignore return status of all commands executed
/k on error/interrupt: continue on next target
/l the next parameter is the name of a output log file

106 Open Watcom Make Reference

The Open Watcom Make Utility

/m do not search for MAKEINIT file
/ms Microsoft NMAKE mode
/n no execute mode - print commands without executing
/o use circular implicit rule path
/p print the dependency tree as understood from the file
/q query mode - check targets without updating them
/r do not use default definitions
/s silent mode - do not print commands before execution
/sn noisy mode - always print commands before execution
/t touch files instead of executing commands
/u UNIX compatibility mode
/v verbose listing of inline files
/y show why a target will be updated
/z do not erase target after error/interrupt (disables prompting)

10.2.3 Command Line Options

Command line options, available with Open Watcom Make, allow you to control the
processing of the makefile.

a
make all targets by ignoring time-stamps

The "a" option is a safe way to update every target. For program maintenance, it is the
preferred method over deleting object files or touching source files.

b
block/ignore all implicit rules

The "b" option will indicate to Make that you do not want any implicit rule checking done.
The "b" option is useful in makefiles containing double colon "::" explicit rules because an
implicit rule search is conducted after a double colon "::" target is updated. Including the
directive .BLOCK in a makefile also will disable implicit rule checking.

c
do not verify the existence of files made

Make will check to ensure that a target exists after the associated command list is executed.
The target existence checking may be disabled with the "c" option. The "c" option is useful in
processing makefiles that were developed with other Make utilities. The .NOCHECK
directive is used to disable target existence checks in a makefile.

Open Watcom Make Reference 107

The Make/Touch Utilities

d
debug mode - echo all work as it progresses

The "d" option will print out information about the time-stamp of files and indicate how the
makefile processing is proceeding.

e
always erase target after error/interrupt (disables prompting)

The "e" option will indicate to Make that, if an error or interrupt occurs during makefile
processing, the current target being made may be deleted without prompting. The .ERASE
directive may be used as an equivalent option in a makefile.

f
the next parameter is a name of dependency description file

The "f" option specifies that the next parameter on the command line is the name of a
makefile which must be processed. If the "f" option is specified then the search for the default
makefile named "MAKEFILE" is not done. Any number of makefiles may be processed with
the "f" option.

Example:
wmake /f myfile
wmake /f myfile1 /f myfile2

h
do not print out Make identification lines (no header)

The "h" option is useful for less verbose output. Combined with the "q" option, this allows a
batch file to silently query if an application is up to date. Combined with the "n" option, a
batch file could be produced containing the commands necessary to update the application.

i
ignore return status of all commands executed

The "i" option is equivalent to the .IGNORE directive.

k
on error/interrupt: continue on next target

108 Open Watcom Make Reference

The Open Watcom Make Utility

Make will stop updating targets when a non-zero status is returned by a command. The "k"
option will continue processing targets that do not depend on the target that caused the error.
The .CONTINUE directive in a makefile will enable this error handling capability.

l
the next parameter is the name of a output log file

Make will output an error message when a non-zero status is returned by a command. The "l"
option specifies a file that will record all error messages output by Make during the processing
of the makefile.

m
do not search for the MAKEINIT file

The default action for Make is to search for an initialization file called "MAKEINIT" or
"TOOLS.INI" if the "ms" option is set. The "m" option will indicate to Make that processing
of the MAKEINIT file is not desired.

ms
Microsoft NMAKE mode

The default action for Make is to process makefiles using Open Watcom syntax rules. The
"ms" option will indicate to Make that it should process makefiles using Microsoft syntax
rules. For example, the line continuation in NMAKE is a backslash ("\") at the end of the line.

n
no execute mode - print commands without executing

The "n" option will print out what commands should be executed to update the application
without actually executing them. Combined with the "h" option, a batch file could be
produced which would contain the commands necessary to update the application.

Example:
wmake /h /n >update.bat
update

This is useful for applications which require all available resources (memory and devices) for
executing the updating commands.

Open Watcom Make Reference 109

The Make/Touch Utilities

o
use circular implicit rule path

When this option is specified, Make will use a circular path specification search which may
save on disk activity for large makefiles. The "o" option is equivalent to the .OPTIMIZE
directive.

p
print out makefile information

The "p" option will cause Make to print out information about all the explicit rules, implicit
rules, and macro definitions.

q
query mode - check targets without updating them

The "q" option will cause Make to return a status of 1 if the application requires updating; it
will return a status of 0 otherwise. Here is a example batch file using the "q" option:

Example:
wmake /q
if errorstatus 0 goto noupdate
wmake /q /h /n >\tmp\update.bat
call \tmp\update.bat
:noupdate

r
do not use default definitions

The default definitions are:

110 Open Watcom Make Reference

The Open Watcom Make Utility

 MAKEOPTS=<optionspassedtoWMAKE>MAKEFILES=<listofmakefiles>VERSION=<versionnumber>LOADDLL=definedifDLLloadingsupportedMSDOS=definedifMS/DOSversionNT=definedifWindowsNTversionNT386=definedifx86WindowsNTversionOS2=definedifOS/2versionQNX=definedifQNXversionLINUX=definedifLinuxversionLINUX386=definedifx86LinuxversionUNIX=definedifQNXorLinuxversion
MAKE = <name of file containing WMAKE>
#endif
clear .EXTENSIONS list
.EXTENSIONS:

In general,
set .EXTENSIONS list as follows
.EXTENSIONS: .exe .nlm .dsk .lan .exp &

.lib .obj &

.i &

.asm .c .cpp .cxx .cc .for .pas .cob &

.h .hpp .hxx .hh .fi .mif .inc

For Microsoft NMAKE compatibility (when you use the "ms" option), the following default
definitions are established.

Open Watcom Make Reference 111

The Make/Touch Utilities

For Microsoft NMAKE compatibility switch,
set .EXTENSIONS list as follows
.EXTENSIONS: .exe .obj .asm .c .cpp .cxx &

.bas .cbl .for .f .f90 .pas .res .rc%MAKEFLAGS=$(%MAKEFLAGS)$(MAKEOPTS)
MAKE=<name of file containing WMAKE>
AS=ml
BC=bc
CC=cl
COBOL=cobol
CPP=cl
CXX=cl
FOR=fl
PASCAL=pl
RC=rc
.asm.exe:

$(AS) $(AFLAGS) $*.asm
.asm.obj:

$(AS) $(AFLAGS) /c $*.asm
.c.exe:

$(CC) $(CFLAGS) $*.c
.c.obj:

$(CC) $(CFLAGS) /c $*.c
.cpp.exe:

$(CPP) $(CPPFLAGS) $*.cpp
.cpp.obj:

$(CPP) $(CPPFLAGS) /c $*.cpp
.cxx.exe:

$(CXX) $(CXXFLAGS) $*.cxx
.cxx.obj:

$(CXX) $(CXXFLAGS) $*.cxx
.bas.obj:

$(BC) $(BFLAGS) $*.bas
.cbl.exe:

$(COBOL) $(COBFLAGS) $*.cbl, $*.exe;
.cbl.obj:

$(COBOL) $(COBFLAGS) $*.cbl;
.f.exe:

$(FOR) $(FFLAGS) $*.f
.f.obj:

$(FOR) /c $(FFLAGS) $*.f
.f90.exe:

$(FOR) $(FFLAGS) $*.f90
.f90.obj:

$(FOR) /c $(FFLAGS) $*.f90
.for.exe:

112 Open Watcom Make Reference

The Open Watcom Make Utility

$(FOR) $(FFLAGS) $*.for
.for.obj:

$(FOR) /c $(FFLAGS) $*.for
.pas.exe:

$(PASCAL) $(PFLAGS) $*.pas
.pas.obj:

$(PASCAL) /c $(PFLAGS) $*.pas
.rc.res:

$(RC) $(RFLAGS) /r $*

For OS/2, the
MSDOS

 macro will be replaced by
OS2

 and for Windows NT, theMSDOS
 macro will be replaced by
NT.

For UNIX make compatibility (when you use the "u" option), the following default definition
is established.

Open Watcom Make Reference 113

The Make/Touch Utilities

.EXTENSIONS: .exe .obj .c .y .l .f%MAKEFLAGS=$(%MAKEFLAGS)$(MAKEOPTS)
MAKE=<name of file containing WMAKE>
YACC=yacc
YFLAGS=
LEX=lex
LFLAGS=
LDFLAGS=
CC=cl
FC=fl
.asm.exe:

$(AS) $(AFLAGS) $*.asm
.c.exe:

$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $<
.f.exe:

$(FC) $(FFLAGS) $(LDFLAGS) -o $@ $<
.c.obj:

$(CC) $(CFLAGS) -c $<
.f.obj:

$(FC) $(FFLAGS) -c $<
.y.obj:

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
del y.tab.c
move y.tab.obj $@

.l.obj:
$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) -c lex.yy.c
del lex.yy.c
move lex.yy.obj $@

.y.c:
$(YACC) $(YFLAGS) $<
move y.tab.c $@

.l.c:
$(LEX) $(LFLAGS) $<
move lex.yy.c $@

The "r" option will disable these definitions before processing any makefiles.

s
silent mode - do not print commands before execution

The "s" option is equivalent to the .SILENT directive.

114 Open Watcom Make Reference

The Open Watcom Make Utility

sn
noisy mode - always print commands before execution

The "sn" option overrules all silencing controls. It can be used to assist in debugging a
makefile.

t
touch files instead of executing commands

Sometimes there are changes which are purely cosmetic (adding a comment to a source file)
that will cause targets to be updated needlessly thus wasting computer resources. The "t"
option will make files appear younger without altering their contents. The "t" option is useful
but should be used with caution.

u
UNIX compatibility mode

The "u" option will indicate to Make that the line continuation character should be a backslash
"\" rather than an ampersand "&".

v
The "v" option enables a verbose listing of inline temporary files.

y
The "y" option enables the display of a progress line denoting which dependent file has
caused a target to be updated. This is a useful option for helping to debug makefiles.

z
do not erase target after error/interrupt (disables prompting)

The "z" option will indicate to Make that if an error or interrupt occurs during makefile
processing then the current target being made should not be deleted. The .HOLD directive in
a makefile has the same effect as the "z" option.

Open Watcom Make Reference 115

The Make/Touch Utilities

10.2.4 Special Macros

Open Watcom Make has many different special macros. Here are some of the simpler ones.

Macro Expansion

$$ represents the character "$"
$# represents the character "#"
$@ full file name of the target
$* target with the extension removed
$< list of all dependents
$? list of dependents that are younger than the target

The following macros are for more sophisticated makefiles.

Macro Expansion

__MSDOS__ This macro is defined in the MS/DOS environment.

__NT__ This macro is defined in the Windows NT environment.

__OS2__ This macro is defined in the OS/2 environment.

__LINUX__ This macro is defined in the Linux environment.

__QNX__ This macro is defined in the QNX environment.

__UNIX__ This macro is defined in the Linux or QNX environment.

__MAKEOPTS__ contains all of the command line options that WMAKE was invoked
with except for any use of the "f" or "n" options.

__MAKEFILES__ contains the names of all of the makefiles processed at the time of
expansion (includes the file currently being processed)

MAKE contains the full name of the file that contains WMAKE

__VERSION__ contains the wmake version.

The next three tables contain macros that are valid during execution of command lists for
explicit rules, implicit rules, and the .ERROR directive. The expansion is presented for the
following example:

116 Open Watcom Make Reference

The Open Watcom Make Utility

Example:
a:\dir\target.ext : b:\dir1\dep1.ex1 c:\dir2\dep2.ex2

Macro Expansion

$^@ a:\dir\target.ext
$^* a:\dir\target
$^& target
$^. target.ext
$^: a:\dir\

Macro Expansion

$[@ b:\dir1\dep1.ex1
$[* b:\dir1\dep1
$[& dep1
$[. dep1.ex1
$[: b:\dir1\

Macro Expansion

$]@ c:\dir2\dep2.ex2
$]* c:\dir2\dep2
$]& dep2
$]. dep2.ex2
$]: c:\dir2\

10.3 Dependency Declarations

In order for Open Watcom Make to be effective, a list of file dependencies must be declared.
The declarations may be entered into a text file of any name but Make will read a file called
"MAKEFILE" by default if it is invoked as follows:

Example:
C>wmake

If you want to use a file that is not called "MAKEFILE" then the command line option "f" will
cause Make to read the specified file instead of the default "MAKEFILE".

Dependency Declarations 117

The Make/Touch Utilities

Example:
C>wmake /f myfile

We will now go through an example to illustrate how Make may be used for a simple
application. Suppose we have an input file, a report file, and a report generator program then
we may declare a dependency as follows:

#
(a comment in a makefile starts with a "#")
simple dependency declaration
#
balance.lst : ledger.dat

doreport

Note that the dependency declaration starts at the beginning of a line while commands always
have at least one blank or tab before them. This form of a dependency declaration is called an
explicit rule. The file "BALANCE.LST" is called the target of the rule. The dependent of the
rule is the file "LEDGER.DAT" while "DOREPORT" forms one line of the rule command
list. The dependent is separated from the target by a colon.

Hint: A good habit to develop is to always put spaces around the colon so that it will not
be confused with drive specifications (e.g., a:).

The explicit rule declaration indicates to Make that the program "DOREPORT" should be
executed if "LEDGER.DAT" is younger than "BALANCE.LST" or if "BALANCE.LST" does
not yet exist. In general, if the dependent file has a more recent modification date and time
than the target file then Open Watcom Make will execute the specified command.

Note: The terminology employed here is used by S.I.Feldman of Bell Laboratories in
Make - A Program for Maintaining Computer Programs.
http://www.softlab.ntua.gr/facilities/documentation/unix/docs/make.txt has a copy of this
seminal article. Confusion often arises from the use of the word "dependent". In this
context, it means "a subordinate part". In the example, "LEDGER.DAT" is a subordinate
part of the report "BALANCE.LST".

118 Dependency Declarations

The Open Watcom Make Utility

10.4 Multiple Dependents

Suppose that our report "BALANCE.LST" becomes out-of-date if any of the files
"LEDGER.DAT", "SALES.DAT" or "PURCHASE.DAT" are modified. We may modify the
dependency rule as follows:

#
multiple dependents rule
#
balance.lst : ledger.dat sales.dat purchase.dat

doreport

This is an example of a rule with multiple dependents. In this situation, the program
"DOREPORT" should be executed if any of "LEDGER.DAT", "SALES.DAT" or
"PURCHASE.DAT" are younger than "BALANCE.LST" or if "BALANCE.LST" does not
yet exist. In cases where there are multiple dependents, if any of the dependent files has a
more recent modification date and time than the target file then Open Watcom Make will
execute the specified command.

