
Watcom C Library Reference

for QNX

Volume 1

First Edition

Notice of Copyright

Copyright  2002-2006 the Open Watcom Contributors. Portions Copyright  1984-2002
Sybase, Inc. and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of anyone.

For more information please visit http://www.openwatcom.org/

ISBN 1-55094-053-8

Printed in U.S.A.

iii

iv

Preface
This manual describes the Watcom C Library. It includes the Standard C Library (as defined
in the ANSI C Standard) plus many additional library routines which make application
development for personal computers much easier.

Copies of this documentation may be ordered from:

QNX Software Systems Ltd.
175 Terence Matthews Crescent
Kanata, Ontario
CANADA K2M 1W8
Phone: 613-591-0931
Fax: 613-591-3579

Acknowledgements

This book was produced with the Watcom GML electronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCII text editor to create source
files containing text annotated with tags. These tags label the structural elements of the
document, such as chapters, sections, paragraphs, and lists. The Watcom GML software,
which runs on a variety of operating systems, interprets the tags to format the text into a form
such as you see here. Writers can produce output for a variety of printers, including laser
printers, using separately specified layout directives for such things as font selection, column
width and height, number of columns, etc. The result is type-set quality copy containing
integrated text and graphics.

July, 1997.

Trademarks Used in this Manual

IBM is a registered trademark of International Business Machines Corp.

Intel is a registered trademark of Intel Corp.

v

Microsoft, MS, MS-DOS, Windows, Win32, Win32s, Windows NT and Windows 2000 are
either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

UNIX is a registered trademark of The Open Group.

QNX is a registered trademark of QNX Software Systems Ltd.

WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

vi

Table of Contents

Watcom C Library Reference Volume 1 ... 1

1 C Library Overview .. 3
1.1 Classes of Functions ... 3

1.1.1 Character Manipulation Functions ... 7
1.1.2 Wide Character Manipulation Functions 7
1.1.3 Multibyte Character Manipulation Functions 8
1.1.4 Memory Manipulation Functions ... 8
1.1.5 String Manipulation Functions ... 9
1.1.6 Wide String Manipulation Functions ... 11
1.1.7 Multibyte String Manipulation Functions 12
1.1.8 Conversion Functions ... 12
1.1.9 Memory Allocation Functions ... 13
1.1.10 Heap Functions ... 15
1.1.11 Math Functions ... 16
1.1.12 Searching Functions ... 17
1.1.13 Time Functions ... 17
1.1.14 Variable-length Argument Lists ... 18
1.1.15 Stream I/O Functions ... 18
1.1.16 Wide Character Stream I/O Functions ... 20
1.1.17 Process Primitive Functions ... 21
1.1.18 Process Environment .. 23
1.1.19 Directory Functions .. 23
1.1.20 Operating System I/O Functions .. 24
1.1.21 File Manipulation Functions .. 24
1.1.22 Console I/O Functions .. 25
1.1.23 POSIX Realtime Timer Functions ... 25
1.1.24 POSIX Shared Memory Functions ... 25
1.1.25 POSIX Terminal Control Functions ... 25
1.1.26 System Database Functions .. 25
1.1.27 Miscellaneous QNX Functions .. 26
1.1.28 QNX Low-level Functions ... 26
1.1.29 Intel 80x86 Architecture-Specific Functions 26
1.1.30 Intel Pentium Multimedia Extension Functions 27
1.1.31 Miscellaneous Functions .. 29

1.2 Header Files .. 29
1.2.1 Header Files in /usr/include ... 31
1.2.2 Header Files in /usr/include/sys ... 36
1.2.3 Header Files Provided for Compatibility 39

1.3 Global Data ... 40
1.4 The TZ Environment Variable .. 42

vii

Table of Contents

2 Graphics Library ... 47
2.1 Graphics Functions ... 47
2.2 Graphics Adapters .. 48
2.3 Classes of Graphics Functions .. 48

2.3.1 Environment Functions .. 49
2.3.2 Coordinate System Functions ... 50
2.3.3 Attribute Functions ... 51
2.3.4 Drawing Functions ... 51
2.3.5 Text Functions .. 52
2.3.6 Graphics Text Functions .. 53
2.3.7 Image Manipulation Functions ... 54
2.3.8 Font Manipulation Functions ... 54
2.3.9 Presentation Graphics Functions .. 55

2.3.9.1 Display Functions .. 55
2.3.9.2 Analyze Functions ... 56
2.3.9.3 Utility Functions .. 56

2.4 Graphics Header Files .. 57

3 Library Functions and Macros .. 59
abort ... 63
abort_handler_s .. 64
abs .. 65
acos .. 66
acosh .. 67
alloca .. 68
_arc, _arc_w, _arc_wxy ... 69
asctime Functions .. 72
asin ... 74
asinh ... 75
assert .. 76
atan ... 77
atan2 ... 78
atanh ... 79
atexit .. 80
atof, _wtof .. 81
atoi, _wtoi .. 82
atol, _wtol .. 83
atoll, _wtoll .. 84
_atouni ... 85
basename .. 86
bessel Functions ... 88
bcmp ... 89

viii

Table of Contents

bcopy .. 90
_bfreeseg .. 91
_bgetcmd .. 93
_bheapseg ... 95
_bprintf, _bwprintf ... 97
bsearch ... 98
bsearch_s .. 100
bzero .. 103
cabs .. 104
calloc Functions ... 105
ceil .. 107
cgets ... 108
chdir ... 109
chsize ... 111
_clear87 .. 113
clearenv .. 114
clearerr ... 115
_clearscreen ... 116
clock ... 117
close ... 118
closedir ... 119
_cmdname .. 121
_control87 .. 122
_controlfp ... 124
cos .. 126
cosh .. 127
cprintf ... 128
cputs ... 129
creat .. 130
cscanf ... 133
ctime Functions .. 134
delay ... 136
_dieeetomsbin .. 137
difftime .. 139
dirname .. 140
_disable .. 141
_displaycursor .. 143
div .. 144
_dmsbintoieee .. 145
dup ... 147
dup2 ... 149
ecvt, _ecvt .. 151

ix

Table of Contents

_ellipse, _ellipse_w, _ellipse_wxy .. 153
_enable ... 155
eof .. 157
exec Functions ... 158
_exit, _Exit ... 162
exit ... 164
exp .. 165
_expand Functions ... 166
fabs ... 168
fclose .. 169
fcloseall .. 170
fcvt, _fcvt, _wfcvt .. 171
fdopen, _fdopen, _wfdopen ... 173
feof ... 175
ferror .. 176
fflush .. 177
ffs ... 178
fgetc, fgetwc .. 179
fgetchar, _fgetchar, _fgetwchar ... 181
fgetpos .. 183
fgets, fgetws ... 184
_fieeetomsbin ... 186
filelength .. 188
FILENAME_MAX .. 190
fileno .. 191
_finite ... 192
_floodfill, _floodfill_w .. 193
floor .. 195
flushall ... 196
fmod ... 197
_fmsbintoieee ... 198
fopen, _wfopen .. 200
fopen_s, _wfopen_s ... 203
FP_OFF .. 206
FP_SEG ... 208
fpclassify .. 210
_fpreset .. 212
fprintf, fwprintf .. 213
fprintf_s, fwprintf_s ... 215
fputc, fputwc .. 217
fputchar, _fputchar, _fputwchar .. 218
fputs, fputws .. 220

x

Table of Contents

fread ... 221
free Functions .. 223
_freect .. 225
freopen, _wfreopen .. 226
freopen_s, _wfreopen_s ... 228
frexp ... 230
fscanf, fwscanf ... 231
fscanf_s, fwscanf_s .. 233
fseek ... 235
fsetpos .. 237
_fsopen, _wfsopen ... 238
fstat .. 241
fsync ... 244
ftell ... 246
ftime ... 247
_fullpath ... 248
fwide .. 250
fwrite .. 251
gcvt, _gcvt, _wgcvt .. 252
_getactivepage ... 254
_getarcinfo ... 256
_getbkcolor .. 258
getc, getwc ... 259
getch ... 261
getchar, getwchar ... 262
getche ... 263
_getcliprgn ... 264
getcmd .. 265
_getcolor .. 266
_getcurrentposition, _getcurrentposition_w 267
getcwd .. 268
getenv, _wgetenv ... 270
getenv_s ... 272
_getfillmask ... 274
_getfontinfo .. 275
_getgtextextent ... 277
_getgtextvector .. 278
_getimage, _getimage_w, _getimage_wxy 279
_getlinestyle ... 281
_getphyscoord .. 282
_getpixel, _getpixel_w ... 283
_getplotaction .. 284

xi

Table of Contents

gets, _getws .. 286
gets_s ... 287
_gettextcolor .. 288
_gettextcursor .. 289
_gettextextent ... 290
_gettextposition .. 292
_gettextsettings .. 293
_gettextwindow .. 295
_getvideoconfig ... 296
_getviewcoord, _getviewcoord_w, _getviewcoord_wxy 300
_getvisualpage ... 302
_getwindowcoord .. 304
gmtime Functions .. 305
_grstatus ... 307
_grtext, _grtext_w .. 309
halloc .. 311
_heapchk Functions ... 312
_heapenable ... 314
_heapgrow Functions ... 315
_heapmin Functions ... 317
_heapset Functions ... 319
_heapshrink Functions ... 321
_heapwalk Functions ... 323
hfree ... 327
hypot .. 328
ignore_handler_s .. 329
_imagesize, _imagesize_w, _imagesize_wxy 330
imaxabs .. 332
imaxdiv .. 333
inp .. 334
inpd .. 335
inpw ... 336
int386 ... 337
int386x ... 338
int86 ... 340
int86x ... 341
intr .. 343
isalnum, iswalnum ... 344
isalpha, iswalpha .. 345
isascii, __isascii, iswascii ... 346
isblank, iswblank ... 348
iscntrl, iswcntrl .. 350

xii

Table of Contents

__iscsym .. 352
__iscsymf ... 354
isdigit, iswdigit .. 356
isfinite .. 358
isgraph, iswgraph ... 359
isinf .. 361
islower, iswlower ... 362
isnan ... 364
isnormal ... 365
isprint, iswprint .. 366
ispunct, iswpunct ... 368
isspace, iswspace ... 370
isupper, iswupper ... 372
iswctype ... 374
isxdigit, iswxdigit .. 376
itoa, _itoa, _itow .. 378
kbhit ... 380
labs ... 381
ldexp .. 382
ldiv ... 383
lfind .. 384
_lineto, _lineto_w .. 386
llabs .. 388
lldiv .. 389
localeconv .. 390
localtime Functions .. 394
lock .. 396
locking, _locking ... 398
log .. 401
log10 .. 402
log2 .. 403
longjmp .. 404
_lrotl ... 406
_lrotr .. 407
lsearch .. 408
lseek ... 410
lltoa, _lltoa, _lltow ... 413
ltoa, _ltoa, _ltow .. 415
main, wmain ... 417
_makepath, _wmakepath ... 421
malloc Functions .. 423
matherr ... 425