10.5 Multiple Targets

Suppose that the "DOREPORT" program produces two reports. If both of these reports
require updating as a result of modification to the dependent files, we could change the rule as
follows:

#
multiple targets and multiple dependents rule
#
balance.lst summary.lst : ledger.dat sales.dat purchase.dat

doreport

Suppose that you entered the command:

wmake

which causes Make to start processing the rules described in "MAKEFILE". In the case
where multiple targets are listed in the makefile, Make will, by default, process only the first
target it encounters. In the example, Make will check the date and time of "BALANCE.LST"
against its dependents since this is the first target listed.

To indicate that some other target should be processed, the target is specified as an argument
to the Make command.

Multiple Targets 119

The Make/Touch Utilities

Example:
wmake summary.lst

There are a number of interesting points to consider:

1. By default, Make will only check that the target file exists after the command
("DOREPORT" in this example) is executed. It does not check that the target’s
time-stamp shows it to be younger. If the target file does not exist after the
command has been executed, an error is reported.

2. There is no guarantee that the command you have specified does update the target
file. In other words, simply because you have stated a dependency does not mean
that one exists.

3. Furthermore, it is not implied that other targets in our list will not be updated. In
the case of our example, you can assume that we have designed the "doreport"
command to update both targets.

10.6 Multiple Rules

A makefile may consist of any number of rules. Note that the following:

target1 target2 : dependent1 dependent2 dependent3

command list

is equivalent to:

target1 : dependent1 dependent2 dependent3

command list

target2 : dependent1 dependent2 dependent3
command list

Also, the rules may depend on the targets of other rules.

120 Multiple Rules

The Open Watcom Make Utility

#
rule 1: this rule uses rule 2
#
balance.lst summary.lst : ledger.dat sales.dat purchase.dat

doreport

#
rule 2: used by rules 1 and 3
#
sales.dat : canada.dat england.dat usa.dat

dosales

#
rule 3: this rule uses rule 2
#
year.lst : ledger.dat sales.dat purchase.dat

doyearly

The dependents are checked to see if they are the targets of any other rules in the makefile in
which case they are updated. This process of updating dependents that are targets in other
rules continues until a rule is reached that has only simple dependents that are not targets of
rules. At this point, if the target does not exist or if any of the dependents is younger than the
target then the command list associated with the rule is executed.

Hint: The term "updating", in this context, refers to the process of checking the
time-stamps of dependents and running the specified command list whenever they are
out-of-date. Whenever a dependent is the target of some other rule, the dependent must be
brought up-to-date first. Stated another way, if "A" depends on "B" and "B" depends on
"C" and "C" is younger than "B" then we must update "B" before we update "A".

Make will check to ensure that the target exists after its associated command list is executed.
The target existence checking may be disabled in two ways:

1. use the command line option "c"
2. use the .NOCHECK directive.

The rule checking returns to the previous rule that had the target as a dependent. Upon
returning to the rule, the command list is executed if the target does not exist or if any of the
updated dependents are now younger than the target. If you were to type:

wmake

Multiple Rules 121

The Make/Touch Utilities

here are the steps that would occur with the previous makefile:

update(balance.lst) (rule 1)

update(ledger.dat) (not a target)
update(sales.dat) (found rule 2)

update(canada.dat) (not a target)
update(england.dat) (not a target)
update(usa.dat) (not a target)
IF sales.dat does not exist OR

any of (canada.dat,england.dat,usa.dat)
is younger than sales.dat

THEN execute "dosales"

update(purchase.dat) (not a target)
IF balance.lst does not exist OR

any of (ledger.dat,sales.dat,purchase.dat)
is younger than (balance.lst)

THEN execute "doreport"

The third rule in the makefile will not be included in this update sequence of steps. Recall
that the default target that is "updated" is the first target in the first rule encountered in the
makefile. This is the default action taken by Make when no target is specified on the
command line. If you were to type:

wmake year.lst

then the file "YEAR.LST" would be updated. As Make reads the rules in "MAKEFILE", it
discovers that updating "YEAR.LST" involves updating "SALES.DAT". The update
sequence is similar to the previous example.

10.7 Command Lists
A command list is a sequence of one or more commands. Each command is preceded by one
or more spaces or tabs. Command lists may also be used to construct inline files "on the fly".
Macros substitute in command lists and in inline files. An inline file is introduced by "<<" in
a command in a command list. Data to insert into that file is placed (left-justified) in the
command list. The data is terminated by "<<" in the first column. It is not possible to place a
line which starts "<<" in an inline file. More than one inline file may be created in a
command. Data for each is placed in order of reference in the command.

In building the Open Watcom system, it is sometimes necessary to do some text substitution
with a program called vi. This needs a file of instructions. The following simplifies an

122 Command Lists

The Open Watcom Make Utility

example used to build Open Watcom so that inline files may be shown. Without inline files,
this is done as:

$(dllname).imp : $(dllname).lbc ../../trimlbc.vi

cp $(dllname).lbc $(dllname).imp
$(vi) -s ../../trimlbc.vi $(dllname).imp

where trimlbc.vi consists of
set magic
set magicstring = ()
atomic
%s/\.dll’/’/
%s/^(\+\+’)(.*)(’\.’.*’)\.[0-9]+$/\1\2\3..’\2’/
x

A doubled "$" to produce a single dollar is notable when an inline file is used:

$(dllname).imp : $(dllname).lbc

cp $(dllname).lbc $(dllname).imp
$(vi) -s << $(dllname).imp

set magic
set magicstring = ()
atomic
%s/\.dll’/’/
%s/^(\+\+’)(.*)(’\.’.*’)\.[0-9]+$$/\1\2\3..’\2’/
x
<<

A filename may follow a "<<" on a command line to cause a file with that name to be created.
(Otherwise, ’WMAKE’ chooses a name.) "keep" or "nokeep" may follow a terminating "<<"
to show what to do with the file after usage. The default is "nokeep" which zaps it.

10.8 Final Commands (.AFTER)
The .AFTER directive specifies commands for Make to run after it has done all other
commands. See the section entitled "Command List Directives" on page 173 for a full
description of its use.

Final Commands (.AFTER) 123

The Make/Touch Utilities

10.9 Ignoring Dependent Timestamps (.ALWAYS)
The .ALWAYS directive indicates to Make that the target should always be updated regardless
of the timestamps of its dependents.

#
.always directive
#

foo : bar .always
wtouch $@

foo is updated each time Make is run.

10.10 Automatic Dependency Detection
(.AUTODEPEND)

Explicit listing of dependencies in a makefile can often be tedious in the development and
maintenance phases of a project. The Open Watcom C/C++ compiler will insert dependency
information into the object file as it processes source files so that a complete snapshot of the
files necessary to build the object file are recorded. Since all files do not have dependency
information contained within them in a standard form, it is necessary to indicate to Make
when dependencies are present.

To illustrate the use of the .AUTODEPEND directive, we will show its use in an implicit rule
and in an explicit rule.

#
.AUTODEPEND example
#
.c.obj: .AUTODEPENDwcc386$[*$(compileoptions)
test.exe : a.obj b.obj c.obj test.res

wlink FILE a.obj, b.obj, c.obj
wrc /q /bt=windows test.res test.exe

test.res : test.rc test.ico .AUTODEPEND
wrc /ad /q /bt=windows /r $[@ $^@

In the above example, Make will use the contents of the object file to determine whether the
object file has to be built during processing. The Open Watcom Resource Compiler can also
insert dependency information into a resource file that can be used by Make.

124 Automatic Dependency Detection (.AUTODEPEND)

The Open Watcom Make Utility

10.11 Initial Commands (.BEFORE)
The .BEFORE directive specifies commands for Make to run before it does any other
command. See the section entitled "Command List Directives" on page 173 for a full
description of its use.

10.12 Disable Implicit Rules (.BLOCK)
The .BLOCK directive and the "b" command line option are alternative controls to cause
implicit rules to be ignored. See the section entitled "Command Line Options" on page 107
for a full description of its use.

10.13 Ignoring Errors (.CONTINUE)
The .CONTINUE directive and the "b" command line option are alternative controls to cause
failing commands to be ignored. See the section entitled "Command Line Options" on page
107 for a full description of its use.

#
.continue example
#

.continue

all: bad good
@%null

bad:
false

good:
touch $@

Although the command list for bad fails, that for good is done. Without the directive, good is
not built.

Ignoring Errors (.CONTINUE) 125

The Make/Touch Utilities

10.14 Default Command List (.DEFAULT)
The .DEFAULT directive provides a default command list for those targets which lack one.
See the section entitled "Command List Directives" on page 173 for a full description of its
use.

#
.default example
#

.default
@echo Using default rule to update target "$@"
@echo because of dependent(s) "$<"
wtouch $@

all: foo

foo:
wtouch foo

"all" has no command list. The one supplied to the default directive is executed instead.

10.15 Erasing Targets After Error (.ERASE)

Most operating system utilities and programs have special return codes that indicate error
conditions. Open Watcom Make will check the return code for every command executed. If
the return code is non-zero, Make will stop processing the current rule and optionally delete
the current target being updated. By default, Make will prompt for deletion of the current
target. The .ERASE directive indicates to Make that the target should be deleted if an error
occurs during the execution of the associated command list. No prompt is issued in this case.
Here is an example of the .ERASE directive:

#
.ERASE example
#
.ERASE
balance.lst : ledger.dat sales.dat purchase.dat

doreport

If the program "DOREPORT" executes and its return code is non-zero then Make will attempt
to delete "BALANCE.LST".

126 Erasing Targets After Error (.ERASE)

The Open Watcom Make Utility

10.16 Error Action (.ERROR)
The .ERROR directive supplies a command list for error conditions. See the section entitled
"Command List Directives" on page 173 for a full description of its use.

#
.error example
#

.error:
@echo it is good that "$@" is known

all : .symbolic
false

10.17 Ignoring Target Timestamp (.EXISTSONLY)
The .EXISTSONLY directive indicates to Make that the target should not be updated if it
already exists, regardless of its timestamp.

#
.existsonly directive
#

foo: .existsonly
wtouch $@

If absent, this file creates foo; if present, this file does nothing.

10.18 Specifying Explicitly Updated Targets
(.EXPLICIT)

The .EXPLICIT directive may me used to specify a target that needs to be explicitly
updated. Normally, the first target in a makefule will be implicitly updated if no target is
specified on Make command line. The .EXPLICIT directive prevents this, and is useful for
instance when creating files designed to be included for other make files.

Specifying Explicitly Updated Targets (.EXPLICIT) 127

The Make/Touch Utilities

#
.EXPLICIT example
#
target : .symbolic .explicit

@echo updating first target

next : .symbolic
@echo updating next target

In the above example, Make will not automatically update "target", despite the fact that it is
the first one listed.

10.19 Defining Recognized File Extensions
(.EXTENSIONS)

The .EXTENSIONS directive and its synonym, the .SUFFIXES directive declare which
extensions are allowed to be used in implicit rules and how these extensions are ordered.
.EXTENSIONS is the traditional Watcom name; .SUFFIXES is the corresponding POSIX
name. The default .EXTENSIONS declaration is:

.EXTENSIONS:
.EXTENSIONS: .exe .nlm .dsk .lan .exp .lib .obj &

.i .asm .c .cpp .cxx .cc .for .pas .cob &

.h .hpp .hxx .hh .fi .mif .inc

A .EXTENSIONS directive with an empty list will clear the .EXTENSIONS list and any
previously defined implicit rules. Any subsequent .EXTENSIONS directives will add
extensions to the end of the list.

Hint: The default .EXTENSIONS declaration could have been coded as:

.EXTENSIONS:

.EXTENSIONS: .exe

.EXTENSIONS: .nlm .dsk .lan .exp

.EXTENSIONS: .lib

.EXTENSIONS: .obj

.EXTENSIONS: .i .asm .c .cpp .cxx .cc

.EXTENSIONS: .for .pas .cob

.EXTENSIONS: .h .hpp .hxx .hh .fi .mif .inc

.EXTENSIONS: .inc

with identical results.

128 Defining Recognized File Extensions (.EXTENSIONS)

The Open Watcom Make Utility

Make will not allow any implicit rule declarations that use extensions that are not in the
current .EXTENSIONS list.

#
.extensions and .suffixes directives
#

.suffixes : # Clear list

.extensions : .foo .bar

.bar.foo:
copy $< $@

fubar.foo:

fubar.bar: .existsonly
wtouch $@

The first time this example runs, Make creates fubar.foo. This example always ensures that
fubar.foo is a copy of fubar.bar. Note the implicit connection beween the two files.

10.20 Approximate Timestamp Matching (.FUZZY)
The .FUZZY directive allows .AUTODEPEND times to be out by a minute without
considering a target out of date. It is only useful in conjunction with the.JUSTENOUGH
directive when Make is calculating the timestamp to set the target to.

10.21 Preserving Targets After Error (.HOLD)

Most operating system utilities and programs have special return codes that indicate error
conditions. Open Watcom Make will check the return code for every command executed. If
the return code is non-zero, Make will stop processing the current rule and optionally delete
the current target being updated. By default, Make will prompt for deletion of the current
target. The .HOLD directive indicates to Make that the target should not be deleted if an error
occurs during the execution of the associated command list. No prompt is issued in this case.
The .HOLD directive is similar to .PRECIOUS but applies to all targets listed in the
makefile. Here is an example of the .HOLD directive:

Preserving Targets After Error (.HOLD) 129

The Make/Touch Utilities

#
.HOLD example
#
.HOLD
balance.lst : ledger.dat sales.dat purchase.dat

doreport

If the program "DOREPORT" executes and its return code is non-zero then Make will not
delete "BALANCE.LST".

10.22 Ignoring Return Codes (.IGNORE)

Some programs do not have meaningful return codes so for these programs we want to ignore
the return code completely. There are different ways to ignore return codes namely,

1. use the command line option "i"
2. put a "−" in front of specific commands, or
3. use the .IGNORE directive.

In the following example, the rule:

#
ignore return code example
#
balance.lst : ledger.dat sales.dat purchase.dat

-doreport

will ignore the return status from the program "DOREPORT". Using the dash in front of the
command is the preferred method for ignoring return codes because it allows Make to check
all the other return codes.

The .IGNORE directive is used as follows:

#
.IGNORE example
#
.IGNORE
balance.lst : ledger.dat sales.dat purchase.dat

doreport

Using the .IGNORE directive will cause Make to ignore the return code for every command.
The "i" command line option and the .IGNORE directive prohibit Make from performing any
error checking on the commands executed and, as such, should be used with caution.

130 Ignoring Return Codes (.IGNORE)

The Open Watcom Make Utility

Another way to handle non-zero return codes is to continue processing targets which do not
depend on the target that had a non-zero return code during execution of its associated
command list. There are two ways of indicating to Make that processing should continue after
a non-zero return code:

1. use the command line option "k"
2. use the .CONTINUE directive.

10.23 Minimising Target Timestamp (.JUST_ENOUGH)
The.JUSTENOUGH directive is equivalent to the "j" command line option. The timestamps
of created targets are set to be the same as those of their youngest dependendents.

##.JUSTENOUGHexample
#.justenough
.c.exe:

wcl386 -zq $<

hello.exe:

hello.exe is given the same timestamp as hello.c, and not the usual timestamp corresponding
to when hello.exe was built.

10.24 Updating Targets Multiple Times (.MULTIPLE)
The .MULTIPLE directive is used to update a target multiple times. Normally, Make will
only update each target once while processing a makefile. The .MULTIPLE directive is
useful if a target needs to be updated more than once, for instance in case the target is
destroyed during processing of other targets. Consider the following example:

Updating Targets Multiple Times (.MULTIPLE) 131

The Make/Touch Utilities

#
example not using .multiple
#

all: targ1 targ2

target:
wtouch target

targ1: target
rm target
wtouch targ1

targ2: target
rm target
wtouch targ2

This makefile will fail because "target" is destroyed when updating "targ1", and later is
implicitly expected to exist when updating "targ2". Using the .MULTIPLE directive will
work around this problem:

#
.MULTIPLE example
#

all : targ1 targ2

target : .multiple
wtouch target

targ1 : target
rm target
wtouch targ1

targ2 : target
rm target
wtouch targ2

Now Make will attempt to update "target" again when updating "targ2", discover that "target"
doesn’t exist, and recreate it.

132 Updating Targets Multiple Times (.MULTIPLE)

The Open Watcom Make Utility

10.25 Ignoring Target Timestamp (.NOCHECK)
The .NOCHECK directive is used to disable target existence checks in a makefile. See the
section entitled "Command Line Options" on page 107 for a full description of its use.

10.26 Cache Search Path (.OPTIMIZE)
The .OPTIMIZE directive and the equivalent "o" command line option cause Make to use a
circular path search. If a file is found in a particular directory, that directory will be the first
searched for the next file. See the section entitled "Command Line Options" on page 107 for
a full description of its use.

10.27 Preserving Targets (.PRECIOUS)

Most operating system utilities and programs have special return codes that indicate error
conditions. Open Watcom Make will check the return code for every command executed. If
the return code is non-zero, Make will stop processing the current rule and optionally delete
the current target being updated. If a file is precious enough that this treatment of return
codes is not wanted then the .PRECIOUS directive may be used. The .PRECIOUS directive
indicates to Make that the target should not be deleted if an error occurs during the execution
of the associated command list. Here is an example of the .PRECIOUS directive:

#
.PRECIOUS example
#
balance summary : sales.dat purchase.dat .PRECIOUS

doreport

If the program "DOREPORT" executes and its return code is non-zero then Make will not
attempt to delete "BALANCE" or "SUMMARY". If only one of the files is precious then the
makefile could be coded as follows:

#
.PRECIOUS example
#
balance : .PRECIOUS
balance summary : sales.dat purchase.dat

doreport

The file "BALANCE.LST" will not be deleted if an error occurs while the program
"DOREPORT" is executing.

Preserving Targets (.PRECIOUS) 133

The Make/Touch Utilities

10.28 Name Command Sequence (.PROCEDURE)
The .PROCEDURE directive may be used to construct "procedures" in a makefile.

#
.procedure example
#

all: .symbolic
@%make proc

proc: .procedure
@echo Executing procedure "proc"

10.29 Re-Checking Target Timestamp (.RECHECK)
Make will re-check the target’s timestamp, rather than assuming it was updated by its
command list. This is useful if the target is built by another make- style tool, as in the
following example:

#
.RECHECK example
#
foo.gz : foo

gzip foo

foo : .ALWAYS .RECHECK
nant -buildfile:foo.build

foo’s command list will always be run, but foo will only be compressed if the timestamp is
actually changed.

10.30 Suppressing Terminal Output (.SILENT)

As commands are executed, Open Watcom Make will print out the current command before it
is executed. It is possible to execute the makefile without having the commands printed.
There are three ways to inhibit the printing of the commands before they are executed,
namely:

1. use the command line option "s"
2. put an "@" in front of specific commands, or
3. use the .SILENT directive.

134 Suppressing Terminal Output (.SILENT)

The Open Watcom Make Utility

In the following example, the rule:

#
silent command example
#
balance summary : ledger.dat sales.dat purchase.dat

@doreport

will prevent the string "doreport" from being printed on the screen before the command is
executed.

The .SILENT directive is used as follows:

#
.SILENT example
#
.SILENT
balance summary : ledger.dat sales.dat purchase.dat

doreport

Using the .SILENT directive or the "s" command line option will inhibit the printing of all
commands before they are executed. The "sn" command line option can be used to veto any
silencing control.

At this point, most of the capability of Make may be realized. Methods for making makefiles
more succinct will be discussed.

10.31 Defining Recognized File Extensions
(.SUFFIXES)

The .SUFFIXES directive declares which extensions are allowed to be used in implicit rules
and how these extensions are ordered. It is a synonym for the .EXTENSIONS directive. See
the section entitled "Defining Recognized File Extensions (.EXTENSIONS)" on page 128 for
a full description of both directives.

Defining Recognized File Extensions (.SUFFIXES) 135

The Make/Touch Utilities

10.32 Targets Without Any Dependents (.SYMBOLIC)

There must always be at least one target in a rule but it is not necessary to have any
dependents. If a target does not have any dependents, the command list associated with the
rule will always be executed if the target is updated.

You might ask, "What may a rule with no dependents be used for?". A rule with no
dependents may be used to describe actions that are useful for the group of files being
maintained. Possible uses include backing up files, cleaning up files, or printing files.

To illustrate the use of the .SYMBOLIC directive, we will add two new rules to the previous
example. First, we will omit the .SYMBOLIC directive and observe what will happen when it
is not present.

#
rule 4: backup the data files
#
backup :

echo "insert backup disk"
pause
copy *.dat a:
echo "backup complete"

#
rule 5: cleanup temporary files
#
cleanup :

del *.tmp
del \tmp*.*

and then execute the command:

wmake backup

Make will execute the command list associated with the "backup" target and issue an error
message indicating that the file "BACKUP" does not exist after the command list was
executed. The same thing would happen if we typed:

wmake cleanup

In this makefile we are using "backup" and "cleanup" to represent actions we want performed.
The names are not real files but rather they are symbolic names. This special type of target
may be declared with the .SYMBOLIC directive. This time, we show rules 4 and 5 with the
appropriate addition of .SYMBOLIC directives.

136 Targets Without Any Dependents (.SYMBOLIC)

The Open Watcom Make Utility

#
rule 4: backup the data files
#
backup : .SYMBOLIC

echo "insert backup disk"
pause
copy *.dat a:
echo "backup complete"

#
rule 5: cleanup temporary files
#
cleanup : .SYMBOLIC

del *.tmp
del \tmp*.*

The use of the .SYMBOLIC directive indicates to Make that the target should always be
updated internally after the command list associated with the rule has been executed. A short
form for the common idiom of singular .SYMBOLIC targets like:

target : .SYMBOLIC

commands

is:

target

commands

This kind of target definition is useful for many types of management tasks that can be
described in a makefile.

10.33 Macros

Open Watcom Make has a simple macro facility that may be used to improve makefiles by
making them easier to read and maintain. A macro identifier may be composed from a string
of alphabetic characters and numeric characters. The underscore character is also allowed in a
macro identifier. If the macro identifier starts with a "%" character, the macro identifier
represents an environment variable. For instance, the macro identifier "%path" represents the
environment variable "path".

Macros 137

The Make/Touch Utilities

Macro identifiers Valid?

2morrow yes
stitch_in_9 yes
invalid~id no
2b_or_not_2b yes
%path yes
reports yes
!@#*% no

We will use a programming example to show how macros are used. The programming
example involves four C/C++ source files and two header files. Here is the initial makefile
(before macros):

#
programming example
(before macros)
#
plot.exe : main.obj input.obj calc.obj output.obj

wlink @plot

main.obj : main.c defs.h globals.h
wcc386 main /mf /d1 /w3

calc.obj : calc.c defs.h globals.h
wcc386 calc /mf /d1 /w3

input.obj : input.c defs.h globals.h
wcc386 input /mf /d1 /w3

output.obj : output.c defs.h globals.h
wcc386 output /mf /d1 /w3

Macros become useful when changes must be made to makefiles. If the programmer wanted
to change the compiler options for the different compiles, the programmer would have to
make a global change to the makefile. With this simple example, it is quite easy to make the
change but try to imagine a more complex example with different programs having similar
options. The global change made by the editor could cause problems by changing the options
for other programs. A good habit to develop is to define macros for any programs that have
command line options. In our example, we would change the makefile to be:

138 Macros

The Open Watcom Make Utility

#
programming example
(after macros)
#linkoptions=
compiler = wcc386compileoptions=/mf/d1/w3
plot.exe : main.obj input.obj calc.obj output.objwlink$(linkoptions)@plot
main.obj : main.c defs.h globals.h$(compiler)main$(compileoptions)
calc.obj : calc.c defs.h globals.h$(compiler)calc$(compileoptions)
input.obj : input.c defs.h globals.h$(compiler)input$(compileoptions)
output.obj : output.c defs.h globals.h$(compiler)output$(compileoptions)

A macro definition consists of a macro identifier starting on the beginning of the line followed
by an "=" which in turn is followed by the text to be replaced. A macro may be redefined,
with the latest declaration being used for subsequent expansions (no warning is given upon
redefinition of a macro). The replacement text may contain macro references.

A macro reference may occur in two forms. The previous example illustrates one way to
reference macros whereby the macro identifier is delimited by "$(" and ")". The parentheses
are optional so the macros "compiler" and "compile_options" could be referenced by:

main.obj : main.c defs.h globals.h$compilermain$compileoptions

Certain ambiguities may arise with this form of macro reference. For instance, examine this
makefile fragment:

Macros 139

The Make/Touch Utilities

Example:temporarydir=\tmp\temporaryfile=$temporarydirtmp000.tmp
The intention of the declarations is to have a macro that will expand into a file specification
for a temporary file. Make will collect the largest identifier possible before macro expansion
occurs. The macro reference is followed by text that looks like part of the macro identifier
("tmp000") so the macro identifier that will be referenced will be "temporary_dirtmp000".
The incorrect macro identifier will not be defined so an error message will be issued.

If the makefile fragment was:
 temporarydir=\tmp\temporaryfile=$(temporarydir)tmp000.tmp

there would be no ambiguity. The preferred way to reference macros is to enclose the macro
identifier by "$(" and ")".

Macro references are expanded immediately on dependency lines (and thus may not contain
references to macros that have not been defined) but other macro references have their
expansion deferred until they are used in a command. In the previous example, the macros
"link_options", "compiler", and "compile_options" will not be expanded until the commands
that reference them are executed.

Another use for macros is to replace large amounts of text with a much smaller macro
reference. In our example, we only have two header files but suppose we had very many
header files. Each explicit rule would be very large and difficult to read and maintain. We
will use the previous example makefile to illustrate this use of macros.

#
programming example
(with more macros)
#linkoptions=
compiler = wcc386compileoptions=/mf/d1/w3headerfiles=defs.hglobals.hobjectfiles=main.objinput.objcalc.obj&

output.obj

140 Macros

The Open Watcom Make Utilityplot.exe:$(objectfiles)wlink$(linkoptions)@plotmain.obj:main.c$(headerfiles)$(compiler)main$(compileoptions)calc.obj:calc.c$(headerfiles)$(compiler)calc$(compileoptions)input.obj:input.c$(headerfiles)$(compiler)input$(compileoptions)output.obj:output.c$(headerfiles)$(compiler)output$(compileoptions)
Notice the ampersand ("&") at the end of the macro definition for "object_files". The
ampersand indicates that the macro definition continues on the next line. In general, if you
want to continue a line in a makefile, use an ampersand ("&") at the end of the line.

There are special macros provided by Make to access environment variable names. To access
the PATH environment variable in a makefile, we use the macro identifier "%path". For
example, if we have the following line in a command list:

Example:
echo $(%path)

it will print out the current value of the PATH environment variable when it is executed.

There are two other special environment macros that are predefined by Make. The macro
identifier "%cdrive" will expand into one letter representing the current drive. Note that it is
operating system dependent whether the cd command changes the current drive. The macro
identifier "%cwd" will expand into the current working directory. These macro identifiers are
not very useful unless we can specify that they be expanded immediately. The
complementary macros "$+" and "$−" respectively turn on and turn off immediate expansion
of macros. The scope of the "$+" macro is the current line after which the default macro
expansion behaviour is resumed. A possible use of these macros is illustrated by the
following example makefile.

Macros 141

The Make/Touch Utilities

#
$(%cdrive), $(%cwd), $+, and $- example
#
dir1 = $(%cdrive):$(%cwd)
dir2 = $+ $(dir1) $-
example : .SYMBOLIC

cd ..
echo $(dir1)
echo $(dir2)

Which would produce the following output if the current working directory is
C:\WATCOM\SOURCE\EXAMPLE:

Example:
(command output only)
C:\WATCOM\SOURCE
C:\WATCOM\SOURCE\EXAMPLE

The macro definition for "dir2" forces immediate expansion of the "%cdrive" and "%cwd"
macros thus defining "dir2" to be the current directory that Make was invoked in. The macro
"dir1" is not expanded until execution time when the current directory has changed from the
initial directory.

Combining the $+ and $− special macros with the special macro identifiers "%cdrive" and
"%cwd" is a useful makefile technique. The $+ and $− special macros are general enough to
be used in many different ways.

Constructing other macros is another use for the $+ and $− special macros. Make allows
macros to be redefined and combining this with the $+ and $− special macros, similar looking
macros may be constructed.

#
macro construction with $+ and $-
#
template = file1.$(ext) file2.$(ext) file3.$(ext) file4.$(ext)
ext = datdatafiles=$+$(template)$�
ext = lstlistingfiles=$+$(template)$�
example : .SYMBOLICecho$(datafiles)echo$(listingfiles)

This makefile would produce the following output:

142 Macros

The Open Watcom Make Utility

Example:
file1.dat file2.dat file3.dat file4.dat
file1.lst file2.lst file3.lst file4.lst

Adding more text to a macro can also be done with the $+ and $− special macros.