xiii

Table of Contents

max ... 427
_mbcjistojms .. 428
_mbcjmstojis .. 430
_mbctohira ... 432
_mbctokata ... 434
mblen ... 436
_strncnt, _wcsncnt ... 439
_strncnt, _wcsncnt ... 441
_strnextc, _wcsnextc .. 443
mbstowcs ... 445
mbstowcs_s .. 447
mbtowc ... 450
_memavl ... 452
memccpy, _fmemccpy ... 453
memchr, _fmemchr, wmemchr .. 454
memcmp, _fmemcmp, wmemcmp ... 456
memcpy, _fmemcpy, wmemcpy .. 458
memicmp, _fmemicmp .. 460
_memmax ... 461
memmove, _fmemmove, wmemmove ... 462
memset, _fmemset, wmemset .. 464
min ... 465
mkdir .. 466
MK_FP .. 469
mkstemp ... 470
mktime ... 472
modf ... 474
movedata .. 475
_moveto, _moveto_w ... 476
_m_packssdw ... 477
_m_packsswb ... 479
_m_packuswb .. 481
_m_paddb ... 483
_m_paddd ... 484
_m_paddsb ... 485
_m_paddsw .. 487
_m_paddusb ... 488
_m_paddusw .. 490
_m_paddw .. 491
_m_pand ... 492
_m_pandn ... 493
_m_pcmpeqb .. 494

xiv

Table of Contents

_m_pcmpeqd .. 495
_m_pcmpeqw ... 496
_m_pcmpgtb .. 497
_m_pcmpgtd .. 498
_m_pcmpgtw ... 499
_m_pmaddwd ... 500
_m_pmulhw ... 502
_m_pmullw .. 503
_m_por ... 504
_m_pslld ... 505
_m_pslldi ... 506
_m_psllq ... 507
_m_psllqi ... 508
_m_psllw .. 509
_m_psllwi ... 510
_m_psrad .. 511
_m_psradi ... 512
_m_psraw ... 513
_m_psrawi .. 514
_m_psrld .. 515
_m_psrldi ... 516
_m_psrlq .. 517
_m_psrlqi ... 518
_m_psrlw ... 519
_m_psrlwi .. 520
_m_psubb ... 521
_m_psubd ... 523
_m_psubsb ... 524
_m_psubsw .. 526
_m_psubusb ... 527
_m_psubusw .. 529
_m_psubw .. 530
_m_punpckhbw .. 531
_m_punpckhdq ... 533
_m_punpckhwd .. 535
_m_punpcklbw ... 537
_m_punpckldq ... 539
_m_punpcklwd ... 541
_m_pxor ... 543
_msize Functions ... 544
_m_to_int ... 546
nosound .. 547

xv

Table of Contents

offsetof ... 548
onexit ... 549
open .. 550
opendir ... 553
_outgtext .. 555
_outmem .. 557
outp .. 559
outpd .. 560
outpw ... 561
_outtext .. 562
perror, _wperror ... 564
_pg_analyzechart, _pg_analyzechartms 565
_pg_analyzepie .. 567
_pg_analyzescatter, _pg_analyzescatterms 570
_pg_chart, _pg_chartms ... 573
_pg_chartpie .. 576
_pg_chartscatter, _pg_chartscatterms .. 579
_pg_defaultchart .. 582
_pg_getchardef .. 584
_pg_getpalette .. 586
_pg_getstyleset ... 589
_pg_hlabelchart .. 592
_pg_initchart .. 594
_pg_resetpalette ... 596
_pg_resetstyleset .. 599
_pg_setchardef ... 602
_pg_setpalette .. 604
_pg_setstyleset ... 607
_pg_vlabelchart .. 610
_pie, _pie_w, _pie_wxy ... 612
_polygon, _polygon_w, _polygon_wxy 615
pow .. 618
printf, wprintf ... 619
printf_s, wprintf_s .. 627
putc, putwc ... 629
putch .. 630
putchar, putwchar .. 631
putenv, _putenv, _wputenv .. 633
_putimage, _putimage_w ... 636
puts, _putws ... 638
_putw ... 639

xvi

Table of Contents

Watcom C Library Reference Volume 2 ... 641

qsort ... 643
qsort_s .. 645
raise .. 647
rand .. 649
read .. 650
readdir .. 652
realloc Functions .. 654
_rectangle, _rectangle_w, _rectangle_wxy 657
_registerfonts ... 659
_remapallpalette ... 660
_remappalette ... 662
remove ... 664
rename .. 665
rewind .. 666
rewinddir .. 667
rmdir .. 669
_rotl .. 671
_rotr .. 672
sbrk .. 673
scanf, wscanf .. 675
scanf_s, wscanf_s ... 683
_scrolltextwindow .. 685
_searchenv ... 687
segread ... 689
_selectpalette .. 690
set_constraint_handler_s .. 692
_setactivepage .. 694
_setbkcolor ... 696
setbuf .. 697
_setcharsize, _setcharsize_w ... 698
_setcharspacing, _setcharspacing_w ... 700
_setcliprgn .. 702
_setcolor ... 703
setenv, _setenv, _wsetenv .. 704
_setfillmask .. 707
_setfont .. 709
_setgtextvector ... 712
setjmp ... 713
_setlinestyle ... 715
setlocale, _wsetlocale ... 717

xvii

Table of Contents

setmode .. 719
set_new_handler, _set_new_handler ... 720
_setpixel, _setpixel_w .. 723
_setplotaction ... 725
_settextalign ... 727
_settextcolor ... 729
_settextcursor ... 731
_settextorient .. 733
_settextpath .. 735
_settextposition .. 737
_settextrows ... 739
_settextwindow .. 741
setvbuf .. 743
_setvideomode ... 745
_setvideomoderows ... 749
_setvieworg .. 750
_setviewport ... 751
_setvisualpage .. 752
_setwindow .. 754
signal .. 756
signbit .. 760
sin ... 761
sinh ... 762
sleep ... 763
_snprintf, _snwprintf .. 764
snprintf, snwprintf .. 766
snprintf_s, snwprintf_s .. 768
sopen .. 770
sound .. 774
spawn Functions .. 776
_splitpath, _wsplitpath ... 782
_splitpath2, _wsplitpath2 ... 784
sprintf, swprintf .. 787
sprintf_s, swprintf_s .. 789
sqrt ... 791
srand ... 792
sscanf, swscanf ... 793
sscanf_s, swscanf_s ... 795
stackavail ... 797
stat .. 799
_status87 .. 802
strcasecmp .. 803

xviii

Table of Contents

strcat, _fstrcat, wcscat .. 804
strchr, _fstrchr, wcschr .. 806
strcmp, _fstrcmp, wcscmp ... 807
strcmpi, wcscmpi ... 809
strcoll, wcscoll ... 810
strcpy, _fstrcpy, wcscpy ... 811
strcspn, _fstrcspn, wcscspn .. 813
_strdate, _wstrdate ... 814
_strdec, _wcsdec .. 815
strdup, _strdup, _fstrdup, _wcsdup .. 817
strerror .. 819
strftime, wcsftime, _wstrftime_ms .. 820
stricmp, _stricmp, _fstricmp, _wcsicmp 824
_stricoll, _wcsicoll ... 826
_strinc, _wcsinc ... 827
strlcat, wcslcat .. 830
strlcpy, wcslcpy ... 831
strlen, _fstrlen, wcslen ... 832
strlwr, _strlwr, _fstrlwr, _wcslwr .. 834
strncasecmp .. 836
strncat, _fstrncat, wcsncat .. 837
strncmp, _fstrncmp, wcsncmp ... 839
_strncoll, _wcsncoll ... 841
strncpy, _fstrncpy, wcsncpy ... 843
strnicmp, _strnicmp, _fstrnicmp, _wcsnicmp 845
_strnicoll, _wcsnicoll ... 847
_strninc, _wcsninc ... 849
strnset, _strnset, _fstrnset, _wcsnset .. 852
strpbrk, _fstrpbrk, wcspbrk .. 854
strrchr, _fstrrchr, wcsrchr .. 856
strrev, _strrev, _fstrrev, _wcsrev ... 857
strset, _strset, _fstrset, _wcsset .. 859
strspn, _fstrspn, wcsspn ... 861
strspnp, _strspnp, _fstrspnp, _wcsspnp .. 862
strstr, _fstrstr, wcsstr .. 864
_strtime, _wstrtime .. 865
strtod, wcstod ... 866
strtok, _fstrtok, wcstok .. 868
strtol, wcstol ... 870
strtoll, wcstoll .. 872
strtoimax, wcstoimax ... 874
strtoul, wcstoul ... 876

xix

Table of Contents

strtoull, wcstoull .. 878
strtoumax, wcstoumax ... 880
strupr, _strupr, _fstrupr, _wcsupr .. 882
strxfrm, wcsxfrm .. 884
swab ... 886
system .. 887
tan .. 889
tanh .. 890
tell .. 891
time .. 893
tmpfile .. 894
tmpfile_s .. 895
tmpnam_s ... 897
tmpnam .. 899
tolower, _tolower, towlower .. 901
toupper, _toupper, towupper .. 903
towctrans .. 905
tzset .. 907
ulltoa, _ulltoa, _ulltow ... 909
ultoa, _ultoa, _ultow .. 911
umask ... 913
ungetc, ungetwc ... 915
ungetch ... 917
unlink ... 918
unlock .. 920
_unregisterfonts ... 922
utime .. 923
utoa, _utoa, _utow .. 925
va_arg .. 927
va_end .. 930
va_start ... 932
_vbprintf, _vbwprintf ... 934
vcprintf ... 936
vcscanf ... 938
vfprintf, vfwprintf .. 940
vfprintf_s, vfwprintf_s ... 942
vfscanf, vfwscanf ... 944
vfscanf_s, vfwscanf_s .. 946
vprintf, vwprintf ... 948
vprintf_s, vwprintf_s .. 950
vscanf, vwscanf .. 952
vscanf_s, vwscanf_s ... 954

xx

Table of Contents

_vsnprintf, _vsnwprintf .. 956
vsnprintf, vsnwprintf .. 958
vsnprintf_s, vsnwprintf_s .. 960
vsprintf, vswprintf .. 962
vsprintf_s, vswprintf_s .. 964
vsscanf, vswscanf ... 966
vsscanf_s, vswscanf_s ... 968
wait .. 970
wcstombs ... 973
wcstombs_s .. 975
wctomb ... 978
wctomb_s ... 980
wctrans ... 982
wctype .. 984
_wrapon ... 987
write ... 989

4 Re-entrant Functions ... 991

Appendices .. 993

A. Implementation-Defined Behavior of the C Library ... 995
A.1 NULL Macro ... 995
A.2 Diagnostic Printed by the assert Function ... 995
A.3 Character Testing ... 995
A.4 Domain Errors ... 996
A.5 Underflow of Floating-Point Values ... 996
A.6 The fmod Function .. 997
A.7 The signal Function ... 997
A.8 Default Signals ... 997
A.9 The SIGILL Signal .. 998
A.10 Terminating Newline Characters ... 998
A.11 Space Characters .. 998
A.12 Null Characters .. 998
A.13 File Position in Append Mode ... 999
A.14 Truncation of Text Files .. 999
A.15 File Buffering ... 999
A.16 Zero-Length Files .. 999
A.17 File Names ... 999
A.18 File Access Limits ... 1000
A.19 Deleting Open Files ... 1000

xxi

Table of Contents

A.20 Renaming with a Name that Exists .. 1000
A.21 Printing Pointer Values .. 1000
A.22 Reading Pointer Values ... 1001
A.23 Reading Ranges ... 1001
A.24 File Position Errors .. 1001
A.25 Messages Generated by the perror Function .. 1001
A.26 Allocating Zero Memory ... 1003
A.27 The abort Function ... 1003
A.28 The atexit Function .. 1004
A.29 Environment Names .. 1004
A.30 The system Function .. 1004
A.31 The strerror Function ... 1004
A.32 The Time Zone ... 1006
A.33 The clock Function .. 1006

xxii

Watcom C Library Reference
Volume 1

Watcom C Library Reference Volume 1

2

1 C Library Overview

The C library provides much of the power usually associated with the C language. This
chapter introduces the individual functions (and macros) that comprise the Watcom C library.
The chapter Library Functions and Macros describes each function and macro in complete
detail.