#
macro addition with $+ and $-
#
objs = file1.obj file2.obj file3.obj
objs = $+$(objs)$- file4.obj
objs = $+$(objs)$- file5.obj

example : .SYMBOLIC
echo $(objs)

This makefile would produce the following output:

Example:
file1.obj file2.obj file3.obj file4.obj file5.obj

Make provides a shorthand notation for this type of macro operation. Text can be added to a
macro by using the "+=" macro assignment. The previous makefile can be written as:

#
macro addition with +=
#
objs = file1.obj file2.obj file3.obj
objs += file4.obj
objs += file5.obj

example : .SYMBOLIC
echo $(objs)

and still produce the same results. The shorthand notation "+=" supported by Make provides a
quick way to add more text to macros.

Make provides the "!inject" preprocessor directive to append a "word" (one or more graphic
characters) to one or more macros. The previous makefile is adapted to show the usage:

Macros 143

The Make/Touch Utilities

#
macro construction with !inject
#
!inject file1.obj objs objs12 objs13 objs14 objs15
!inject file2.obj objs objs12 objs13 objs14 objs15
!inject file3.obj objs objs13 objs14 objs15
!inject file4.obj objs objs14 objs15
!inject file5.obj objs objs15

example : .SYMBOLIC
echo $(objs)
echo $(objs12)
echo $(objs13)
echo $(objs14)
echo $(objs15)

This makefile would produce the following output:

Example:
file1.obj file2.obj file3.obj file4.obj file5.obj
file1.obj file2.obj
file1.obj file2.obj file3.obj
file1.obj file2.obj file3.obj file4.obj
file1.obj file2.obj file3.obj file4.obj file5.obj

The "!inject" preprocessor directive supported by Make provides a way to append a word to
several macros.

There are instances when it is useful to have macro identifiers that have macro references
contained in them. If you wanted to print out an informative message before linking the
executable that was different between the debugging and production version, we would
express it as follows:

#
programming example
(macro selection)
#
version = debugging # debugging versionmsgproduction=linkingproductionversion...msgdebugging=linkingdebugversion...linkoptionsproduction=linkoptionsdebugging=debugalllinkoptions=$(linkoptions$(version))

144 Macros

The Open Watcom Make Utility

compiler = wcc386compileoptionsproduction=/mf/w3compileoptionsdebugging=/mf/d1/w3compileoptions=$(compileoptions$(version))headerfiles=defs.hglobals.hobjectfiles=main.objinput.objcalc.obj&
output.objplot.exe:$(objectfiles)echo$(msg$(version))wlink$(linkoptions)@plotmain.obj:main.c$(headerfiles)$(compiler)main$(compileoptions)calc.obj:calc.c$(headerfiles)$(compiler)calc$(compileoptions)input.obj:input.c$(headerfiles)$(compiler)input$(compileoptions)output.obj:output.c$(headerfiles)$(compiler)output$(compileoptions)

Take notice of the macro references that are of the form:
 $(<partialmacroidentifier>$(version))

The expansion of a macro reference begins by expanding any macros seen until a matching
right parenthesis is found. The macro identifier that is present after the matching parenthesis
is found will be expanded. The other form of macro reference namely:

 $<macroidentifier>
may be used in a similar fashion. The previous example would be of the form:

 $<partialmacroidentifier>$version
Macro expansion occurs until a character that cannot be in a macro identifier is found (on the
same line as the "$") after which the resultant macro identifier is expanded. If you want two
macros to be concatenated then the line would have to be coded:

$(macro1)$(macro2)

Macros 145

The Make/Touch Utilities

The use of parentheses is the preferred method for macro references because it completely
specifies the order of expansion.

In the previous example, we can see that the four command lines that invoke the compiler are
very similar in form. We may make use of these similarities by denoting the command by a
macro reference. We need to be able to define a macro that will expand into the correct
command when processed. Fortunately, Make can reference the first member of the
dependent list, the last member of the dependent list, and the current target being updated with
the use of some special macros. These special macros have the form:

 $<filespecifier><formqualifier>
where <file_specifier> is one of:

"^" represents the current target being updated

"[" represents the first member of the dependent list

"]" represents the last member of the dependent list

and <form_qualifier> is one of:

"@" full file name

"*" file name with extension removed

"&" file name with path and extension removed

"." file name with path removed

":" path of file name

If the file "D:\DIR1\DIR2\NAME.EXT" is the current target being updated then the following
example will show how the form qualifiers are used.

Macro Expansion for D:\DIR1\DIR2\NAME.EXT

$^@ D:\DIR1\DIR2\NAME.EXT

$^* D:\DIR1\DIR2\NAME

$^& NAME

146 Macros

The Open Watcom Make Utility

$^. NAME.EXT

$^: D:\DIR1\DIR2\

These special macros provide the capability to reference targets and dependents in a variety of
ways.

#
programming example
(more macros)
#
version = debugging # debugging versionmsgproduction=linkingproductionversion...msgdebugging=linkingdebugversion...linkoptionsproduction=linkoptionsdebugging=debugalllinkoptions=$(linkoptions$(version))compileoptionsproduction=/mf/w3compileoptionsdebugging=/mf/d1/w3compileoptions=$(compileoptions$(version))compilercommand=wcc386$[*$(compileoptions)headerfiles=defs.hglobals.hobjectfiles=main.objinput.objcalc.obj&

output.objplot.exe:$(objectfiles)echo$(msg$(version))wlink$(linkoptions)@$̂*main.obj:main.c$(headerfiles)$(compilercommand)calc.obj:calc.c$(headerfiles)$(compilercommand)input.obj:input.c$(headerfiles)$(compilercommand)output.obj:output.c$(headerfiles)$(compilercommand)
Macros 147

The Make/Touch Utilities

This example illustrates the use of the special dependency macros. Notice the use of "$^*" in
the linker command. The macro expands into the string "plot" since "plot.exe" is the target
when the command is processed. The use of the special dependency macros is recommended
because they make use of information that is already contained in the dependency rule.

At this point, we know that macro references begin with a "$" and that comments begin with a
"#". What happens if we want to use these characters without their special meaning? Make
has two special macros that provide these characters to you. The special macro "$$" will
result in a "$" when expanded and "$#" will expand into a "#". These special macros are
provided so that you are not forced to work around the special meanings of the "$" and "#"
characters.

There is also a simple macro text substitution facility. We have previously seen that a macro
call can be made with $(macroname). The construct $(macroname:string1=string2)
substitutes macroname with each occurrence of string1 replaced by string2. We have already
seen that it can be useful for a macro to be a set of object file names separated by spaces. The
file directive in wlink can accept a set of names separated by commas.

#
programming example
(macro substitution)
#

.c.obj:
wcc386 -zq $*.cobjectfiles=main.objinput.objcalc.objoutput.objplot.exe:$(objectfiles)wlinkname$@file$(objectfiles:=,)

Note that macro substitution cannot be used with special macros.

It is also worth noting that although the above example shows a valid approach, the same
problem, that is, providing a list of object files to wlink, can be solved without macro
subsitutions. The solution is using the {} syntax of wlink, as shown in the following example.
Refer to the Open Watcom Linker Guide for details.

148 Macros

The Open Watcom Make Utility

#
programming example
(not using macro substitution)
#

.c.obj:
wcc386 -zq $*.cobjectfiles=main.objinput.objcalc.objoutput.objplot.exe:$(objectfiles)wlinkname$@file{$(objectfiles)}

10.34 Implicit Rules

Open Watcom Make is capable of accepting declarations of commonly used dependencies.
These declarations are called "implicit rules" as opposed to "explicit rules" which were
discussed previously. Implicit rules may be applied only in instances where you are able to
describe a dependency in terms of file extensions.

Hint: Recall that a file extension is the portion of the file name which follows the period.
In the file specification:

c:\dos\ansi.sys

the file extension is "SYS".

An implicit rule provides a command list for a dependency between files with certain
extensions. The form of an implicit rule is as follows:

 .<dependentextension>.<targetextension>:<commandlist>
Implicit rules are used if a file has not been declared as a target in any explicit rule or the file
has been declared as a target in an explicit rule with no command list. For a given target file,
a search is conducted to see if there are any implicit rules defined for the target file’s
extension in which case Make will then check if the file with the dependent extension in the
implicit rule exists. If the file with the dependent extension exists then the command list
associated with the implicit rule is executed and processing of the makefile continues.

Implicit Rules 149

The Make/Touch Utilities

Other implicit rules for the target extension are searched in a similar fashion. The order in
which the dependent extensions are checked becomes important if there is more than one
implicit rule declaration for a target extension. If we have the following makefile fragment:

Example:
.pas.obj:

(command list)
.c.obj:

(command list)

an ambiguity arises. If we have a target file "TEST.OBJ" then which do we check for first,
"TEST.PAS" or "TEST.C"? Make handles this with the previously described .EXTENSIONS
directive. Returning to our makefile fragment:

.pas.obj:

(command list)
.c.obj:

(command list)

and our target file "TEST.OBJ", we know that the .EXTENSIONS list determines in what
order the dependents "TEST.PAS" and "TEST.C" will be tried. If the .EXTENSIONS
declaration is:

Example:
.EXTENSIONS:
.EXTENSIONS: .exe .obj .asm .pas .c .cpp .for .cob

we can see that the dependent file "TEST.PAS" will be tried first as a possible dependent with
"TEST.C" being tried next.

One apparent problem with implicit rules and their associated command lists is that they are
used for many different targets and dependents during the processing of a makefile. The same
problem occurs with commands constructed from macros. Recall that there is a set of special
macros that start with "$^", "$[", or "$]" that reference the target, first dependent, or last
dependent of an explicit dependency rule. In an implicit rule there may be only one
dependent or many dependents depending on whether the rule is being executed for a target
with a single colon ":" or double colon "::" dependency. If the target has a single colon or
double colon dependency, the "$^", "$[", and "$]" special macros will reflect the values in the
rule that caused the implicit rule to be invoked. Otherwise, if the target does not have a
dependency rule then the "$[" and "$]" special macros will be set to the same value, namely,
the file found in the implicit rule search.

We will use the last programming example to illustrate a possible use of implicit rules.

150 Implicit Rules

The Open Watcom Make Utility

#
programming example
(implicit rules)
#
version = debugging # debugging versionmsgproduction=linkingproductionversion...msgdebugging=linkingdebugversion...linkoptionsproduction=linkoptionsdebugging=debugalllinkoptions=$(linkoptions$(version))
compiler = wcc386compileoptionsproduction=/mf/w3compileoptionsdebugging=/mf/d1/w3compileoptions=$(compileoptions$(version))headerfiles=defs.hglobals.hobjectfiles=main.objinput.objcalc.obj&

output.objplot.exe:$(objectfiles)echo$(msg$(version))wlink$(linkoptions)@$̂*
.c.obj:$(compiler)$[*$(compileoptions)main.obj:main.c$(headerfiles)calc.obj:calc.c$(headerfiles)input.obj:input.c$(headerfiles)output.obj:output.c$(headerfiles)

As this makefile is processed, any time an object file is found to be older than its associated
source file or header files then Make will attempt to execute the command list associated with
the explicit rule. Since there are no command lists associated with the four object file targets,
an implicit rule search is conducted. Suppose "CALC.OBJ" was older than "CALC.C". The
lack of a command list in the explicit rule with "CALC.OBJ" as a target causes the ".c.obj"
implicit rule to be invoked for "CALC.OBJ". The file "CALC.C" is found to exist so the
commands

Implicit Rules 151

The Make/Touch Utilities

wcc386 calc /mf /d1 /w3
echo linking debug version ...
wlink debug all @plot

are executed. The last two commands are a result of the compilation of "CALC.C" producing
a "CALC.OBJ" file that is younger than the "PLOT.EXE" file that in turn must be generated
again.

The use of implicit rules is straightforward when all the files that the makefile deals with are
in the current directory. Larger applications may have files that are in many different
directories. Suppose we moved the programming example files to three sub-directories.

Files Sub-directory

*.H \EXAMPLE\H

*.C \EXAMPLE\C

rest \EXAMPLE\O

Now the previous makefile (located in the \EXAMPLE\O sub-directory) would look like this:

#
programming example
(implicit rules)
#hdir=\example\h\#sub�directorycontainingheaderfilescdir=\example\c\#sub�directorycontainingC/C++files
version = debugging # debugging versionmsgproduction=linkingproductionversion...msgdebugging=linkingdebugversion...linkoptionsproduction=linkoptionsdebugging=debugalllinkoptions=$(linkoptions$(version))
compiler = wcc386compileoptionsproduction=/mf/w3compileoptionsdebugging=/mf/d1/w3compileoptions=$(compileoptions$(version))headerfiles=$(hdir)defs.h$(hdir)globals.hobjectfiles=main.objinput.objcalc.obj&

output.obj

152 Implicit Rules

The Open Watcom Make Utilityplot.exe:$(objectfiles)echo$(msg$(version))wlink$(linkoptions)@$̂*
.c.obj:$(compiler)$[*$(compileoptions)main.obj:$(cdir)main.c$(headerfiles)calc.obj:$(cdir)calc.c$(headerfiles)input.obj:$(cdir)input.c$(headerfiles)output.obj:$(cdir)output.c$(headerfiles)

Suppose "\EXAMPLE\O\CALC.OBJ" was older than "\EXAMPLE\C\CALC.C". The lack of
a command list in the explicit rule with "CALC.OBJ" as a target causes the ".c.obj" implicit
rule to be invoked for "CALC.OBJ". At this time, the file "\EXAMPLE\O\CALC.C" is not
found so an error is reported indicating that "CALC.OBJ" could not be updated. How may
implicit rules be useful in larger applications if they will only search the current directory for
the dependent file? We must specify more information about the dependent extension (in this
case ".C"). We do this by associating a path with the dependent extension as follows:

 .<dependentextension>:<pathspecification>
This allows the implicit rule search to find the files with the dependent extension.

Hint: A valid path specification is made up of directory specifications separated by
semicolons (";"). Here are some path specifications:

D:;C:\DOS;C:\UTILS;C:\WC
C:\SYS
A:\BIN;D:

Notice that these path specifications are identical to the form required by the operating
system shell’s "PATH" command.

Our makefile will be correct now if we add the new declaration as follows:

#
programming example
(implicit rules)
#hdir=\example\h\#sub�directorycontainingheaderfilescdir=\example\c\#sub�directorycontainingC/C++files
version = debugging # debugging version

Implicit Rules 153

The Make/Touch Utilitiesmsgproduction=linkingproductionversion...msgdebugging=linkingdebugversion...linkoptionsproduction=linkoptionsdebugging=debugalllinkoptions=$(linkoptions$(version))
compiler = wcc386compileoptionsproduction=/mf/w3compileoptionsdebugging=/mf/d1/w3compileoptions=$(compileoptions$(version))headerfiles=$(hdir)defs.h$(hdir)globals.hobjectfiles=main.objinput.objcalc.obj&

output.objplot.exe:$(objectfiles)echo$(msg$(version))wlink$(linkoptions)@$̂*.c:$(cdir)
.c.obj:$(compiler)$[*$(compileoptions)main.obj:$(cdir)main.c$(headerfiles)calc.obj:$(cdir)calc.c$(headerfiles)input.obj:$(cdir)input.c$(headerfiles)output.obj:$(cdir)output.c$(headerfiles)

Suppose "\EXAMPLE\O\CALC.OBJ" is older than "\EXAMPLE\C\CALC.C". The lack of a
command list in the explicit rule with "CALC.OBJ" as a target will cause the ".c.obj" implicit
rule to be invoked for "CALC.OBJ". The dependent extension ".C" has a path associated with
it so the file "\EXAMPLE\C\CALC.C" is found to exist. The commands

wcc386 \EXAMPLE\C\CALC /mf /d1 /w3
echo linking debug version ...
wlink debug all @plot

are executed to update the necessary files.

If the application requires many source files in different directories Make will search for the
files using their associated path specifications. For instance, if the current example files were
setup as follows:

154 Implicit Rules

The Open Watcom Make Utility

Sub-directory Contents

\EXAMPLE\H
DEFS.H, GLOBALS.H

\EXAMPLE\C\PROGRAM
MAIN.C, CALC.C

\EXAMPLE\C\SCREEN
INPUT.C, OUTPUT.C

\EXAMPLE\O
PLOT.EXE, MAKEFILE, MAIN.OBJ, CALC.OBJ, INPUT.OBJ,
OUTPUT.OBJ

the makefile would be changed to:

#
programming example
(implicit rules)
#hdir=..\h\#sub�directorywithheaderfiles

sub-directories with C/C++ source filesprogramdir=..\c\program\#�MAIN.C,CALC.Cscreendir=..\c\screen\#�INPUT.C,OUTPUT.C
version = debugging # debugging versionmsgproduction=linkingproductionversion...msgdebugging=linkingdebugversion...linkoptionsproduction=linkoptionsdebugging=debugalllinkoptions=$(linkoptions$(version))
compiler = wcc386compileoptionsproduction=/mf/w3compileoptionsdebugging=/mf/d1/w3compileoptions=$(compileoptions$(version))headerfiles=$(hdir)defs.h$(hdir)globals.hobjectfiles=main.objinput.objcalc.obj&

output.objplot.exe:$(objectfiles)echo$(msg$(version))wlink$(linkoptions)@$̂*.c:$(programdir);$(screendir)
.c.obj:$(compiler)$[*$(compileoptions)

Implicit Rules 155

The Make/Touch Utilitiesmain.obj:$(programdir)main.c$(headerfiles)calc.obj:$(programdir)calc.c$(headerfiles)input.obj:$(screendir)input.c$(headerfiles)output.obj:$(screendir)output.c$(headerfiles)
Suppose that there is a change in the "DEFS.H" file which causes all the source files to be
recompiled. The implicit rule ".c.obj" is invoked for every object file so the corresponding
".C" file must be found for each ".OBJ" file. We will show where Make searches for the
C/C++ source files.

update main.obj

test ..\c\program\main.c (it does exist)
execute wcc386 ..\c\program\main /mf /d1 /w3

update calc.obj
test ..\c\program\calc.c (it does exist)
execute wcc386 ..\c\program\calc /mf /d1 /w3

update input.obj
test ..\c\program\input.c (it does not exist)
test ..\c\screen\input.c (it does exist)
execute wcc386 ..\c\screen\input /mf /d1 /w3

update output.obj
test ..\c\program\output.c (it does not exist)
test ..\c\screen\output.c (it does exist)
execute wcc386 ..\c\screen\output /mf /d1 /w3

etc.

Notice that Make checked the sub-directory "..\C\PROGRAM" for the files "INPUT.C" and
"OUTPUT.C". Make optionally may use a circular path specification search which may save
on disk activity for large makefiles. The circular path searching may be used in two different
ways:

1. use the command line option "o"
2. use the .OPTIMIZE directive.

Make will retain (for each suffix) what sub-directory yielded the last successful search for a
file. The search for a file is resumed at this directory in the hope that wasted disk activity will
be minimized. If the file cannot be found in the sub-directory then Make will search the next
sub-directory in the path specification (cycling to the first sub-directory in the path
specification after an unsuccessful search in the last sub-directory).

Changing the previous example to include this feature, results in the following:

156 Implicit Rules

The Open Watcom Make Utility

#
programming example
(optimized path searching)
#
.OPTIMIZEhdir=..\h\#sub�directorywithheaderfiles

sub-directories with C/C++ source filesprogramdir=..\c\program\#�MAIN.C,CALC.Cscreendir=..\c\screen\#�INPUT.C,OUTPUT.C
version = debugging # debugging versionmsgproduction=linkingproductionversion...msgdebugging=linkingdebugversion...linkoptionsproduction=linkoptionsdebugging=debugalllinkoptions=$(linkoptions$(version))
compiler = wcc386compileoptionsproduction=/mf/w3compileoptionsdebugging=/mf/d1/w3compileoptions=$(compileoptions$(version))headerfiles=$(hdir)defs.h$(hdir)globals.hobjectfiles=main.objinput.objcalc.obj&

output.objplot.exe:$(objectfiles)echo$(msg$(version))wlink$(linkoptions)@$̂*.c:$(programdir);$(screendir)
.c.obj:$(compiler)$[*$(compileoptions)main.obj:$(programdir)main.c$(headerfiles)calc.obj:$(programdir)calc.c$(headerfiles)input.obj:$(screendir)input.c$(headerfiles)output.obj:$(screendir)output.c$(headerfiles)

Suppose again that there is a change in the "DEFS.H" file which causes all the source files to
be recompiled. We will show where Make searches for the C/C++ source files using the
optimized path specification searching.

update main.obj

test ..\c\program\main.c (it does exist)
execute wcc386 ..\c\program\main /mf /d1 /w3

update calc.obj
test ..\c\program\calc.c (it does exist)
execute wcc386 ..\c\program\calc /mf /d1 /w3

Implicit Rules 157

The Make/Touch Utilities

update input.obj
test ..\c\program\input.c (it does not exist)
test ..\c\screen\input.c (it does exist)
execute wcc386 ..\c\screen\input /mf /d1 /w3

update output.obj
test ..\c\screen\output.c (it does exist)
execute wcc386 ..\c\screen\output /mf /d1 /w3

etc.

Make did not check the sub-directory "..\C\PROGRAM" for the file "OUTPUT.C" because
the last successful attempt to find a ".C" file occurred in the "..\C\SCREEN" sub-directory. In
this small example, the amount of disk activity saved by Make is not substantial but the
savings become much more pronounced in larger makefiles.

Hint: The simple heuristic method that Make uses for optimizing path specification
searches namely, keeping track of the last successful sub-directory, is very effective in
reducing the amount of disk activity during the processing of a makefile. A pitfall to
avoid is having two files with the same name in the path. The version of the file that is
used to update the target depends on the previous searches. Care should be taken when
using files that have the same name with path specifications.

Large makefiles for projects written in C/C++ may become difficult to maintain with all the
header file dependencies. Ignoring header file dependencies and using implicit rules may
reduce the size of the makefile while keeping most of the functionality intact. The previous
example may be made smaller by using this idea.

#
programming example
(no header dependencies)
#
.OPTIMIZEhdir=..\h\#sub�directorywithheaderfiles

sub-directories with C/C++ source filesprogramdir=..\c\program\#�MAIN.C,CALC.Cscreendir=..\c\screen\#�INPUT.C,OUTPUT.C
version = debugging # debugging versionmsgproduction=linkingproductionversion...msgdebugging=linkingdebugversion...linkoptionsproduction=linkoptionsdebugging=debugalllinkoptions=$(linkoptions$(version))

158 Implicit Rules

The Open Watcom Make Utility

compiler = wcc386compileoptionsproduction=/mf/w3compileoptionsdebugging=/mf/d1/w3compileoptions=$(compileoptions$(version))objectfiles=main.objinput.objcalc.obj&
output.objplot.exe:$(objectfiles)echo$(msg$(version))wlink$(linkoptions)@$̂*.c:$(programdir);$(screendir)

.c.obj:$(compiler)$[*$(compileoptions)
Implicit rules are very useful in this regard providing you are aware that you have to make up
for the information that is missing from the makefile. In the case of C/C++ programs, you
must ensure that you force Make to compile any programs affected by changes in header files.
Forcing Make to compile programs may be done by touching source files (not recommended),
deleting object files, or using the "a" option and targets on the command line. Here is how the
files "INPUT.OBJ" and "MAIN.OBJ" may be recompiled if a change in some header file
affects both files.

Example:
del input.obj
del main.obj
wmake

or using the "a" option

Example:
wmake /a input.obj main.obj

The possibility of introducing bugs into programs is present when using this makefile
technique because it does not protect the programmer completely from object modules
becoming out-of-date. The use of implicit rules without header file dependencies is a viable
makefile technique but it is not without its pitfalls.

10.35 Double Colon Explicit Rules

Single colon ":" explicit rules are useful in many makefile applications. However, the single
colon rule has certain restrictions that make it difficult to express more complex dependency
relationships. The restrictions imposed on single colon ":" explicit rules are:

1. only one command list is allowed for each target

Double Colon Explicit Rules 159

The Make/Touch Utilities

2. after the command list is executed, the target is considered up to date

The first restriction becomes evident when you want to update a target in different ways (i.e.,
when the target is out of date with respect to different dependents). The double colon explicit
rule removes this restriction.

#
multiple command lists
#
target1 :: dependent1 dependent2

command1

target1 :: dependent3 dependent4
command2

Notice that if "target1" is out of date with respect to either "dependent1" or "dependent2" then
"command1" will be executed. The double colon "::" explicit rule does not consider the target
(in this case "target1") up to date after the command list is executed. Make will continue to
attempt to update "target1". Afterwards "command2" will be executed if "target1" is out of
date with respect to either "dependent3" or "dependent4". It is possible that both "command1"
and "command2" will be executed. As a result of the target not being considered up to date,
an implicit rule search will be conducted on "target1" also. Make will process the double
colon "::" explicit rules in the order that they are encountered in the makefile. A useful
application of the double colon "::" explicit rule involves maintaining and using prototype
information generated by a compiler.

#
double colon "::" example
#
compiler = wcc386
options = /w3

generate macros for the .OBJ and .DEF files
template = module1.$(ext) module2.$(ext) module3.$(ext)
ext = obj
objs = $+ $(template) $-
ext = def
defs = $+ $(template) $-

add .DEF to the extensions list
.EXTENSIONS:
.EXTENSIONS: .exe .obj .def .c

160 Double Colon Explicit Rules

The Open Watcom Make Utility

implicit rules for the .OBJ and .DEF files
.c.obj:

$(compiler) $[* $(options)

generate the prototype file (only do a syntax check)
.c.def:

$(compiler) $[* $(options) /v/zs

program.exe :: $(defs)
erase *.err

program.exe :: $(objs)
wlink @$^*

The ".OBJ" files are updated to complete the update of the file "PROGRAM.EXE". It is
important to keep in mind that Make does not consider the file "PROGRAM.EXE" up to date
until it has conducted a final implicit rule search. The double colon "::" explicit rule is useful
when describing complex update actions.

10.36 Preprocessing Directives

One of the primary objectives in using a make utility is to improve the development and
maintenance of projects. A programming project consisting of many makefiles in different
sub-directories may become unwieldy to maintain. The maintenance problem stems from the
amount of duplicated information scattered throughout the project makefiles. Make provides
a method to reduce the amount of duplicated information present in makefiles. Preprocessing
directives provide the capability for different makefiles to make use of common information.

10.36.1 File Inclusion

A common solution to the "duplicated information" problem involves referencing text
contained in one file from many different files. Make supports file inclusion with the
!include preprocessing directive. The development of object libraries, using 16-bit Open
Watcom C/C++, for the different 80x86 16-bit memory models provides an ideal example to
illustrate the use of the !include preprocessing directive.

Preprocessing Directives 161

The Make/Touch Utilities

Sub-directory Contents

\WINDOW WINDOW.CMD, WINDOW.MIF

\WINDOW\H
PROTO.H, GLOBALS.H,BIOSDEF.H

\WINDOW\C
WINDOW.C, KEYBOARD.C, MOUSE.C, BIOS.C

\WINDOW\SCSD
small model object files, MAKEFILE,

WINDOWS.LIB
\WINDOW\SCBD

compact model object files, MAKEFILE,
WINDOWC.LIB

\WINDOW\BCSD
medium model object files, MAKEFILE,

WINDOWM.LIB
\WINDOW\BCBD

large model object files, MAKEFILE,
WINDOWL.LIB

\WINDOW\BCHD
huge model object files, MAKEFILE,

WINDOWL.LIB
The WLIB command file "WINDOW.CMD" contains the list of library operations required to
build the libraries. The contents of "WINDOW.CMD" are:

-+window
-+bios
-+keyboard
-+mouse

The "−+" library manager command indicates to WLIB that the object file should be replaced
in the library.

The file "WINDOW.MIF" contains the makefile declarations that are common to every
memory model. The ".MIF" extension will be used for all the Make Include Files discussed in
this manual. This extension is also in the default extension list so it is a recommended
extension for Make include files. The contents of the "WINDOW.MIF" file is as follows:

162 Preprocessing Directives

The Open Watcom Make Utility

#
example of a Make Include File
#
common = /d1 /w3 # common options
objs = window.obj bios.obj keyboard.obj mouse.obj

.c: ..\c

.c.obj:
wcc $[* $(common) $(local) /m$(model)window$(model).lib:$(objs)wlibwindow$(model)@..\window

The macros "model" and "local" are defined by the file "MAKEFILE" in each object
directory. An example of the file "MAKEFILE" in the medium memory model object
directory is:

#
!include example
#
model = m # memory model required
local = # memory model specific options
!include ..\window.mif

Notice that changes that affect all the memory models may be made in one file, namely
"WINDOW.MIF". Any changes that are specific to a memory model may be made to the
"MAKEFILE" in the object directory. To update the medium memory model library, the
following commands may be executed:

Example:
C>cd \window\bcsd
C>wmake

A DOS ".BAT" or OS/2 ".CMD" file may be used to update all the different memory models.
If the following DOS "MAKEALL.BAT" (OS/2 "MAKEALL.CMD") file is located
somewhere in the "PATH", we may update all the libraries.