Library functions are called as if they had been defined within the program. When the
program is linked, the code for these routines is incorporated into the program by the linker.

Strictly speaking, it is not necessary to declare most library functions since they return int
values for the most part. It is preferred, however, to declare all functions by including the
header files found in the synopsis section with each function. Not only does this declare the
return value, but also the type expected for each of the arguments as well as the number of
arguments. This enables the Watcom C and C++ compilers to check the arguments coded
with each function call.

1.1 Classes of Functions

The functions in the Watcom C library can be organized into a number of classes:

Character Manipulation Functions
These functions deal with single characters.

Wide Character Manipulation Functions
These functions deal with wide characters.

Multibyte Character Manipulation Functions
These functions deal with multibyte characters.

Memory Manipulation Functions
These functions manipulate blocks of memory.

String Manipulation Functions
These functions manipulate strings of characters. A character string is an array
of zero or more adjacent characters followed by a null character (’\0’) which
marks the end of the string.

Classes of Functions 3

Watcom C Library Reference Volume 1

Wide String Manipulation Functions
These functions manipulate strings of wide characters. A wide character string
is an array of zero or more adjacent wide characters followed by a null wide
character (L’\0’) which marks the end of the wide string.

Multibyte String Manipulation Functions
These functions manipulate strings of multibyte characters. A multibyte
character is either a single-byte or double-byte character. The Chinese, Japanese
and Korean character sets are examples of character sets containing both
single-byte and double-byte characters.

What determines whether a character is a single-byte or double-byte character is
the value of the lead byte in the sequence. For example, in the Japanese DBCS
(double-byte character set), double-byte characters are those in which the first
byte falls in the range 0x81 - 0x9F or 0xE0 - 0xFC and the second byte falls in
the range 0x40 - 0x7E or 0x80 - 0xFC. A string of multibyte characters must be
scanned from the first byte (index 0) to the last byte (index n) in sequence in
order to determine if a particular byte is part of a double-byte character. For
example, suppose that a multibyte character string contains the following byte
values.

0x31 0x40 0x41 0x81 0x41 // "1@A.." where .. is a
DB char

Among other characters, it contains the letter "A" (the first 0x41) and a
double-byte character (0x81 0x41). The second 0x41 is not the letter "A" and
that could only be determined by scanning from left to right starting with the
first byte (0x31).

Conversion Functions
These functions convert values from one representation to another. Numeric
values, for example, can be converted to strings.

Memory Allocation Functions
These functions are concerned with allocating and deallocating memory.

Heap Functions
These functions provide the ability to shrink and grow the heap, as well as, find
heap related problems.

Math Functions
The mathematical functions perform mathematical computations such as the
common trigonometric calculations. These functions operate on double
values, also known as floating-point values.

4 Classes of Functions

C Library Overview

Searching Functions
These functions provide searching and sorting capabilities.

Time Functions
These functions provide facilities to obtain and manipulate times and dates.

Variable-length Argument Lists
These functions provide the capability to process a variable number of
arguments to a function.

Stream I/O Functions
These functions provide the "standard" functions to read and write files. Data
can be transmitted as characters, strings, blocks of memory or under format
control.

Wide Character Stream I/O Functions
These functions provide the "standard" functions to read and write files of wide
characters. Data can be transmitted as wide characters, wide character strings,
blocks of memory or under format control.

Process Primitive Functions
These functions deal with process creation, execution and termination, signal
handling, and timer operations.

Process Environment
These functions deal with process identification, user identification, process
groups, system identification, system time and process time, environment
variables, terminal identification, and configurable system variables.

Directory Functions
These functions provide directory services.

Operating System I/O Functions
These functions are described in the "IEEE Standard Portable Operating System
Interface for Computer Environments" (POSIX 1003.1). The POSIX
input/output functions provide the capability to perform I/O at a "lower level"
than the C Language "stream I/O" functions (e.g., fopen, fread, fwrite,
and fclose).

File Manipulation Functions
These functions operate directly on files, providing facilities such as deletion of
files.

Classes of Functions 5

Watcom C Library Reference Volume 1

Console I/O Functions
These functions provide the capability to directly read and write characters from
the console.

Default Windowing Functions
These functions provide the capability to manipulate various dialog boxes in
Watcom’s default windowing system.

POSIX Realtime Timer Functions
These functions provide realtime timer capabilities.

POSIX Shared Memory Functions
These functions provide memory mapping capabilities.

POSIX Terminal Control Functions
These functions deal with terminal attributes such as baud rate and terminal
interface control functions.

System Database Functions
These functions allow an application to access group and user database
information.

Miscellaneous QNX Functions
These functions provide access to a variety of QNX functions such as message
passing.

QNX Low-level Functions
These functions provide access to low-level QNX facilities.

Intel 80x86 Architecture-Specific Functions
This set of functions allows access to Intel 80x86 processor-related functions.

Intel Pentium Multimedia Extension Functions
This set of functions allows access to Intel Architecture Multimedia Extensions
(MMX).

Miscellaneous Functions
This collection consists of the remaining functions.

The following subsections describe these function classes in more detail. Each function in the
class is noted with a brief description of its purpose. The chapter Library Functions and
Macros provides a complete description of each function and macro.

6 Classes of Functions

C Library Overview

1.1.1 Character Manipulation Functions

These functions operate upon single characters of type char. The functions test characters
in various ways and convert them between upper and lowercase. The following functions are
defined:

isalnum test for letter or digit
isalpha test for letter
isascii test for ASCII character
isblank test for blank character
iscntrl test for control character
isdigit test for digit
isgraph test for printable character, except space
islower test for letter in lowercase
isprint test for printable character, including space
ispunct test for punctuation characters
isspace test for "white space" characters
isupper test for letter in uppercase
isxdigit test for hexadecimal digit
tolower convert character to lowercase
toupper convert character to uppercase

1.1.2 Wide Character Manipulation Functions

These functions operate upon wide characters of typewchart. The functions test wide
characters in various ways and convert them between upper and lowercase. The following
functions are defined:

iswalnum test for letter or digit
iswalpha test for letter
iswascii test for ASCII character
iswblank test for blank character
iswcntrl test for control character
iswdigit test for digit
iswgraph test for printable character, except space
iswlower test for letter in lowercase
iswprint test for printable character, including space
iswpunct test for punctuation characters
iswspace test for "white space" characters
iswupper test for letter in uppercase
iswxdigit test for hexadecimal digit
wctype construct a property value for a given "property"

Classes of Functions 7

Watcom C Library Reference Volume 1

iswctype test a character for a specific property
towlower convert character to lowercase
towupper convert character to uppercase
wctrans construct mapping value for a given "property"
towctrans convert a character based on a specific property

1.1.3 Multibyte Character Manipulation Functions

These functions operate upon multibyte characters. The functions test wide characters in
various ways and convert them between upper and lowercase. The following functions are
defined:

_mbcjistojms convert JIS code to shift-JIS code
_mbcjmstojis convert shift-JIS code to JIS code
_mbctohira convert double-byte Katakana character to Hiragana character
_mbctokata convert double-byte Hiragana character to Katakana character
mblen determine length of next multibyte character
mbtowc convert multibyte character to wide character

1.1.4 Memory Manipulation Functions

These functions manipulate blocks of memory. In each case, the address of the memory block
and its size is passed to the function. The functions that begin with "_f" accept far pointers
as their arguments allowing manipulation of any memory location regardless of which
memory model your program has been compiled for. The following functions are defined:

_fmemccpy copy far memory block up to a certain character
_fmemchr search far memory block for a character value
_fmemcmp compare any two memory blocks (near or far)
_fmemcpy copy far memory block, overlap not allowed
_fmemicmp compare far memory, case insensitive
_fmemmove copy far memory block, overlap allowed
_fmemset set any memory block (near of far) to a character
memccpy copy memory block up to a certain character
memchr search memory block for a character value
memcmp compare memory blocks
memcpy copy memory block, overlap not allowed
memicmp compare memory, case insensitive
memmove copy memory block, overlap allowed
memset set memory block to a character
movedata copy memory block, with segment information
swab swap bytes of a memory block

8 Classes of Functions

C Library Overview

wmemchr search memory block for a wide character value
wmemcmp compare memory blocks
wmemcpy copy memory block, overlap not allowed
wmemmove copy memory block, overlap allowed
wmemset set memory block to a wide character

See the section "String Manipulation Functions" for descriptions of functions that manipulate
strings of data. See the section "Wide String Manipulation Functions" for descriptions of
functions that manipulate wide strings of data.

1.1.5 String Manipulation Functions

A string is an array of characters (with type char) that is terminated with an extra null
character (’\0’). Functions are passed only the address of the string since the size can be
determined by searching for the terminating character. The functions that begin with "_f"
accept far pointers as their arguments allowing manipulation of any memory location
regardless of which memory model your program has been compiled for. The following
functions are defined:

bcmp compare two byte strings
bcopy copy a byte string
_bprintf formatted transmission to fixed-length string
bzero zero a byte string
_fstrcat concatenate two far strings
_fstrchr locate character in far string
_fstrcmp compare two far strings
_fstrcpy copy far string
_fstrcspn get number of string characters not from a set of characters
_fstricmp compare two far strings with case insensitivity
_fstrlen length of a far string
_fstrlwr convert far string to lowercase
_fstrncat concatenate two far strings, up to a maximum length
_fstrncmp compare two far strings up to maximum length
_fstrncpy copy a far string, up to a maximum length
_fstrnicmp compare two far strings with case insensitivity up to a maximum

length
_fstrnset fill far string with character to a maximum length
_fstrpbrk locate occurrence of a string within a second string
_fstrrchr locate last occurrence of character from a character set
_fstrrev reverse a far string in place
_fstrset fill far string with a character
_fstrspn find number of characters at start of string which are also in a second

string

Classes of Functions 9

Watcom C Library Reference Volume 1

_fstrstr find first occurrence of string in second string
_fstrtok get next token from a far string
_fstrupr convert far string to uppercase
sprintf formatted transmission to string
sscanf scan from string under format control
strcat concatenate string
strchr locate character in string
strcmp compare two strings
strcmpi compare two strings with case insensitivity
strcoll compare two strings using "locale" collating sequence
strcpy copy a string
strcspn get number of string characters not from a set of characters
_strdec returns pointer to the previous character in string
_strdup allocate and duplicate a string
strerror get error message as string
_stricmp compare two strings with case insensitivity
_strinc return pointer to next character in string
strlcat concatenate string into a bounded buffer
strlcpy copy string into a bounded buffer
strlen string length
_strlwr convert string to lowercase
strncat concatenate two strings, up to a maximum length
strncmp compare two strings up to maximum length
_strncnt count the number of characters in the first "n" bytes
strncpy copy a string, up to a maximum length
_strnextc return integer value of the next character in string
_strnicmp compare two strings with case insensitivity up to a maximum length
_strninc increment character pointer by "n" characters
_strnset fill string with character to a maximum length
strpbrk locate occurrence of a string within a second string
strrchr locate last occurrence of character from a character set
_strrev reverse a string in place
_strset fill string with a character
strspn find number of characters at start of string which are also in a second

string
_strspnp return pointer to first character of string not in set
strstr find first occurrence of string in second string
strtok get next token from string
_strupr convert string to uppercase
strxfrm transform string to locale’s collating sequence
_vbprintf same as "_bprintf" but with variable arguments
vsscanf same as "sscanf" but with variable arguments

10 Classes of Functions

C Library Overview

For related functions see the sections Conversion Functions (conversions to and from strings),
Time Functions (formatting of dates and times), and Memory Manipulation Functions (operate
on arrays without terminating null character).