Preprocessing Directives 163

The Make/Touch Utilities

cd \window\scsd
wmake %1 %2 %3 %4 %5 %6 %7 %8 %9
cd \window\scbd
wmake %1 %2 %3 %4 %5 %6 %7 %8 %9
cd \window\bcsd
wmake %1 %2 %3 %4 %5 %6 %7 %8 %9
cd \window\bcbd
wmake %1 %2 %3 %4 %5 %6 %7 %8 %9
cd \window\bchd
wmake %1 %2 %3 %4 %5 %6 %7 %8 %9

The batch file parameters are useful if you want to specify options to Make. For instance, a
global recompile may be done by executing:

Example:
C>makeall /a

The !include preprocessing directive is a good way to partition common information so
that it may be maintained easily.

Another use of the !include involves program generated makefile information. For
instance, if we have a program called "WMKMK" that will search through source files and
generate a file called "WMKMK.MIF" that contains:

#
program generated makefile information
#CtoOBJ=$(compiler)$[*$(compileoptions)
OBJECTS = WINDOW.OBJ BIOS.OBJ KEYBOARD.OBJ MOUSE.OBJ

WINDOW.OBJ : ..\C\WINDOW.C ..\H\PROTO.H ..\H\GLOBALS.H$(CtoOBJ)BIOS.OBJ:..\C\BIOS.C..\H\BIOSDEF.H..\H\GLOBALS.H$(CtoOBJ)
KEYBOARD.OBJ : ..\C\KEYBOARD.C ..\H\PROTO.H ..\H\GLOBALS.H$(CtoOBJ)
MOUSE.OBJ : ..\C\MOUSE.C ..\H\PROTO.H ..\H\GLOBALS.H$(CtoOBJ)

In order to use this program generated makefile information, we use a "MAKEFILE"
containing:

164 Preprocessing Directives

The Open Watcom Make Utility

#
makefile that makes use of generated makefile information
#compileoptions=/mf/d1/w3firsttarget:window.lib.SYMBOLIC

echo done

!include wmkmk.mif

window.lib : $(OBJECTS)
wlib window $(OBJECTS)

make : .SYMBOLIC
wmkmk /r ..\c*.c+..\c*.cpp+..\h

Notice that there is a symbolic target "first_target" that is used as a "place holder". The
default behaviour for Make is to "make" the first target encountered in the makefile. The
symbolic target "first_target" ensures that we have control over what file will be updated first
(in this case "WINDOW.LIB"). The use of the !include preprocessing directive simplifies
the use of program generated makefile information because any changes are localized to the
file "MAKEFILE". As program development continues, the file "WMKMK.MIF" may be
regenerated so that subsequent invocations of WMAKE benefit from the new makefile
information. The file "MAKEFILE" even contains the command to regenerate the file
"WMKMK.MIF". The symbolic target "make" has an associated command list that will
regenerate the file "WMKMK.MIF". The command list can be executed by typing the
following command:

Example:
C>wmake make

The use of the !include preprocessing directive is a simple way to reduce maintenance of
related makefiles.

Preprocessing Directives 165

The Make/Touch Utilities

Hint: Macros are expanded on !include preprocessor control lines. This allows many
benefits like:

!include $(%env_var)

so that the files that Make will process can be controlled through many different avenues
like internal macros, command line macros, and environment variables.

Another way to access files is through the suffix path feature of Make. A definition like

.mif : c:\mymifs;d:\some\more\mifs

will cause Make to search different paths for any make include files.

10.36.2 Conditional Processing

Open Watcom Make has conditional preprocessing directives available that allow different
declarations to be processed. The conditional preprocessing directives allow the makefile to

1. check whether a macro is defined, and
2. check whether a macro has a certain value.

The macros that can be checked include

1. normal macros "$(<macro_identifier>)"
2. environment macros "$(%<environment_var>)"

The conditional preprocessing directives allow a makefile to adapt to different external
conditions based on the values of macros or environment variables. We can define macros on
the WMAKE command line as shown in the following example.

Example:
C>wmake "macro=some text with spaces in it"

Alternatively, we can include a makefile that defines the macros if all the macros cannot fit on
the command line. This is shown in the following example:

166 Preprocessing Directives

The Open Watcom Make Utility

Example:
C>wmake /f macdef.mif /f makefile

Also, environment variables can be set before WMAKE is invoked. This is shown in the
following example:

Example:
C>set macro=some text with spaces in it
C>wmake

Now that we know how to convey information to Make through either macros or environment
variables, we will look at how this information can be used to influence makefile processing.

Make has conditional preprocessing directives that are similar to the C preprocessor
directives. Make supports these preprocessor directives:

!ifeq
!ifneq
!ifeqi
!ifneqi
!ifdef
!ifndef

along with

!else
!endif

Together these preprocessor directives allow selection of makefile declarations to be based on
either the value or the existence of a macro.

Environment variables can be checked by using an environment variable name prefixed with a
"%". A common use of a conditional preprocessing directive involves setting environment
variables.

#
setting an environment variable
#
!ifndef %lib

.BEFORE
set lib=c:\watcom\lib386;c:\watcom\lib386\dos

!endif

If you are writing portable applications, you might want to have:

Preprocessing Directives 167

The Make/Touch Utilities

#
checking a macro
#
!include version.mif

!ifdef OS2
machine = /2 # compile for 286
!else
machine = /0 # default: 8086
!endif

The !ifdef ("if defined") and !ifndef ("if not defined") conditional preprocessing
directives are useful for checking boolean conditions. In other words, the !ifdef and
!ifndef are useful for "yes-no" conditions. There are instances where it would be useful to
check a macro against a value. In order to use the value checking preprocessor directives, we
must know the exact value of a macro. A macro definition is of the form:

 <macroidentifier>=<text><comment>
Make will first strip any comment off the line. The macro definition will then be the text
following the equal "=" sign with leading and trailing blanks removed. Initially this might not
seem like a sensible way to define a macro but it does lend itself well to defining macros that
are common in makefiles. For instance, it allows definitions like:

#
sample macro definitions
#linkoptions=debugline#linenumberdebuggingcompileoptions=/d1/s#linenumbers,nostackchecking

These definitions are both readable and useful. A makefile can handle differences between
compilers with the !ifeq, !ifneq, !ifeqi and !ifneqi conditional preprocessing
directives. The first two perform case sensitive comparisons while the last two perform case
insensitive comparisons. One way of setting up adaptive makefiles is:

#
options made simple
#
compiler = wcc386stackoverflow=No#yes�>checkforstackoverflowlineinfo=Yes#yes�>generatelinenumbers

168 Preprocessing Directives

The Open Watcom Make Utility

!ifeq compiler wcc386!ifneqistackoverflowyesstackoption=/s
!endif!ifeqilineinfoyeslineoption=/d1
!endif
!endif

!ifeq compiler tcc!ifeqistackoverflowyesstackoption=�N
!endif!ifeqilineinfoyeslineoption=�y
!endif
!endif
#
make sure the macros are defined
#!ifndefstackoptionstackoption=
!endif!ifndeflineoptionlineoption=
!endif

example : .SYMBOLICecho$(compiler)$(stackoption)$(lineoption)
The conditional preprocessing directives can be very useful to hide differences, exploit
similarities, and organize declarations for applications that use many different programs.

Another directive is the !define directive. This directive is equivalent to the normal type of
macro definition (i.e., macro = text) but will make C programmers feel more at home. One
important distinction is that the !define preprocessor directive may be used to reflect the
logical structure of macro definitions in conditional processing. For instance, the previous
makefile could have been written in this style:

 !ifndefstackoption!definestackoption
!endif!ifndeflineoption!definelineoption
!endif

Preprocessing Directives 169

The Make/Touch Utilities

The "!" character must be in the first column but the directive keyword can be indented. This
freedom applies to all of the preprocessing directives. The !else preprocessing directive
benefits from this type of style because !else can also check conditions like:

!else ifeq
!else ifneq
!else ifeqi
!else ifneqi
!else ifdef
!else ifndef

so that logical structures like:

!ifdef %version
! ifeq %version debugging
! define option debug all
! else ifeq %version beta
! define option debug line
! else ifeq %version production
! define option debug
! else
! error invalid value in VERSION
! endif
!endif

can be used. The above example checks the environment variable "VERSION" for three
possible values and acts accordingly.

Another derivative from the C language preprocessor is the !error directive which has the
form of

!error <text>

in Make. This directive will print out the text and terminate processing of the makefile. It is
very useful in preventing errors from macros that are not defined properly. Here is an
example of the !error preprocessing directive.

 !ifndefstackoption!errorstackoptionisnotdefined
!endif!ifndeflineoption!errorlineoptionisnotdefined
!endif

There is one more directive that can be used in a makefile. The !undef preprocessing
directive will clear a macro definition. The !undef preprocessing directive has the form:

170 Preprocessing Directives

The Open Watcom Make Utility

 !undef<macroidentifier>
The macro identifier can represent a normal macro or an environment variable. A macro can
be cleared after it is no longer needed. Clearing a macro will reduce the memory
requirements for a makefile. If the macro identifier represents an environment variable (i.e.,
the identifier has a "%" prefix) then the environment variable will be deleted from the current
environment. The !undef preprocessing directive is useful for deleting environment
variables and reducing the amount of internal memory required during makefile processing.

10.36.3 Loading Dynamic Link Libraries

Open Watcom Make supports loading of Dynamic Link Library (DLL) versions of Open
Watcom software through the use of the !loaddll preprocessing directive. This support is
available on Win32 and 32-bit OS/2 platforms. Performance is greatly improved by avoiding
a reload of the software for each file to be processed. The syntax of the !loaddll
preprocessing directive is:

!loaddll $(exename) $(dllname)

where $(exename) is the command name used in the makefile and $(dllname) is the
name of the DLL to be loaded and executed in its place. For example, consider the following
makefile which contains a list of commands and their corresponding DLL versions.

Preprocessing Directives 171

The Make/Touch Utilities

Default compilation macros for sample programs
#
Compile switches that are enabled

CFLAGS = -d1
CC = wpp386 $(CFLAGS)

LFLAGS = DEBUG ALL
LINK = wlink $(LFLAGS)!ifdefLOADDLL
! loaddll wcc wccd
! loaddll wccaxp wccdaxp
! loaddll wcc386 wccd386
! loaddll wpp wppdi86
! loaddll wppaxp wppdaxp
! loaddll wpp386 wppd386
! loaddll wlink wlink
! loaddll wlib wlibd
!endif

.c.obj:
$(CC) $*.c

The
LOADDLL

 symbol is defined for versions of Open Watcom Make that support the
!loaddll preprocessing directive. The

!ifdefLOADDLL construct ensures that
the makefile can be processed by an older version of Open Watcom Make.

Make will look up the wpp386 command in its DLL load table and find a match. It will then
attempt to load the corresponding DLL (i.e., wppd386.dll) and pass it the command line
for processing. The lookup is case insensitive but must match in all other respects. For
example, if a path is included with the command name then the same path must be specified in
the !loaddll preprocessing directive. This problem can be avoided through the use of
macros as illustrated below.

172 Preprocessing Directives

The Open Watcom Make Utility

Default compilation macros for sample programs
#
Compile switches that are enabled
#
cc286 = wpp
cc286d = wppdi86
cc386 = wpp386
cc386d = wppd386
linker = wlink
linkerd = wlink

CFLAGS = -d1
CC = $(cc386) $(CFLAGS)

LFLAGS = DEBUG ALL
LINK = wlink $(LFLAGS)!ifdefLOADDLL
!loaddll $(cc286) $(cc286d)
!loaddll $(cc386) $(cc386d)
!loaddll $(linker) $(linkerd)
!endif

.c.obj:
$(CC) $*.c

A path and/or extension may be specified with the DLL name if desired.

10.37 Command List Directives

Open Watcom Make supports special directives that provide command lists for different
purposes. If a command list cannot be found while updating a target then the directive
.DEFAULT may be used to provide one. A simple .DEFAULT command list which makes
the target appear to be updated is:

.DEFAULT

wtouch $^@

The Open Watcom Touch utility sets the time-stamp on the file to the current time. The effect
of the above rule will be to "update" the file without altering its contents.

In some applications it is necessary to execute some commands before any other commands
are executed and likewise it is useful to be able to execute some commands after all other

Command List Directives 173

The Make/Touch Utilities

commands are executed. Make supports this capability by checking to see if the .BEFORE
and .AFTER directives have been used. If the .BEFORE directive has been used, the
.BEFORE command list is executed before any commands are executed. Similarly the
.AFTER command list is executed after processing is finished. It is important to note that if
all the files are up to date and no commands must be executed, the .BEFORE and .AFTER
command lists are never executed. If some commands are executed to update targets and
errors are detected (non-zero return status, macro expansion errors), the .AFTER command
list is not executed (the .ERROR directive supplies a command list for error conditions and is
discussed in this section). These two directives may be used for maintenance as illustrated in
the following example:

#
.BEFORE and .AFTER example
#
.BEFORE

echo .BEFORE command list executed
.AFTER

echo .AFTER command list executed
#
rest of makefile follows
#

.

.

.

If all the targets in the makefile are up to date then neither the .BEFORE nor the .AFTER
command lists will be executed. If any of the targets are not up to date then before any
commands to update the target are executed, the .BEFORE command list will be executed.
The .AFTER command list will be executed only if there were no errors detected during the
updating of the targets. The .BEFORE, .DEFAULT, and .AFTER command list directives
provide the capability to execute commands before, during, and after the makefile processing.

Make also supports the .ERROR directive. The .ERROR directive supplies a command list to
be executed if an error occurs during the updating of a target.

#
.ERROR example
#
.ERROR

beep
#
rest of makefile follows
#

.

.

.

174 Command List Directives

The Open Watcom Make Utility

The above makefile will audibly signal you that an error has occurred during the makefile
processing. If any errors occur during the .ERROR command list execution, makefile
processing is terminated.

10.38 MAKEINIT File

As you become proficient at using Open Watcom Make, you will probably want to isolate
common makefile declarations so that there is less duplication among different makefiles.
Make will search for a file called "MAKEINIT" (or "TOOLS.INI" when the "ms" option is
set) and process it before any other makefiles. The search for the "MAKEINIT" file will
occur along the current "PATH". If the file "MAKEINIT" is not found, processing continues
without any errors. By default, Make defines a set of data described at the "r" option. The use
of a "MAKEINIT" file will allow you to reuse common declarations and will result in simpler,
more maintainable makefiles.