1.1.6 Wide String Manipulation Functions

A wide string is an array of wide characters (with typewchart) that is terminated with an
extra null wide character (L’\0’). Functions are passed only the address of the string
since the size can be determined by searching for the terminating character. The functions
that begin with "_f" accept far pointers as their arguments allowing manipulation of any
memory location regardless of which memory model your program has been compiled for.
The following functions are defined:

_bwprintf formatted wide character transmission to fixed-length wcsing
swprintf formatted wide character transmission to string
swscanf scan from wide character string under format control
_vbwprintf same as "_bwprintf" but with variable arguments
vswscanf same as "swscanf" but with variable arguments
wcscat concatenate string
wcschr locate character in string
wcscmp compare two strings
wcscmpi compare two strings with case insensitivity
wcscoll compare two strings using "locale" collating sequence
wcscpy copy a string
wcscspn get number of string characters not from a set of characters
_wcsdec returns pointer to the previous character in string
_wcsdup allocate and duplicate a string
_wcsicmp compare two strings with case insensitivity
_wcsinc return pointer to next character in string
wcslcat concatenate string into a bounded buffer
wcslcpy copy string into a bounded buffer
wcslen string length
_wcslwr convert string to lowercase
wcsncat concatenate two strings, up to a maximum length
wcsncmp compare two strings up to maximum length
_wcsncnt count the number of characters in the first "n" bytes
wcsncpy copy a string, up to a maximum length
_wcsnextc return integer value of the next multibyte-character in string
_wcsnicmp compare two strings with case insensitivity up to a maximum length
_wcsninc increment wide character pointer by "n" characters
_wcsnset fill string with character to a maximum length
wcspbrk locate occurrence of a string within a second string
wcsrchr locate last occurrence of character from a character set

Classes of Functions 11

Watcom C Library Reference Volume 1

_wcsrev reverse a string in place
_wcsset fill string with a character
wcsspn find number of characters at start of string which are also in a second

string
_wcsspnp return pointer to first character of string not in set
wcsstr find first occurrence of string in second string
wcstok get next token from string
_wcsupr convert string to uppercase
wcsxfrm transform string to locale’s collating sequence

For related functions see the sections Conversion Functions (conversions to and from strings),
Time Functions (formatting of dates and times), and Memory Manipulation Functions (operate
on arrays without terminating null character).

1.1.7 Multibyte String Manipulation Functions

A wide string is an array of wide characters (with typewchart) that is terminated with an
extra null wide character (L’\0’). Functions are passed only the address of the wide string
since the size can be determined by searching for the terminating character. The functions
that begin with "_f" accept far pointers as their arguments allowing manipulation of any
memory location regardless of which memory model your program has been compiled for.
The following functions are defined:

mbstowcs convert multibyte character string to wide character string
wcstombs convert wide character string to multibyte character string
wctomb convert wide character to multibyte character

For related functions see the sections Conversion Functions (conversions to and from strings),
Time Functions (formatting of dates and times), and Memory Manipulation Functions (operate
on arrays without terminating null character).

1.1.8 Conversion Functions

These functions perform conversions between objects of various types and strings. The
following functions are defined:

atof string to "double"
atoi string to "int"
atol string to "long int"
atoll string to "long long int"
ecvt "double" to E-format string
fcvt "double" to F-format string

12 Classes of Functions

C Library Overview

gcvt "double" to string
itoa "int" to string
lltoa "long long int" to string
ltoa "long int" to string
strtod string to "double"
strtol string to "long int"
strtoll string to "long long int"
strtoul string to "unsigned long int"
strtoull string to "unsigned long long int"
ulltoa "unsigned long long int" to string
ultoa "unsigned long int" to string
utoa "unsigned int" to string

These functions perform conversions between objects of various types and wide character
strings. The following functions are defined:

_itow "int" to wide character string
_lltow "long long int" to wide character string
_ltow "long int" to wide character string
_ulltow "unsigned long long int" to wide character string
_ultow "unsigned long int" to wide character string
_utow "unsigned int" to wide character string
wcstod wide character string to "double"
wcstol wide character string to "long int"
wcstoll wide character string to "long long int"
wcstoul wide character string to "unsigned long int"
wcstoull wide character string to "unsigned long long int"
_wtof wide character string to "double"
_wtoi wide character string to "int"
_wtol wide character string to "long int"
_wtoll wide character string to "long long int"

See also tolower, towlower,mbctolower, toupper, towupper,mbctoupper,
strlwr,wcslwr,mbslwr, strupr,wcsupr andmbsupr which convert the cases
of characters and strings.

1.1.9 Memory Allocation Functions

These functions allocate and de-allocate blocks of memory.

The default data segment has a maximum size of 64K bytes. It may be less in a machine with
insufficient memory or when other programs in the computer already occupy some of the

Classes of Functions 13

Watcom C Library Reference Volume 1

memory. Thenmalloc function allocates space within this area while the
fmalloc

function allocates space outside the area (if it is available).

In a small data model, the malloc, calloc and realloc functions use thenmalloc
function to acquire memory; in a large data model, the

fmalloc function is used.

It is also possible to allocate memory from a based heap using
bmalloc. Based heaps are

similar to far heaps in that they are located outside the normal data segment. Based pointers
only store the offset portion of the full address, so they behave much like near pointers. The
selector portion of the full address specifies which based heap a based pointer belongs to, and
must be passed to the various based heap functions.

It is important to use the appropriate memory-deallocation function to free memory blocks.
Thenfree function should be used to free space acquired by thencalloc,nmalloc,
ornrealloc functions. The
ffree function should be used to free space acquired by

the
fcalloc,fmalloc, or
frealloc functions. The
bfree function should be

used to free space acquired by the
bcalloc,bmalloc, or
brealloc functions.

The free function will use thenfree function when the small data memory model is
used; it will use the
ffree function when the large data memory model is being used.

It should be noted that the
fmalloc andnmalloc functions can both be used in either

data memory model. The following functions are defined:

alloca allocate auto storage from stack
_bcalloc allocate and zero memory from a based heap
_bexpand expand a block of memory in a based heap
_bfree free a block of memory in a based heap
_bfreeseg free a based heap
_bheapseg allocate a based heap
_bmalloc allocate a memory block from a based heap
_bmsize return the size of a memory block
_brealloc re-allocate a memory block in a based heap
calloc allocate and zero memory
_expand expand a block of memory
_fcalloc allocate and zero a memory block (outside default data segment)
_fexpand expand a block of memory (outside default data segment)
_ffree free a block allocated using "_fmalloc"
_fmalloc allocate a memory block (outside default data segment)
_fmsize return the size of a memory block
_frealloc re-allocate a memory block (outside default data segment)
free free a block allocated using "malloc", "calloc" or "realloc"
_freect return number of objects that can be allocated
halloc allocate huge array

14 Classes of Functions

C Library Overview

hfree free huge array
malloc allocate a memory block (using current memory model)
_memavl return amount of available memory
_memmax return largest block of memory available
_msize return the size of a memory block
_ncalloc allocate and zero a memory block (inside default data segment)
_nexpand expand a block of memory (inside default data segment)
_nfree free a block allocated using "_nmalloc"
_nmalloc allocate a memory block (inside default data segment)
_nmsize return the size of a memory block
_nrealloc re-allocate a memory block (inside default data segment)
realloc re-allocate a block of memory
sbrk set allocation "break" position
stackavail determine available amount of stack space

1.1.10 Heap Functions

These functions provide the ability to shrink and grow the heap, as well as, find heap related
problems. The following functions are defined:

_heapchk perform consistency check on the heap
_bheapchk perform consistency check on a based heap
_fheapchk perform consistency check on the far heap
_nheapchk perform consistency check on the near heap
_heapgrow grow the heap
_fheapgrow grow the far heap
_nheapgrow grow the near heap up to its limit of 64K
_heapmin shrink the heap as small as possible
_bheapmin shrink a based heap as small as possible
_fheapmin shrink the far heap as small as possible
_nheapmin shrink the near heap as small as possible
_heapset fill unallocated sections of heap with pattern
_bheapset fill unallocated sections of based heap with pattern
_fheapset fill unallocated sections of far heap with pattern
_nheapset fill unallocated sections of near heap with pattern
_heapshrink shrink the heap as small as possible
_fheapshrink shrink the far heap as small as possible
_bheapshrink shrink a based heap as small as possible
_nheapshrink shrink the near heap as small as possible
_heapwalk walk through each entry in the heap
_bheapwalk walk through each entry in a based heap
_fheapwalk walk through each entry in the far heap
_nheapwalk walk through each entry in the near heap

Classes of Functions 15

Watcom C Library Reference Volume 1

1.1.11 Math Functions

These functions operate with objects of type double, also known as floating-point numbers.
The Intel 8087 processor (and its successor chips) is commonly used to implement
floating-point operations on personal computers. Functions ending in "87" pertain to this
specific hardware and should be isolated in programs when portability is a consideration. The
following functions are defined:

abs absolute value of an object of type "int"
acos arccosine
acosh inverse hyperbolic cosine
asin arcsine
asinh inverse hyperbolic sine
atan arctangent of one argument
atan2 arctangent of two arguments
atanh inverse hyperbolic tangent
bessel bessel functions j0, j1, jn, y0, y1, and yn
cabs absolute value of complex number
ceil ceiling function
_clear87 clears floating-point status
_control87 sets new floating-point control word
cos cosine
cosh hyperbolic cosine
div compute quotient, remainder from division of an "int" object
exp exponential function
fabs absolute value of "double"
_finite determines whether floating-point value is valid
floor floor function
fmod modulus function
_fpreset initializes for floating-point operations
frexp fractional exponent
hypot compute hypotenuse
imaxabs get quotient, remainder from division of object of maximum-size

integer type
imaxdiv absolute value of an object of maximum-size integer type
j0 return Bessel functions of the first kind (described under "bessel

Functions")
j1 return Bessel functions of the first kind (described under "bessel

Functions")
jn return Bessel functions of the first kind (described under "bessel

Functions")
labs absolute value of an object of type "long int"
ldexp multiply by a power of two