10.39 Command List Execution

Open Watcom Make is a program which must execute other programs and operating system
shell commands. There are three basic types of executable files in DOS.

1. .COM files
2. .EXE files
3. .BAT files

There are two basic types of executable files in Windows NT.

1. .EXE files
2. .BAT files

There are two basic types of executable files in OS/2.

1. .EXE files
2. .CMD files

The .COM and .EXE files may be loaded into memory and executed. The .BAT files must be
executed by the DOS command processor or shell, "COMMAND.COM". The .CMD files
must be executed by the OS/2 command processor or shell, "CMD.EXE" Make will search
along the "PATH" for the command and depending on the file extension the file will be
executed in the proper manner.

Command List Execution 175

The Make/Touch Utilities

If Make detects any input or output redirection characters (these are ">", "<", and "|") in the
command, it will be executed by the shell.

Under DOS, an asterisk prefix (*) will cause Make to examine the length of the command
argument. If it is too long (> 126 characters), it will take the command argument and stuff it
into a temporary environment variable and then execute the command with "@env_var" as its
argument. Suppose the following sample makefile fragment contained a very long command
line argument.

#
Asterisk example
#

*foo myfile /a /b /c ... /x /y /z

Make will perform something logically similar to the following steps.

set TEMPVAR001=myfile /a /b /c ... /x /y /z
foo @TEMPVAR001

The command must, of course, support the "@env_var" syntax. Typically, DOS commands
do not support this syntax but many of the Open Watcom tools do.

The exclamation mark prefix (!) will force a command to be executed by the shell. Also, the
command will be executed by the shell if the command is an internal shell command from the
following list:

break (check for Ctrl+Break)
call (nest batch files)
chdir (change current directory)
cd (change current directory)
cls (clear the screen)
cmd (start NT or OS/2 command processor)
command (start DOS command processor)
copy (copy or combine files)
ctty (DOS redirect input/output to COM port)
d: (change drive where "d" represents a drive specifier)
date (set system date)
del (erase files)
dir (display contents in a directory)
echo (display commands as they are processed)
erase (erase files)
for (repetitively process commands, intercepted by WMAKE)

176 Command List Execution

The Open Watcom Make Utility

if (allow conditional processing of commands)
md (make directory)
mkdir (make directory)
path (set search path)
pause (suspend batch operations)
prompt (change command prompt)
ren (rename files)
rename (rename files)
rmdir (remove directory)
rd (remove directory)
rm (erase files, intercepted by WMAKE)
set (set environment variables, intercepted by WMAKE)
time (set system time)
type (display contents of a file)
ver (display the operating system version number)
verify (set data verification)
vol (display disk volume label)

The operating system shell "SET" command is intercepted by Make. The "SET" command
may be used to set environment variables to values required during makefile processing. The
environment variable changes are only valid during makefile processing and do not affect the
values that were in effect before Make was invoked. The "SET" command may be used to
initialize environment variables necessary for the makefile commands to execute properly.
The setting of environment variables in makefiles reduces the number of "SET" commands
required in the system initialization file. Here is an example with the Open Watcom C/C++
compiler.

#
SET example
#
.BEFORE

set include=c:\special\h;$(%include)
set lib=c:\watcom\lib386;c:\watcom\lib386\dos

#
rest of makefile follows
#

.

.

.

The first "SET" command will set up the INCLUDE environment variable so that the Open
Watcom C/C++ compiler may find header files. Notice that the old value of the INCLUDE
environment variable is used in setting the new value.

Command List Execution 177

The Make/Touch Utilities

The second "SET" command indicates to the Open Watcom Linker that libraries may be
found in the indicated directories.

Environment variables may be used also as dynamic variables that may communicate
information between different parts of the makefile. An example of communication within a
makefile is illustrated in the following example.

#
internal makefile communication
#
.BEFORE

set message=message text 1
echo *$(%message)*
set message=
echo *$(%message)*.example:anothertarget.SYMBOLIC
echo *$(%message)*anothertarget:.SYMBOLIC
set message=message text 2

The output of the previous makefile would be:

(command output only)
message text 1
**
message text 2

Make handles the "SET" command so that it appears to work in an intuitive manner similar to
the operating system shell’s "SET" command. The "SET" command also may be used to
allow commands to relay information to commands that are executed afterwards.

The DOS "FOR" command is intercepted by Make. The reason for this is that DOS has a
fixed limit for the size of a command thus making it unusable for large makefile applications.
One such application that can be done easily with Make is the construction of a WLINK
command file from a makefile. The idea behind the next example is to have one file that
contains the list of object files. Anytime this file is changed, say, after a new module has been
added, a new linker command file will be generated which in turn, will cause the linker to
relink the executable. First we need the makefile to define the list of object files, this file is
"OBJDEF.MIF" and it declares a macro "objs" which has as its value the list of object files in
the application. The content of the "OBJDEF.MIF" file is:

178 Command List Execution

The Open Watcom Make Utility

#
list of object files
#
objs = &

window.obj &
bios.obj &
keyboard.obj &
mouse.obj

The main makefile ("MAKEFILE") is:

#
FOR command example
#
!include objdef.mif

plot.exe : $(objs) plot.lnk
wlink @plot

plot.lnk : objdef.mif
echo NAME $^& >$^@
echo DEBUG all >>$^@
for %i in ($(objs)) do echo FILE %i >>$^@

This makefile would produce a file "PLOT.LNK" automatically whenever the list of object
files is changed (anytime "OBJDEF.MIF" is changed). For the above example, the file
"PLOT.LNK" would contain:

NAME plot
DEBUG all
FILE window.obj
FILE bios.obj
FILE keyboard.obj
FILE mouse.obj

Make supports nine internal commands:

1. %abort
2. %append
3. %create
4. %erase
5. %make
6. %null
7. %quit
8. %stop

Command List Execution 179

The Make/Touch Utilities

9. %write

The %abort and %quit internal commands terminate execution of Make and return to the
operating system shell: %abort sets a non-zero exit code; %quit sets a zero exit code.

#
%abort and %quit example
#doneenough:

%quit

suicide :
%abort

The %append, %create, %erase, and %write internal commands allow WMAKE to
generate files under makefile control. This is useful for files that have contents that depend on
makefile contents. Through the use of macros and the "for" command, Make becomes a very
powerful tool in maintaining lists of files for other programs.

The %append internal command appends a text line to the end of a file (which is created if
absent) while the %write internal command creates or truncates a file and writes one line of
text into it. Both commands have the same form, namely:

%append <file> <text>
%write <file> <text>

where <file> is a file specification and <text> is arbitrary text.

The %create internal command will create or truncate a file so that the file does not contain
any text while the %erase internal command will delete a file. Both commands have the
same form, namely:

%create <file>
%erase <file>

where <file> is a file specification.

Full macro processing is performed on these internal commands so the full power of WMAKE
can be used. The following example illustrates a common use of these internal commands.

180 Command List Execution

The Open Watcom Make Utility

#
%append, %create, %erase, and %write example
#
!include objdef.mif

plot.exe : $(objs) plot.lnk
wlink @plot

plot.lnk : objdef.mif
%create $^@
%append $^@ NAME $^&
Next line equivalent to previous two lines.
%create $^@ NAME $^&
%append $^@ DEBUG all
for %i in ($(objs)) do %append $^@ FILE %i

clean : .SYMBOLIC
%erase plot.lnk

The above code demonstrates a valuable technique that can generate directive files for
WLINK, WLIB, and other utilities.

The %make internal command permits the updating of a specific target and has the form:

%make <target>

where <target> is a target in the makefile.

#
%make example
#
!include objdef.mif

plot.exe : $(objs)
%make plot.lnk
wlink @plot

plot.lnk : objdef.mif
%create $^@
%append $^@ NAME $^&
%append $^@ DEBUG all
for %i in ($(objs)) do %append $^@ FILE %i

There seem to be other ways of doing the same thing. Among them is putting plot.lnk into the
list of dependencies:

Command List Execution 181

The Make/Touch Utilities

#
%make counter-example
#
!include objdef.mif

plot.exe : $(objs) plot.lnk
wlink @plot

plot.lnk : objdef.mif
%create $^@
%append $^@ NAME $^&
%append $^@ DEBUG all
for %i in ($(objs)) do %append $^@ FILE %i

and using a make variable:

#
%make counter-example
#
!include objdef.mif

plot.exe : $(objs)
wlink NAME $^& DEBUG all FILE { $(objs) }

The %null internal command does absolutely nothing. It is useful because Make demands
that a command list be present whenever a target is updated.

#
%null example
#
all : application1 application2 .SYMBOLIC

%null

application1 : appl1.exe .SYMBOLIC
%null

application2 : appl2.exe .SYMBOLIC
%null

appl1.exe : (dependents ...)
(commands)

appl2.exe : (dependents ...)
(commands)

182 Command List Execution

The Open Watcom Make Utility

Through the use of the %null internal command, multiple application makefiles may be
produced that are quite readable and maintainable.

The %stop internal command will temporarily suspend makefile processing and print out a
message asking whether Makefile processing should continue. Make will wait for either the
"y" key (indicating that the Makefile processing should continue) or the "n" key. If the "n"
key is pressed, makefile processing will stop. The %stop internal command is very useful
for debugging makefiles but it may be used also to develop interactive makefiles.

#
%stop example
#
all : appl1.exe .SYMBOLIC

%null

appl1.exe : (dependents ...)
@echo Are you feeling lucky? Punk!
@%stop
(commands)

10.40 Compatibility Between Open Watcom Make and
UNIX Make

Open Watcom Make was originally based on the UNIX Make utility. The PC’s operating
environment presents a base of users which may or may not be familiar with the UNIX
operating system. Make is designed to be a PC product with some UNIX compatibility. The
line continuation in UNIX Make is a backslash ("\") at the end of the line. The backslash ("\")
is used by the operating system for directory specifications and as such will be confused with
line continuation. For example, you could type:

cd \

along with other commands ... and get unexpected results. However, if your makefile does
not contain path separator characters ("\") and you wish to use "\" as a line continuation
indicator then you can use the Make "u" (UNIX compatibility mode) option.

Also, in the UNIX operating system there is no concept of file extensions, only the concept of
a file suffix. Make will accept the UNIX Make directive .SUFFIXES for compatibility with
UNIX makefiles. The UNIX compatible special macros supported are:

Compatibility Between Open Watcom Make and UNIX Make 183

The Make/Touch Utilities

Macro Expansion

$@ full name of the target
$* target with the extension removed
$< list of all dependents
$? list of dependents that are younger than the target

The extra checking of makefiles done by Make will require modifications to UNIX makefiles.
The UNIX Make utility does not check for the existence of targets after the associated
command list is executed so the "c" or the .NOCHECK directive should be used to disable this
checking. The lack of a command list to update a target is ignored by the UNIX Make utility
but Open Watcom Make requires the special internal command %null to specify a null
command list. In summary, Make supports many of the features of the UNIX Make utility but
is not 100% compatible.

10.41 Open Watcom Make Diagnostic Messages

This section lists the various warning and error messages that may be issued by the Open
Watcom Make. In the messages below, %? character sequences indicate places in the
message that are replaced with some other string.

1 Out of memory

2 Make execution terminated

3 Option %c%c invalid

4 %c%c must be followed by a filename

5 No targets specified

6 Ignoring first target in MAKEINIT

7 Expecting a %M

8 Invalid macro name %E

9 Ignoring out of place %M

10 Macros nested too deep

184 Open Watcom Make Diagnostic Messages

The Open Watcom Make Utility

11 Unknown internal command

12 Program name is too long

13 No control characters allowed in options

14 Cannot execute %E: %Z

15 Syntax error in %s command

16 Nested %s loops not allowed

17 Token too long, maximum size is %d chars

18 Unrecognized or out of place character ’%C’

19 Target %E already declared %M

20 Command list does not belong to any target

21 Extension(s) %E not defined

22 No existing file matches %E

23 Extensions reversed in implicit rule

24 More than one command list found for %E

25 Extension %E declared more than once

26 Unknown preprocessor directive: %s

27 Macro %E is undefined

28 !If statements nested too deep

29 !%s has no matching !if

30 Skipping !%1 block after !%2

31 %1 not allowed after !%2

32 Opening file %E: %Z

Open Watcom Make Diagnostic Messages 185

The Make/Touch Utilities

34 !%s pending at end of file

35 Trying to !%s an undefined macro

36 Illegal attempt to update special target %E

37 Target %E is defined recursively

38 %E does not exist and cannot be made from existing files

39 Target %E not mentioned in any makefile

40 Could not touch %E

41 No %s commands for making %E

42 Last command making (%L) returned a bad status

43 Deleting %E: %Z

44 %s command returned a bad status

45 Maximum string length exceeded

46 Illegal character value %xH in file

47 Assuming target(s) are .%s

48 Maximum %%make depth exceeded

49 Opening (%s) for write: %Z

50 Unable to write: %Z

51 CD’ing to %E: %Z

52 Changing to drive %C:

53 DOS memory inconsistency detected! System may halt ...

53 OS corruption detected

54 While reading (%s): %Z

186 Open Watcom Make Diagnostic Messages

The Open Watcom Make Utility

59 !IF Parse Error

60 TMP Path/File Too Long

61 Unexpected End of File

62 Only NO(KEEP) allowed here

63 Non-matching "

64 Invalid String Macro Substitution

65 File Name Length Exceeded

66 Redefinition of .DEFAULT Command List

67 Non-matching { In Implicit Rule

68 Invalid Implicit Rule Definition

69 Path Too Long

70 Cannot Load/Unload DLL %E

71 Initialization of DLL %E returned a bad status

72 DLL %E returned a bad status

73 Illegal Character %C in macro name

74 in closing file %E

75 in opening file %E

76 in writing file %E

77 User Break Encountered

78 Error in Memory Tracking Encountered

79 Makefile may be Microsoft try /ms switch

Open Watcom Make Diagnostic Messages 187

The Make/Touch Utilities

188 Open Watcom Make Diagnostic Messages

11 The Touch Utility

11.1 Introduction

This chapter describes the Open Watcom Touch utility. Open Watcom Touch will set the
time-stamp (i.e., the modification date and time) of one or more files. The new modification
date and time may be the current date and time, the modification date and time of another file,
or a date and time specified on the command line. This utility is normally used in conjunction
with the Open Watcom Make utility. The rationale for bringing a file up-to-date without
altering its contents is best understood by reading the chapter which describes the Make
utility.

The Open Watcom Touch command line syntax is:

WTOUCH [options] file_spec [file_spec...]

The square brackets [] denote items which are optional.

options is a list of valid options, each preceded by a slash ("/") or a dash ("−"). Options
may be specified in any order.

file_spec is the file specification for the file to be touched. Any number of file
specifications may be listed. The wild card characters "*" and "?" may be used.

The following is a description of the options available.

c do not create an empty file if the specified file does not exist
d <date> specify the date for the file time-stamp in "mm-dd-yy" format
f <file> use the time-stamp from the specified file
i increment time-stamp before touching the file
q suppress informational messages
r touch file even if it is marked read-only
t <time> specify the time for the file time-stamp in "hh:mm:ss" format
u use USA date/time format regardless of country

Introduction 189

The Make/Touch Utilities

? display help screen

11.2 WTOUCH Operation

WTOUCH is used to set the time-stamp (i.e., the modification date and time) of a file. The
contents of the file are not affected by this operation. If the specified file does not exist, it will
be created as an empty file. This behaviour may be altered with the "c" option so that if the
file is not present, a new empty file will not be created.

Example:
(will not create myfile.dat)
C>wtouch /c myfile.dat

If a wild card file specification is used and no files match the pattern, no files will have their
time-stamps altered. The date and time that all the specified files are set to is determined as
follows:

1. The current date and time is used as a default value.

2. A time-stamp from an "age file" may replace the current date and time. The "f"
option is used to specify the file that will supply the time-stamp.

Example:
(use the date and time from file "last.tim")
C>wtouch /f last.tim file*.dat

3. The date and/or time may be specified from the command line to override a part of
the time-stamp that will be used. The "d" and "t" options are used to override the
date and time respectively.

Example:
(use current date but use different time)
C>wtouch /t 2:00p file*.dat
(completely specify date and time)
C>wtouch /d 10-31-90 /t 8:00:00 file*.dat
(use date from file "last.tim" but set time)
C>wtouch /f last.tim /t 12:00 file*.dat

The format of the date and time on the command line depends on the country
information provided by the host operating system. Open Watcom Touch should
accept dates and times in a similar format to any operating system utilities (i.e., the
DATE and TIME utilities provided by DOS). The "a" and "p" suffix is an
extension to the time syntax for specifying whether the time is A.M. or P.M., but

190 WTOUCH Operation

The Touch Utility

this is only available if the operating system is not configured for military or
24-hour time.

WTOUCH Operation 191

Index

.errnz 29

.exit 29, 38
. .fardata 29

.fardata? 29

.if 38

.lfcond 29, 38.186 29

.list 29, 38.286 29

.listall 29, 38.286c 29

.listif 29, 38.286p 29

.listmacro 29, 38.287 29

.listmacroall 29, 38.386 29

.model 29.386p 29

.nocref 29, 38.387 29

.nolist 29, 38.486 29

.radix 29, 38.486p 29

.repeat 29, 38.586 29

.sall 29, 38.586p 29

.seq 29, 38.686 29

.sfcond 29, 38.686p 29

.stack 29.8086 29

.startup 29, 38.8087 29

.tfcond 29, 38.alpha 29, 38

.until 29, 38.break 29, 38

.while 29, 38.code 29

.xcref 29, 38.const 29

.xlist 29, 38.continue 29, 38
.cref 29, 38
.data 29
.data? 29

A.dosseg 29
.else 38
.endif 38
.endw 29, 38 addr 38
.err 29 AFTER
.errb 29 WMAKE directive 123, 173
.errdef 29 ALWAYS
.errdif 29 WMAKE directive 124
.errdifi 29 assembler 27
.erre 29 AUTODEPEND
.erridn 29 WMAKE directive 124, 129
.erridni 29 AUTOEXEC.BAT
.errnb 29 system initialization file 11
.errndef 29

193

Index

CONFIG.SYS
system initialization file 11

B CONTINUE
WMAKE directive 109, 125

batch files 163
BEFORE

DWMAKE directive 125, 173
Bell Laboratories 118
BLOCK

WMAKE directive 107, 125 debug information
BPATCH removal 99

command line format 95 debugging makefiles 108, 183
diagnostics 96 declarations 117

bugs 95 DEF files 160
DEFAULT

WMAKE directive 126, 173
dependency 117

C dependent 118
dependent extension 149
diagnostics

BPATCH 96casemap 38
WSTRIP 101catstr 38

different memory model libraries 161checking macro values 168
disassembler 71CMD.EXE shell 175
disassembly example 77colon (:)
DLL support 171behaviour in WMAKE 121
DOS Extenderexplicit rule in WMAKE 118

Phar Lap 286 13command execution 175
DOSCALLS.LIB 13command line format
double colon explicit rule 159BPATCH 95
double-colon (::)owcc 15

behaviour in WMAKE 161WASM 27
explicit rule in WMAKE 159WCL 3

duplicated information 161WCL386 3
Dynamic Link LibraryWDIS 71

imports 59-60, 63WLIB 54
dynamic variables 178WMAKE 105

WSTRIP 100
WTOUCH 189

COMMAND.COM shell 175
common information 161
communication 178

194

Index

c 85
s 85

E x 85
Feldman, S.I 118
finding targets 153
FORecho 38

using Open Watcom Make 178WMAKE 174
FUZZYendmacro 38

WMAKE directive 129environment string
10
= substitute 10

environment variables 141, 166-167, 177
GINCLUDE 177

LIB 13, 167, 177
LIBOS2 13
PATH 96, 141 generating prototypes 160
WCL 10-11 global recompile 107, 164
WCL386 10-11 GRAPH.LIB 13

ERASE GRAPHP.OBJ 13
WMAKE directive 108, 126

ERROR
WMAKE directive 127, 174

executable files H
reducing size 99

EXISTSONLY
WMAKE directive 127

EXPLICIT high 38
WMAKE directive 127 highword 38

explicit rule 118, 159 HOLD
EXTENSIONS WMAKE directive 115, 129

WMAKE directive 128, 150

I
F

IGNORE
far call optimization WMAKE directive 108, 130

enabling 84 ignoring return codes 130
far call optimizations 83 implicit rule 149
far jump optimization 84 implicit rules
FCENABLE options $[form 150

b 85 $] form 150

195

Index

$^ form 150
import library 59-60, 62

MINCLUDE environment variable 177
initialization file 175
invoke 38
invoking Open Watcom Make 117, 163, 165 macro construction 142, 160
invoking Open Watcom Touch 189 macro definition 168

macro identifier 166
macro text 168
macros 137, 168

J maintaining libraries 161
maintenance 105
make

include file 162JUST_ENOUGH
reference 105WMAKE directive 129, 131
Touch 189
WMAKE 105

MAKEFILE 108, 117
MAKEFILE comments 118L
MAKEINIT 175
mask 38
memory model 161
message passing 178large projects 161
Microsoft compatibilitylarger applications 154

NMAKE 109LBC command file 61
modification 189LIB environment variable 12-13
MULTIPLELIBOS2 environment variable 12-13

WMAKE directive 131libraries 161
multiple dependents 119library
multiple source directories 154import 62
multiple targets 119library file

adding to a 56
deleting from a 57
extracting from a 58

Nreplacing a module in a 57
library manager 53
line continuation 141
__LOADDLL__ 172

NMAKE 107, 109low 38
NOCHECKlowword 38

WMAKE directive 107, 121, 133, 184lroffset 38

196

Index

popcontext 38
PRECIOUS

O WMAKE directive 129, 133
preprocessing directives

WMAKE 161
PROCEDUREopattr 38

WMAKE directive 134Open Watcom Far Call Optimization Enabling
program maintenance 105Utility 84
proto 38Open Watcom Make
prototypes 160WMAKE 105
purge 38OPTIMIZE
pushcontext 38WMAKE directive 110, 133, 156

option 38
OS/2 13

DOSCALLS.LIB 13
Rowcc 21-23

command line format 15
owcc options

b <system name> 20 RECHECK
c 16 WMAKE directive 134
compile 17 recompile 107, 159, 164
fd[=<directive_file>] 21 record 38
fm[=<map_file>] 21 reducing maintenance 165
mstack-size=<size> 21 removing debug information 99
o 16 replace 162
s 16, 21 return codes 126, 129, 133
Wl 21 rule command list 118
x 16

S
P

SET
page 38 INCLUDE environment variable 177
patches 95 LIB environment variable 12, 177
path 153 LIBOS2 environment variable 12
PATH environment variable 96, 141 using Open Watcom Make 177-178
pause WCL environment variable 10, 12

WMAKE 174 WCL386 environment variable 10, 12
PHAPI.LIB 13 setting
Phar Lap modification date 189

286 DOS Extender 13

197

Index

modification time 189
setting environment variables 167, 177

Wshell
CMD.EXE 175
COMMAND.COM 175

SILENT WASM
WMAKE directive 134 command line format 27

single colon explicit rule 118 WCL 10-12
strip utility 99 command line format 3
subtitle 38 WCL environment variable 10-12
subttl 38 WCL options
SUFFIXES @ 10

WMAKE directive 135, 183 bcl=<system name> 9
suppressing output 134 c 4
SYMBOLIC cc 4

WMAKE directive 136, 141-143, 182 cc++ 4
system initialization file 177 compile 4

AUTOEXEC.BAT 11 fd[=<directive_file>] 9
CONFIG.SYS 11 fe=<executable> 9

fm[=<map_file>] 9
k<stack_size> 9
l=<system_name> 9

T lp 9, 12
lr 9
x 10
y 4target 118

WCL386 10-12target deletion prompt 108, 115
command line format 3this 38

WCL386 environment variable 10-12time-stamp 105, 189
WCL386 optionstitle 38

@ 10Touch 107, 115, 173, 189
bcl=<system name> 9touch utility 189
c 4typedef 38
cc 4
cc++ 4
compile 4
fd[=<directive_file>] 9U
fe=<executable> 9
fm[=<map_file>] 9
k<stack_size> 9
l=<system_name> 9union 38
lp 12UNIX 118, 183
x 10UNIX compatibility mode in Make 115

198

Index

y 4 * command execution 176
WDIS .DEF files 160

command line format 71 < redirection 176
WDIS example 77 > redirection 176
WDIS options 72 batch files 163

a 72 Bell Laboratories 118
e 73 checking macro values 168
fi 74 command execution 175
fp 74 common information 161
fr 74 debugging makefiles 108, 183
fu 74 declarations 117
i 72 dependency 117
l (lowercase L) 75 dependent 118
m 76 dependent extension 149
p 75 different memory model libraries 161
s 76 double colon explicit rule 159

width 38 duplicated information 161
WLIB dynamic variables 178

command file 61 environment variables 141, 166-167, 177
command line format 54 explicit rule 118, 159
operations 55 Feldman, S.I 118

WLIB options 61 finding targets 153
b 61 ignoring return codes 130
c 61 implicit rule 149
d 62 include file 162
f 62 initialization file 175
i 62 large projects 161
l (lower case L) 63 larger applications 154
m 64 libraries 161
n 64 line continuation 141
o 64 macro construction 142, 160
p 65 macro definition 168
q 65 macro identifier 137, 166
s 65 macro text 168
t 66 macros 137, 168
v 66 maintaining libraries 161
x 66 MAKEFILE 108, 117

WLINK debug options 144 MAKEFILE comments 118
WMAKE MAKEINIT 175

! command execution 176 memory model 161
":" behaviour 121 multiple dependents 119
":" explicit rule 118 multiple source directories 154
"::" behaviour 161 multiple targets 119
"::" explicit rule 159 path 153

199

Index

preprocessing directives 161 .IGNORE 108, 130
recompile 159 .JUST_ENOUGH 129, 131
reducing maintenance 165 .MULTIPLE 131
reference 105 .NOCHECK 107, 121, 133, 184
return codes 126, 129, 133 .OPTIMIZE 110, 133, 156
rule command list 118 .PRECIOUS 129, 133
setting environment variables 167, 177 .PROCEDURE 134
single colon explicit rule 118 .RECHECK 134
special macros 116 .SILENT 134
suppressing output 134 .SUFFIXES 135, 183
target 118 .SYMBOLIC 136, 141-143, 182
target deletion prompt 108, 115 WMAKE internal commands
time-stamp 105 %abort 179-180
touch 107, 115, 173 %append 179-180
UNIX 118, 183 %create 179-180
UNIX compatibility mode 115 %erase 179-180
WTOUCH 173 %make 179, 181
| redirection 176 %null 179, 182, 184

WMAKE command line %quit 179-180
defining macros 106, 166 %stop 179, 183
format 105 %write 180
help 106 WMAKE options
invoking WMAKE 105, 117, 163, 165 a 107, 159, 164
options 106 b 107
summary 106 c 107
targets 106, 165 d 108

WMAKE command prefix e 108
- 130 f 108, 117, 166
@ 134 h 108

WMAKE directives i 108, 130
.AFTER 123, 173 k 108
.ALWAYS 124 l 109
.AUTODEPEND 124, 129 m 109
.BEFORE 125, 173 ms 109
.BLOCK 107, 125 n 109
.CONTINUE 109, 125 o 110
.DEFAULT 126, 173 p 110
.ERASE 108, 126 q 110
.ERROR 127, 174 r 110
.EXISTSONLY 127 s 114, 134
.EXPLICIT 127 sn 115
.EXTENSIONS 128, 150 t 115
.FUZZY 129 u 115
.HOLD 115, 129 v 115

200

Index

y 115 $^ 117, 146
z 115 $^ form 117, 146, 150

WMAKE preprocessing $^& 117, 146
!define 169 $^* 117, 146
!else 167 $^: 117, 146
!endif 167 $^@ 117, 146
!error 170 WSTRIP 99
!ifdef 167 command line format 100
!ifeq 167 diagnostics 101
!ifeqi 167 WTOUCH 107, 115, 173
!ifndef 167 command line format 189
!ifneq 167 WTOUCH options 190
!ifneqi 167
!include 161
!inject 143
!loaddll 171
!undef 170
DLL support 171
__LOADDLL__ 172

WMAKE special macros
$# 116, 148
$$ 116, 148
$(%<environment_var>) 141, 166
$(%cdrive) 141
$(%cwd) 141
$(%path) 141, 177
$* 116, 184
$+ 141-142, 160
$- 141-142, 160
$< 116, 184
$? 116, 184
$@ 116, 184
$[117, 146
$[form 117, 146, 150
$[& 117, 146
$[* 117, 146
$[: 117, 146
$[@ 117, 146
$] 117, 146
$] form 117, 146, 150
$]& 117, 146
$]* 117, 146
$]: 117, 146
$]@ 117, 146

201