16 Classes of Functions

C Library Overview

ldiv get quotient, remainder from division of object of type "long int"
log natural logarithm
log10 logarithm, base 10
log2 logarithm, base 2
matherr handles error from math functions
max return maximum of two arguments
min return minimum of two arguments
modf get integral, fractional parts of "double"
pow raise to power
rand random integer
sin sine
sinh hyperbolic sine
sqrt square root
srand set starting point for generation of random numbers using "rand"

function
_status87 gets floating-point status
tan tangent
tanh hyperbolic tangent
y0 return Bessel functions of the second kind (described under "bessel")
y1 return Bessel functions of the second kind (described under "bessel")
yn return Bessel functions of the second kind (described under "bessel")

1.1.12 Searching Functions

These functions provide searching and sorting capabilities. The following functions are
defined:

bsearch find a data item in an array using binary search
lfind find a data item in an array using linear search
lsearch linear search array, add item if not found
qsort sort an array

1.1.13 Time Functions

These functions are concerned with dates and times. The following functions are defined:

asctime makes time string from time structure
_asctime makes time string from time structure
_wasctime makes time string from time structure
__wasctime makes time string from time structure
clock gets time since program start
ctime gets calendar time string

Classes of Functions 17

Watcom C Library Reference Volume 1

_ctime gets calendar time string
_wctime gets calendar time string
__wctime gets calendar time string
difftime calculate difference between two times
ftime returns the current time in a "timeb" structure
gmtime convert calendar time to Coordinated Universal Time (UTC)
_gmtime convert calendar time to Coordinated Universal Time (UTC)
localtime convert calendar time to local time
_localtime convert calendar time to local time
mktime make calendar time from local time
_strdate return date in buffer
strftime format date and time
wcsftime format date and time
_wstrftime_ms format date and time
_strtime return time in buffer
_wstrtime return time in buffer
time get current calendar time
tzset set global variables to reflect the local time zone
_wstrdate return date in buffer

1.1.14 Variable-length Argument Lists

Variable-length argument lists are used when a function does not have a fixed number of
arguments. These macros provide the capability to access these arguments. The following
functions are defined:

va_arg get next variable argument
va_end complete access of variable arguments
va_start start access of variable arguments

1.1.15 Stream I/O Functions

A stream is the name given to a file or device which has been opened for data transmission.
When a stream is opened, a pointer to a FILE structure is returned. This pointer is used to
reference the stream when other functions are subsequently invoked.

When a program begins execution, there are a number of streams already open for use:

18 Classes of Functions

C Library Overview

stdin Standard Input: input from the console

stdout Standard Output: output to the console

stderr Standard Error: output to the console (used for error messages)

These standard streams may be re-directed by use of the freopen function.

See also the section File Manipulation Functions for other functions which operate upon files.

The functions referenced in the section Operating System I/O Functions may also be invoked
(use the fileno function to obtain the file descriptor). Since the stream functions may
buffer input and output, these functions should be used with caution to avoid unexpected
results.

The following functions are defined:

clearerr clear end-of-file and error indicators for stream
fclose close stream
fcloseall close all open streams
fdopen open stream, given descriptor
feof test for end of file
ferror test for file error
fflush flush output buffer
fgetc get next character from file
_fgetchar equivalent to "fgetc" with the argument "stdin"
fgetpos get current file position
fgets get a string
flushall flush output buffers for all streams
fopen open a stream
fprintf format output
fputc write a character
_fputchar write a character to the "stdout" stream
fputs write a string
fread read a number of objects
freopen re-opens a stream
fscanf scan input according to format
fseek set current file position, relative
fsetpos set current file position, absolute
_fsopen open a shared stream
ftell get current file position
fwrite write a number of objects
getc read character
getchar get next character from "stdin"

Classes of Functions 19

Watcom C Library Reference Volume 1

gets get string from "stdin"
perror write error message to "stderr" stream
printf format output to "stdout"
putc write character to file
putchar write character to "stdout"
puts write string to "stdout"
_putw write int to stream file
rewind position to start of file
scanf scan input from "stdin" under format control
setbuf set buffer
setvbuf set buffering
tmpfile create temporary file
ungetc push character back on input stream
vfprintf same as "fprintf" but with variable arguments
vfscanf same as "fscanf" but with variable arguments
vprintf same as "printf" but with variable arguments
vscanf same as "scanf" but with variable arguments

See the section Directory Functions for functions which are related to directories.

1.1.16 Wide Character Stream I/O Functions

The previous section describes some general aspects of stream input/output. The following
describes functions dealing with streams containing multibyte character sequences.

After a stream is associated with an external file, but before any operations are performed on
it, the stream is without orientation. Once a wide character input/output function has been
applied to a stream without orientation, the stream becomes wide-oriented. Similarly, once a
byte input/output function has been applied to a stream without orientation, the stream
becomes byte-oriented. Only a successful call to freopen can otherwise alter the
orientation of a stream (it removes any orientation). You cannot mix byte input/output
functions and wide character input/output functions on the same stream.

A file positioning function can cause the next wide character output function to overwrite a
partial multibyte character. This can lead to the subsequent reading of a stream of multibyte
characters containing an invalid character.

When multibyte characters are read from a stream, they are converted to wide characters.
Similarly, when wide characters are written to a stream, they are converted to multibyte
characters.

The following functions are defined:

20 Classes of Functions

C Library Overview

fgetwc get next wide character from file
_fgetwchar equivalent to "fgetwc" with the argument "stdin"
fgetws get a wide character string
fprintf "C" and "S" extensions to the format specifier
fputwc write a wide character
_fputwchar write a character to the "stdout" stream
fputws write a wide character string
fscanf "C" and "S" extensions to the format specifier
fwprintf formatted wide character output
fwscanf scan wide character input according to format
getwc read wide character
getwchar get next wide character from "stdin"
_getws get wide character string from "stdin"
putwc write wide character to file
putwchar write wide character to "stdout"
_putws write wide character string to "stdout"
ungetwc push wide character back on input stream
vfwprintf same as "fwprintf" but with variable arguments
vfwscanf same as "fwscanf" but with variable arguments
vswprintf same as "swprintf" but with variable arguments
vwprintf same as "wprintf" but with variable arguments
vwscanf same as "wscanf" but with variable arguments
_wfdopen open stream, given descriptor using a wide character "mode"
_wfopen open a stream using wide character arguments
_wfreopen re-opens a stream using wide character arguments
_wfsopen open a shared stream using wide character arguments
_wperror write error message to "stderr" stream
wprintf format wide character output to "stdout"
wscanf scan wide character input from "stdin" under format control

See the section Directory Functions for functions which are related to directories.

1.1.17 Process Primitive Functions

These functions deal with process creation, execution and termination, signal handling, and
timer operations.

When a new process is started, it may replace the existing process

• POVERLAY is specified with the spawn... functions

• the exec... routines are invoked

Classes of Functions 21

Watcom C Library Reference Volume 1

or the existing process may be suspended while the new process executes (control continues at
the point following the place where the new process was started)

• PWAIT is specified with the spawn... functions

• system is used

The following functions are defined:

abort immediate termination of process, return code 3
atexit register exit routine
delay delay for number of milliseconds
execl chain to program
execle chain to program, pass environment
execlp chain to program
execlpe chain to program, pass environment
execv chain to program
execve chain to program, pass environment
execvp chain to program
execvpe chain to program, pass environment
exit exit process, set return code
_Exit exit process, set return code
_exit exit process, set return code
onexit register exit routine
raise signal an exceptional condition
signal set handling for exceptional condition
sleep delay for number of seconds
spawnl create process
spawnle create process, set environment
spawnlp create process
spawnlpe create process, set environment
spawnv create process
spawnve create process, set environment
spawnvp create process
spawnvpe create process, set environment
system execute system command
wait wait for any child process to terminate

There are eight spawn... and exec... functions each. The "..." is one to three
letters:

22 Classes of Functions

C Library Overview

• "l" or "v" (one is required) to indicate the way the process parameters are passed

• "p" (optional) to indicate whether the PATH environment variable is searched to locate
the program for the process

• "e" (optional) to indicate that the environment variables are being passed

1.1.18 Process Environment

These functions deal with process identification, user identification, process groups, system
identification, system time and process time, environment variables, terminal identification,
and configurable system variables. The following functions are defined:

_bgetcmd get command line
clearenv delete environment variables
getcmd get command line
getenv get environment variable value
putenv add, change or delete environment variable
_searchenv search for a file in list of directories
setenv add, change or delete environment variable
_wgetenv get environment variable value
_wputenv add, change or delete environment variable
_wsetenv add, change or delete environment variable

1.1.19 Directory Functions

These functions pertain to directory manipulation. The following functions are defined:

chdir change current working directory
closedir close opened directory file
getcwd get current working directory
mkdir make a new directory
opendir open directory file
readdir read file name from directory
rewinddir reset position of directory stream
rmdir remove a directory

Classes of Functions 23

Watcom C Library Reference Volume 1

1.1.20 Operating System I/O Functions

These functions operate at the operating-system level and are included for compatibility with
other C implementations. It is recommended that the functions used in the section File
Manipulation Functions be used for new programs, as these functions are defined portably
and are part of the ANSI standard for the C language.

The functions in this section reference opened files and devices using a file descriptor which
is returned when the file is opened. The file descriptor is passed to the other functions.

The following functions are defined:

chsize change the size of a file
close close file
creat create a file
dup duplicate file descriptor, get unused descriptor number
dup2 duplicate file descriptor, supply new descriptor number
eof test for end of file
filelength get file size
fileno get file descriptor for stream file
fstat get file status
fsync write queued file and filesystem data to disk
lock lock a section of a file
locking lock/unlock a section of a file
lseek set current file position
open open a file
read read a record
setmode set file mode
sopen open a file for shared access
tell get current file position
umask set file permission mask
unlink delete a file
unlock unlock a section of a file
write write a record

1.1.21 File Manipulation Functions

These functions operate directly with files. The following functions are defined:

remove delete a file
rename rename a file
stat get file status

24 Classes of Functions

C Library Overview

tmpnam create name for temporary file
utime set modification time for a file

1.1.22 Console I/O Functions

These functions provide the capability to read and write data from the console. Data is read or
written without any special initialization (devices are not opened or closed), since the
functions operate at the hardware level.

The following functions are defined:

cgets get a string from the console
cprintf print formatted string to the console
cputs write a string to the console
cscanf scan formatted data from the console
getch get character from console, no echo
getche get character from console, echo it
kbhit test if keystroke available
putch write a character to the console
ungetch push back next character from console

1.1.23 POSIX Realtime Timer Functions

These functions provide realtime timer capabilities. The following functions are defined:

1.1.24 POSIX Shared Memory Functions

These functions provide memory mapping capabilities. The following functions are defined:

1.1.25 POSIX Terminal Control Functions

The following functions are defined:

1.1.26 System Database Functions

The following functions are defined:

Classes of Functions 25

Watcom C Library Reference Volume 1

1.1.27 Miscellaneous QNX Functions

The following functions are defined:

basename return a pointer to the first character following the last "/" in a string

1.1.28 QNX Low-level Functions

These functions provide the capability to invoke QNX functions directly from a program. The
following functions are defined:

1.1.29 Intel 80x86 Architecture-Specific Functions

These functions provide the capability to invoke Intel 80x86 processor-related functions
directly from a program. Functions that apply to the Intel 8086 CPU apply to that family
including the 80286, 80386, 80486 and Pentium processors. The following functions are
defined:

_disable disable interrupts
_enable enable interrupts
FP_OFF get offset part of far pointer
FP_SEG get segment part of far pointer
inp get one byte from hardware port
inpw get two bytes (one word) from hardware port
int386 cause 386/486/Pentium CPU interrupt
int386x cause 386/486/Pentium CPU interrupt, with segment registers
int86 cause 8086 CPU interrupt
int86x cause 8086 CPU interrupt, with segment registers
intr cause 8086 CPU interrupt, with segment registers
MK_FP make a far pointer from the segment and offset values
nosound turn off the speaker
outp write one byte to hardware port
outpw write two bytes (one word) to hardware port
segread read segment registers
sound turn on the speaker at specified frequency

26 Classes of Functions

C Library Overview

1.1.30 Intel Pentium Multimedia Extension Functions

This set of functions allows access to Intel Architecture Multimedia Extensions (MMX).
These functions are implemented as in-line intrinsic functions. The general format for most
functions is:

 mmresult=mmfunction(mmoperand1,mmoperand2);
These functions provide a simple model for use of Intel Multimedia Extension (MMX). More
advanced use of MMX can be implemented in much the same way that these functions are
implemented. See the <mmintrin.h> header file for examples. The following functions
are defined:

_m_packssdw pack and saturate 32-bit double-words from two MM elements into
signed 16-bit words

_m_packsswb pack and saturate 16-bit words from two MM elements into signed
bytes

_m_packuswb pack and saturate signed 16-bit words from two MM elements into
unsigned bytes

_m_paddb add packed bytes
_m_paddd add packed 32-bit double-words
_m_paddsb add packed signed bytes with saturation
_m_paddsw add packed signed 16-bit words with saturation
_m_paddusb add packed unsigned bytes with saturation
_m_paddusw add packed unsigned 16-bit words with saturation
_m_paddw add packed 16-bit words
_m_pand AND 64 bits of two MM elements
_m_pandn invert the 64 bits in MM element, then AND 64 bits from second

MM element
_m_pcmpeqb compare packed bytes for equality
_m_pcmpeqd compare packed 32-bit double-words for equality
_m_pcmpeqw compare packed 16-bit words for equality
_m_pcmpgtb compare packed bytes for greater than relationship
_m_pcmpgtd compare packed 32-bit double-words for greater than relationship
_m_pcmpgtw compare packed 16-bit words for greater than relationship
_m_pmaddwd multiply packed 16-bit words, then add 32-bit results pair-wise
_m_pmulhw multiply the packed 16-bit words of two MM elements, then store

high-order 16 bits of results
_m_pmullw multiply the packed 16-bit words of two MM elements, then store

low-order 16 bits of results
_m_por OR 64 bits of two MM elements
_m_pslld shift left each 32-bit double-word by amount specified in second

MM element

Classes of Functions 27

Watcom C Library Reference Volume 1

_m_pslldi shift left each 32-bit double-word by amount specified in constant
value

_m_psllq shift left each 64-bit quad-word by amount specified in second MM
element

_m_psllqi shift left each 64-bit quad-word by amount specified in constant
value

_m_psllw shift left each 16-bit word by amount specified in second MM
element

_m_psllwi shift left each 16-bit word by amount specified in constant value
_m_psrad shift right (with sign propagation) each 32-bit double-word by

amount specified in second MM element
_m_psradi shift right (with sign propagation) each 32-bit double-word by

amount specified in constant value
_m_psraw shift right (with sign propagation) each 16-bit word by amount

specified in second MM element
_m_psrawi shift right (with sign propagation) each 16-bit word by amount

specified in constant value
_m_psrld shift right (with zero fill) each 32-bit double-word by an amount

specified in second MM element
_m_psrldi shift right (with zero fill) each 32-bit double-word by an amount

specified in constant value
_m_psrlq shift right (with zero fill) each 64-bit quad-word by an amount

specified in second MM element
_m_psrlqi shift right (with zero fill) each 64-bit quad-word by an amount

specified in constant value
_m_psrlw shift right (with zero fill) each 16-bit word by an amount specified in

second MM element
_m_psrlwi shift right (with zero fill) each 16-bit word by an amount specified in

constant value
_m_psubb subtract packed bytes in MM element from second MM element
_m_psubd subtract packed 32-bit dwords in MM element from second MM

element
_m_psubsb subtract packed signed bytes in MM element from second MM

element with saturation
_m_psubsw subtract packed signed 16-bit words in MM element from second

MM element with saturation
_m_psubusb subtract packed unsigned bytes in MM element from second MM

element with saturation
_m_psubusw subtract packed unsigned 16-bit words in MM element from second

MM element with saturation
_m_psubw subtract packed 16-bit words in MM element from second MM

element
_m_punpckhbw interleave bytes from the high halves of two MM elements

28 Classes of Functions

C Library Overview

_m_punpckhdq interleave 32-bit double-words from the high halves of two MM
elements

_m_punpckhwd interleave 16-bit words from the high halves of two MM elements
_m_punpcklbw interleave bytes from the low halves of two MM elements
_m_punpckldq interleave 32-bit double-words from the low halves of two MM

elements
_m_punpcklwd interleave 16-bit words from the low halves of two MM elements
_m_pxor XOR 64 bits from two MM elements
_m_to_int retrieve low-order 32 bits from MM value

1.1.31 Miscellaneous Functions

The following functions are defined:

assert test an assertion and output a string upon failure
_fullpath return full path specification for file
localeconv obtain locale specific conversion information
longjmp return and restore environment saved by "setjmp"
_lrotl rotate an "unsigned long" left
_lrotr rotate an "unsigned long" right
main the main program (user written)
offsetof get offset of field in structure
_rotl rotate an "unsigned int" left
_rotr rotate an "unsigned int" right
setjmp save environment for use with "longjmp" function
_makepath make a full filename from specified components
setlocale set locale category
_splitpath split a filename into its components
_splitpath2 split a filename into its components
_wmakepath make a full filename from specified components
_wsetlocale set locale category
_wsplitpath split a filename into its components
_wsplitpath2 split a filename into its components

1.2 Header Files

The following header files are supplied with the C library. As has been previously noted,
when a library function is referenced in a source file, the related header files (shown in the
synopsis for that function) should be included into that source file. The header files provide
the proper declarations for the functions and for the number and types of arguments used with

Header Files 29

Watcom C Library Reference Volume 1

them. Constant values used in conjunction with the functions are also declared. The files can
be included multiple times and in any order.

When the Watcom C compiler option "za" is used ("ANSI conformance"), the macroNOEXTKEYS
 is predefined. The "za" option is used when you are creating an application

that must conform to a certain standard, whether it be ANSI or POSIX. The effect on the
inclusion of ANSI- and POSIX-defined header files is that certain portions of the header files
are omitted. For ANSI header files, these are the portions that go beyond the ANSI standard.
For POSIX header files, these are the portions that go beyond the POSIX standard. Feature
test macros may then be defined to select those portions which are omitted. Two feature test
macros may be defined.

_POSIX_SOURCE Include those portions of the ANSI header files which relate to
the POSIX standard (IEEE Standard Portable Operating
System Interface for Computer Environments - POSIX 1003.1)

_QNX_SOURCE Include those portions of the ANSI and POSIX header files
which relate to the POSIX standard and all extensions provided
by the QNX system. In essence, the definition ofQNXSOURCE

 before any header files are included is
equivalent to omitting the specification of the "za" compiler
option. Note that when
QNXSOURCE

 is defined, it
encompassesPOSIXSOURCE so it is not necessary to definePOSIXSOURCE also.

Feature test macros may be defined on the command line or in the source file before any
header files are included. The latter is illustrated in the following example in which an ANSI
and POSIX conforming application is being developed.

 #definePOSIXSOURCE
#include <limits.h>
#include <stdio.h>

.

.

.#ifdefined(QNXSOURCE)#include"nonPOSIXheader1.h"#include"nonPOSIXheader2.h"#include"nonPOSIXheader3.h"
#endif

The source code is then compiled using the "za" option.

The following ANSI header files are affected by thePOSIXSOURCE feature test macro.

30 Header Files

C Library Overview

limits.h
setjmp.h
signal.h
stdio.h
stdlib.h
time.h

The following ANSI and POSIX header files are affected by the
QNXSOURCE

 feature test
macro.

ctype.h (ANSI)
env.h (POSIX)
fcntl.h (POSIX)
float.h (ANSI)
limits.h (ANSI)
math.h (ANSI)
process.h (extension to POSIX)
setjmp.h (ANSI)
signal.h (ANSI)
sys/stat.h (POSIX)
stdio.h (ANSI)
stdlib.h (ANSI)
string.h (ANSI)
termios.h (POSIX)
time.h (ANSI)
sys/types.h (POSIX)
unistd.h (POSIX)

1.2.1 Header Files in /usr/include

The following header files are provided with the software. The header files that are located in
the /usr/include directory are described first.

assert.h This ISO C90 header file is required when an assert macro is used. These
assertions will be ignored when the identifier NDEBUG is defined.

conio.h This header file declares console and Intel 80x86 port input/output functions.

ctype.h This ISO C90 header file declares functions that perform character classification
and case conversion operations. Similar functions for wide characters are
declared in <wctype.h>.

dirent.h This POSIX header file declares functions related to directories and the type
DIR which describes an entry in a directory.

Header Files 31

Watcom C Library Reference Volume 1

env.h This POSIX header file declares environment string functions.

errno.h This ISO C90 header file provides the extern declaration for error variable
errno and provides the symbolic names for error codes that can be placed in
the error variable.

fcntl.h This POSIX header file defines the flags used by the creat fcntl, open, and
sopen functions.

fenv.h This ISO C99 header file defines several types and declares several functions
that give access to the floating point environment. These functions can be used
to control status flags and control modes in the floating point processor.

float.h This ISO C90 header file declares constants related to floating-point numbers,
declarations for low-level floating-point functions, and the declaration of the
floating-point exception codes.

fnmatch.h This header file declares the pattern matching function fnmatch

graph.h This header file contains structure definitions and function declarations for the
Watcom C Graphics library functions.

grp.h This POSIX header file contains structure definitions and function declarations
for group operations.

i86.h This header file is used with functions that interact with the Intel architecture. It
defines the structs and unions used to handle the input and output registers for
the Intel 80x86 and 80386/80486 interrupt interface routines. It includes
prototypes for the interrupt functions, definitions for theFPOFF,FPSEG andMKFP macros, and definitions for the following structures and unions:

REGS describes the CPU registers for Intel 8086 family.

SREGS describes the segment registers for the Intel 8086 family.

REGPACK describes the CPU registers and segment registers for Intel 8086
family.

INTPACK describes the input parameter to an "interrupt" function.

inttypes.h This ISO C99 header file includes <stdint.h> and expands on it by definition
macros for printing and scanning specific sized integer types. This header also
declares several functions for manipulating maximum sized integers.

32 Header Files

C Library Overview

Note that the format macros are not visible in C++ programs unless the macroSTDCFORMATMACROS is defined.

limits.h This ISO C90 header file contains constant declarations for limits or boundary
values for ranges of integers and characters.

locale.h This ISO C90 header file contains declarations for the categories (LC...) of
locales which can be selected using the setlocale function which is also
declared.

malloc.h This header file declares the memory allocation and deallocation functions.

math.h This ANSI header file declares the mathematical functions (which operate with
floating-point numbers) and the structures:

exception describes the exception structure passed to the matherr function;
symbolic constants for the types of exceptions are included

complex declares a complex number

mmintrin.h This header file declares functions that interact with the Intel Architecture
Multimedia Extensions. It defines the datatype used to store multimedia values:

__m64 describes the 64-bit multimedia data element. Note: the
underlying implementation details of this datatype are subject to
change. Other compilers may implement a similar datatype in a
different manner.

It also contains prototypes for multimedia functions and pragmas for the in-line
generation of code that operates on multimedia registers.

process.h This header file declares the spawn... functions, the exec... functions,
and the system function. The file also contains declarations for the constantsPWAIT,PNOWAIT,PNOWAITO, andPOVERLAY.

pwd.h This POSIX header file contains structure definitions and function declarations
for password operations.

regex.h This header file contains structure definitions and function declarations for
regular expression handling.

search.h This header file declares the functions lfind and lsearch

setjmp.h This ISO C90 header file declares the setjmp and longjmp functions.

Header Files 33

Watcom C Library Reference Volume 1

share.h This header file defines constants for shared access to files using the sopen
function.

signal.h This ISO C90 header file declares the signal and raise functions.

stdarg.h This ISO C90 header file defines the macros which handle variable argument
lists.

stdbool.h This ISO C99 header file defines the macro bool and the macros true and
false for use in C programs. If this header is included in a C++ program there
is no effect. The C++ reserved words will not be redefined. However the
definition of bool , true , and false used in a C program will be compatible
with their C++ counterparts. In particular, a C function declared as taking a
bool parameter and a structure containing a bool member can both be shared
between C and C++ without error.

stddef.h This ISO C90 header file defines a few popular constants and types including
NULL (null pointer),sizet (unsigned size of an object), andptrdifft
(difference between two pointers). It also contains a declaration for the
offsetof macro.

stdint.h This ISO C99 header file defines numerous type names for integers of various
sizes. Such type names provide a reasonably portable way to refer to integers
with a specific number of bits. This header file also defines macros that describe
the minimum and maximum values for these types (similar to the macros in
limits.h), and macros for writing integer constants with specific sized types.

Note that in C++ programs the limit macros are not visible unless the macroSTDCLIMITMACROS
 is defined. Similarly the constant writing macros

are not visible unless the macro
STDCCONSTANTMACROS

 is defined.

stdio.h This ISO C90 header file declares the standard input/output functions. Files,
devices and directories are referenced using pointers to objects of the type
FILE.

stdlib.h This ISO C90 header file declares many standard functions excluding those
declared in other header files discussed in this section.

string.h This ISO C90 header file declares functions that manipulate strings or blocks of
memory.

tar.h This POSIX header file contains header block information for the tar format.

term.h This header file contains terminal information definitions.

34 Header Files

C Library Overview

termios.h This POSIX header file contains terminal I/O system types.

time.h This ANSI header file declares functions related to times and dates and defines
the structure struct tm.

unistd.h This POSIX header file declares functions that perform input/output operations
at the operating system level. These functions use file descriptors to reference
files or devices. The function fstat is declared in the <sys/stat.h>
header file.

unix.h This header file contains definitions that aid in porting traditional UNIX code.

utime.h This POSIX header file declares the utime function and defines the structure
utimbuf that is used by it.

varargs.h This UNIX System V header file provides an alternate way of handling variable
argument lists. The equivalent ANSI header file is <stdarg.h>.

wchar.h This ISO C99 header file defines several data types includingwchart,sizet,mbstatet (an object that can hold conversion state information
necessary to convert between multibyte characters and wide characters),wctypet (a scalar type that can hold values which represent locale-specific
character classification), andwintt which is an integral type that can hold
anywchart value as well as WEOF (a character that is not in the set of
"wchar_t" characters and that is used to indicate end-of-file on an input stream).
The functions that are declared in this header file are grouped as follows:

• Wide character classification and case conversion.

• Input and output of wide characters, or multibyte characters, or both.

• Wide string numeric conversion.

• Wide string manipulation.

• Wide string data and time conversion.

• Conversion between multibyte and wide character sequences.

wctype.h This ISO C99 header file declares functions that perform characater
classification and case conversion operations on wide characters. Similar
functions for ordinary characters are declared in <ctype.h>.

Header Files 35

Watcom C Library Reference Volume 1

1.2.2 Header Files in /usr/include/sys

The following header files are present in the sys subdirectory. Their presence in this
directory indicates that they are system-dependent header files.

sys/con_msg.h
This header file contains definitions for the console driver.

sys/console.h
This header file contains "public" definitions for the console driver.

sys/debug.h This header file contains debugger data structures.

sys/dev.h This header file contains "public" device administrator definitions.

sys/dev_msg.h
This header file contains "public" device driver messages.

sys/disk.h This header file contains non-portable file system definitions.

sys/dumper.h
This header file contains the dumper file structure.

sys/fd.h This header file contains file descriptor data structures.

sys/fsys.h This header file contains non-portable file system definitions.

sys/fsysinfo.h
This header file contains declarations related to the fsysinfo() function.

sys/fsys_msg.h
This header file contains non-portable file system message definitions.

sys/inline.h Contains handy pragmas that are often used when doing low-level programming.

sys/io_msg.h
This header file contains non-portable low-level I/O definitions.

sys/irqinfo.h This header file contains structure definitions and prototypes for interrupt
request functions.

sys/kernel.h This header file contains prototypes and pragmas for kernel function calls.

36 Header Files

C Library Overview

sys/lmf.h This header file contains structure definitions for load module format.

sys/locking.h
This header file contains the manifest constants used by the locking function.

sys/magic.h This header file contains a definition for themagic structure.

sys/mman.h This header file contains declarations related to the memory mapping functions.

sys/mouse.h This header file contains structure definitions and prototypes for mouse
operations.

sys/mous_msg.h
This header file contains "private" definitions for the mouse driver.

sys/name.h This header file contains structure definitions and prototypes for QNX "name"
functions.

sys/osinfo.h This header file contains manifests, structure definitions and prototypes for
operating system information.

sys/osstat.h This header file contains manifests, structure definitions and prototypes for
operating system status information.

sys/prfx.h This header file contains file prefix prototypes.

sys/proc_msg.h
This header file contains process data structures and definitions.

sys/proxy.h This header file contains proxy process prototypes.

sys/psinfo.h This header file contains manifests and structure definitions for process
information.

sys/qioctl.h This header files contains manifests and structures for common qnx_ioctl
messages.

sys/qnx_glob.h
This header file contains a structure definition for the QNX process spawning
global data area.

sys/qnxterm.h
This header file contains terminal capability definitions.

Header Files 37

Watcom C Library Reference Volume 1

sys/sched.h This header file contains manifests and prototypes for process scheduling.

sys/seginfo.h
This header file contains segment information data structures.

sys/select.h This header file contains the prototype for the select function.

sys/sendmx.h
This header file contains a definition forsetmx and a definition of themxferentry structure.

sys/ser_msg.h
This header file contains "public" serial driver messages.

sys/sidinfo.h This header file contains session information data structures.

sys/stat.h This POSIX header file contains the declarations pertaining to file status,
including definitions for the fstat and stat functions and for the structure:

stat describes the information obtained for a directory, file or device

sys/sys_msg.h
This header file contains standard system message definitions.

sys/timeb.h This header file describes the timeb structure used in conjunction with the
ftime function.

sys/timers.h This POSIX header file contains interval timer definitions from POSIX 1003.4.

sys/times.h This POSIX header file contains process timing definitions from POSIX 1003.1.

sys/trace.h This header file contains trace data structures and definitions.

sys/tracecod.h
This header file contains the trace codes used by the Trace() functions.

sys/types.h This POSIX header file contains declarations for the types used by system-level
calls to obtain file status or time information.

sys/uio.h This header file contains declarations related to the readv() and writev()
functions.

38 Header Files

C Library Overview

sys/utsname.h
This POSIX header file contains a definition of the utsname structure and a
prototype for the uname function.

sys/vc.h This header file contains manifests and prototypes for virtual circuit functions.

sys/wait.h This POSIX header file contains manifests and prototypes for "wait" functions.

1.2.3 Header Files Provided for Compatibility

The following headers are included in order to resolve references to items found on other
operating systems. They may be helpful when porting code.

/usr/include/ftw.h

/usr/include/ioctl.h

/usr/include/libc.h

/usr/include/sgtty.h

/usr/include/shadow.h

/usr/include/termcap.h

/usr/include/termio.h

/usr/include/ustat.h

/usr/include/utmp.h

/usr/include/sys/dir.h

Header Files 39

Watcom C Library Reference Volume 1

/usr/include/sys/file.h

/usr/include/sys/ioctl.h

/usr/include/sys/statfs.h

/usr/include/sys/termio.h

/usr/include/sys/time.h

1.3 Global Data

Certain data items are used by the Watcom C/C++ run-time library and may be inspected (or
changed in some cases) by a program. The defined items are:

_amblksiz Prototype in <stdlib.h>.
This unsigned int data item contains the increment by which the "break"
pointer for memory allocation will be advanced when there is no freed block
large enough to satisfy a request to allocate a block of memory. This value may
be changed by a program at any time.

__argc Prototype in <stdlib.h>.
This int item contains the number of arguments passed to main.

__argv Prototype in <stdlib.h>.
This char ** item contains a pointer to a vector containing the actual
arguments passed to main.

daylight Prototype in <time.h>.
This unsigned int has a value of one when daylight saving time is
supported in this locale and zero otherwise. Whenever a time function is called,
the tzset function is called to set the value of the variable. The value will be
determined from the value of the TZ environment variable.

environ Prototype in <stdlib.h>.
Thischar**near data item is a pointer to an array of character pointers
to the environment strings.

40 Global Data

C Library Overview

errno Prototype in <errno.h>.
This int item contains the number of the last error that was detected. The
run-time library never resets errno to 0. Symbolic names for these errors are
found in the <errno.h> header file. See the descriptions for the perror and
strerror functions for information about the text which describes these
errors.

fltused_ The C compiler places a reference to the
fltused symbol into any module

that uses a floating-point library routine or library routine that requires
floating-point support (e.g., the use of a float or double as an argument to
the printf function).

optarg Prototype in <unistd.h>.
This char * variable contains a pointer to an option-argument parsed by the
getopt function.

opterr Prototype in <unistd.h>.
This int variable controls whether the getopt function will print error
messages. The default value is non-zero and will cause the getopt function to
print error messages on the console.

optind Prototype in <unistd.h>.
This int variable holds the index of the argument array element currently
processed by the getopt function.

optopt Prototype in <unistd.h>.
This int variable contains the unrecognized option character in case the
getopt function returns an error.

_osmajor Prototype in <stdlib.h>.
This unsigned char variable contains the major number for the version of
QNX executing on the computer. If the current version is 4.10, then the value
will be 4.

_osminor Prototype in <stdlib.h>.
This unsigned char variable contains the minor number for the version of
QNX executing on the computer. If the current version is 4.10, then the value
will be 10.

stderr Prototype in <stdio.h>.
This variable (with type FILE *) indicates the standard error stream (set to the
console by default).

stdin Prototype in <stdio.h>.

Global Data 41

Watcom C Library Reference Volume 1

This variable (with type FILE *) indicates the standard input stream (set to the
console by default).

stdout Prototype in <stdio.h>.
This variable (with type FILE *) indicates the standard output stream (set to
the console by default).

timezone Prototype in <time.h>.
This long int contains the number of seconds of time that the local time zone
is earlier than Coordinated Universal Time (UTC) (formerly known as
Greenwich Mean Time (GMT)). Whenever a time function is called, the tzset
function is called to set the value of the variable. The value will be determined
from the value of the TZ environment variable.

tzname Prototype in <time.h>.
This array of two pointers to character strings indicates the name of the standard
abbreviation for the time zone and the name of the abbreviation for the time
zone when daylight saving time is in effect. Whenever a time function is called,
the tzset function is called to set the values in the array. These values will be
determined from the value of the TZ environment variable.

1.4 The TZ Environment Variable

The TZ environment variable is used to establish the local time zone. The value of the
variable is used by various time functions to compute times relative to Coordinated Universal
Time (UTC) (formerly known as Greenwich Mean Time (GMT)).

The time on the computer should be set to UTC. Use the QNX date command if the time is
not automatically maintained by the computer hardware.

The TZ environment variable can be set (before the program is executed) by using the QNX
export command as follows:

export TZ=PST8PDT

or (during the program execution) by using the setenv or putenv library functions:

setenv("TZ", "PST8PDT", 1);
putenv("TZ=PST8PDT");

The value of the variable can be obtained by using the getenv function:

42 The TZ Environment Variable

C Library Overview

char *tzvalue;
. . .

tzvalue = getenv("TZ");

The tzset function processes the TZ environment variable and sets the global variables
daylight (indicates if daylight saving time is supported in the locale), timezone
(contains the number of seconds of time difference between the local time zone and
Coordinated Universal Time (UTC)), and tzname (a vector of two pointers to character
strings containing the standard and daylight time-zone names).

The value of the TZ environment variable should be set as follows (spaces are for clarity
only):

std offset dst offset , rule

The expanded format is as follows:

stdoffset[dst[offset][,start[/time],end[/time]]]

std, dst three or more letters that are the designation for the standard (std) or summer
(dst) time zone. Only std is required. If dst is omitted, then summer time does
not apply in this locale. Upper- and lowercase letters are allowed. Any
characters except for a leading colon (:), digits, comma (,), minus (-), plus (+),
and ASCII NUL (\0) are allowed.

offset indicates the value one must add to the local time to arrive at Coordinated
Universal Time (UTC). The offset has the form:

hh[:mm[:ss]]

The minutes (mm) and seconds (ss) are optional. The hour (hh) is required and
may be a single digit. The offset following std is required. If no offset follows
dst, summer time is assumed to be one hour ahead of standard time. One or
more digits may be used; the value is always interpreted as a decimal number.
The hour may be between 0 and 24, and the minutes (and seconds) - if present -
between 0 and 59. If preceded by a "-", the time zone will be east of the Prime
Meridian ; otherwise it will be west (which may be indicated by an optional
preceding "+").

rule indicates when to change to and back from summer time. The rule has the form:

The TZ Environment Variable 43

Watcom C Library Reference Volume 1

date/time,date/time

where the first date describes when the change from standard to summer time
occurs and the second date describes when the change back happens. Each time
field describes when, in current local time, the change to the other time is made.

The format of date may be one of the following:

Jn The Julian day n (1 <= n <= 365). Leap days are not counted.
That is, in all years - including leap years - February 28 is day 59
and March 1 is day 60. It is impossible to explicitly refer to the
occasional February 29.

n The zero-based Julian day (0 <= n <= 365). Leap years are
counted, and it is possible to refer to February 29.

Mm.n.d The d’th day (0 <= d <= 6) of week n of month m of the year (1 <=
n <= 5, 1 <= m <= 12, where week 5 means "the last d day in
month m" which may occur in the fourth or fifth week). Week 1 is
the first week in which the d’th day occurs. Day zero is Sunday.

The time has the same format as offset except that no leading sign ("+" or "-") is
allowed. The default, if time is omitted, is 02:00:00.

Whenever ctime,ctime,localtime,localtime or mktime is called, the time
zone names contained in the external variable tzname will be set as if the tzset function
had been called. The same is true if the %Z directive of strftime is used.

Some examples are:

TZ=EST5EDT
Eastern Standard Time is 5 hours earlier than Coordinated Universal Time
(UTC). Standard time and daylight saving time both apply to this locale. By
default, Eastern Daylight Time (EDT) is one hour ahead of standard time (i.e.,
EDT4). Since it is not specified, daylight saving time starts on the first Sunday
of April at 2:00 A.M. and ends on the last Sunday of October at 2:00 A.M. This
is the default when the TZ variable is not set.

TZ=EST5EDT4,M4.1.0/02:00:00,M10.5.0/02:00:00
This is the full specification for the default when the TZ variable is not set.
Eastern Standard Time is 5 hours earlier than Coordinated Universal Time
(UTC). Standard time and daylight saving time both apply to this locale.
Eastern Daylight Time (EDT) is one hour ahead of standard time. Daylight

44 The TZ Environment Variable

C Library Overview

saving time starts on the first (1) Sunday (0) of April (4) at 2:00 A.M. and ends
on the last (5) Sunday (0) of October (10) at 2:00 A.M.

TZ=PST8PDT
Pacific Standard Time is 8 hours earlier than Coordinated Universal Time
(UTC). Standard time and daylight saving time both apply to this locale. By
default, Pacific Daylight Time is one hour ahead of standard time (i.e., PDT7).
Since it is not specified, daylight saving time starts on the first Sunday of April
at 2:00 A.M. and ends on the last Sunday of October at 2:00 A.M.

TZ=NST3:30NDT1:30
Newfoundland Standard Time is 3 and 1/2 hours earlier than Coordinated
Universal Time (UTC). Standard time and daylight saving time both apply to
this locale. Newfoundland Daylight Time is 1 and 1/2 hours earlier than
Coordinated Universal Time (UTC).

TZ=Central Europe Time-2:00
Central European Time is 2 hours later than Coordinated Universal Time (UTC).
Daylight saving time does not apply in this locale.

The TZ Environment Variable 45

Watcom C Library Reference Volume 1

46 The TZ Environment Variable

2 Graphics Library

The Watcom C Graphics Library consists of a large number of functions that provide
graphical image support under DOS and QNX. This chapter provides an overview of this
support. The following topics are discussed.

• Graphics Functions

• Graphics Adapters

• Classes of Graphics Functions

1. Environment Functions
2. Coordinate System Functions
3. Attribute Functions
4. Drawing Functions
5. Text Functions
6. Graphics Text Functions
7. Image Manipulation Functions
8. Font Manipulation Functions
9. Presentation Graphics Functions

Display Functions
Analyze Functions
Utility Functions

• Graphics Header Files

2.1 Graphics Functions

Graphics functions are used to display graphical images such as lines and circles upon the
computer screen. Functions are also provided for displaying text along with the graphics
output.

Graphics Functions 47

Watcom C Library Reference Volume 1

2.2 Graphics Adapters

Support is provided for both color and monochrome screens which are connected to the
computer using any of the following graphics adapters:

• IBM Monochrome Display/Printer Adapter (MDPA)

• IBM Color Graphics Adapter (CGA)

• IBM Enhanced Graphics Adapter (EGA)

• IBM Multi-Color Graphics Array (MCGA)

• IBM Video Graphics Array (VGA)

• Hercules Monochrome Adapter

• SuperVGA adapters (SVGA) supplied by various manufacturers

2.3 Classes of Graphics Functions

The functions in the Watcom C Graphics Library can be organized into a number of classes:

Environment Functions
These functions deal with the hardware environment.

Coordinate System Functions
These functions deal with coordinate systems and mapping coordinates from one
system to another.

Attribute Functions
These functions control the display of graphical images.

Drawing Functions
These functions display graphical images such as lines and ellipses.

Text Functions
These functions deal with displaying text in both graphics and text modes.

Graphics Text Functions
These functions deal with displaying graphics text.

48 Classes of Graphics Functions

Graphics Library

Image Manipulation Functions
These functions store and retrieve screen images.

Font Manipulation Functions
These functions deal with displaying font based text.

Presentation Graphics Functions
These functions deal with displaying presentation graphics elements such as bar
charts and pie charts.

The following subsections describe these function classes in more detail. Each function in the
class is noted with a brief description of its purpose.

2.3.1 Environment Functions

These functions deal with the hardware environment. Thegetvideoconfig function
returns information about the current video mode and the hardware configuration. Thesetvideomode function selects a new video mode.

Some video modes support multiple pages of screen memory. The visual page (the one
displayed on the screen) may be different than the active page (the one to which objects are
being written).

The following functions are defined:

_getactivepage get the number of the current active graphics page
_getvideoconfig get information about the graphics configuration
_getvisualpage get the number of the current visual graphics page
_grstatus get the status of the most recently called graphics library

function
_setactivepage set the active graphics page (the page to which graphics

objects are drawn)
_settextrows set the number of rows of text displayed on the screen
_setvideomode select the video mode to be used
_setvideomoderows select the video mode and the number of text rows to be

used
_setvisualpage set the visual graphics page (the page displayed on the

screen)

Classes of Graphics Functions 49

Watcom C Library Reference Volume 1

2.3.2 Coordinate System Functions

These functions deal with coordinate systems and mapping coordinates from one system to
another. The Watcom C Graphics Library supports three coordinate systems:

1. Physical coordinates

2. View coordinates

3. Window coordinates

Physical coordinates match the physical dimensions of the screen. The physical origin,
denoted (0,0), is located at the top left corner of the screen. A pixel to the right of the origin
has a positive x-coordinate and a pixel below the origin will have a positive y-coordinate. The
x- and y-coordinates will never be negative values.

The view coordinate system can be defined upon the physical coordinate system by moving
the origin from the top left corner of the screen to any physical coordinate (see thesetvieworg function). In the view coordinate system, negative x- and y-coordinates are
allowed. The scale of the view and physical coordinate systems is identical (both are in terms
of pixels).

The window coordinate system is defined in terms of a range of user-specified values (see thesetwindow function). These values are scaled to map onto the physical coordinates of the
screen. This allows for consistent pictures regardless of the resolution (number of pixels) of
the screen.

The following functions are defined:

_getcliprgn get the boundary of the current clipping region
_getphyscoord get the physical coordinates of a point in view coordinates
_getviewcoord get the view coordinates of a point in physical coordinates
_getviewcoord_w get the view coordinates of a point in window coordinates
_getviewcoord_wxy get the view coordinates of a point in window coordinates
_getwindowcoord get the window coordinates of a point in view coordinates
_setcliprgn set the boundary of the clipping region
_setvieworg set the position to be used as the origin of the view

coordinate system
_setviewport set the boundary of the clipping region and the origin of

the view coordinate system
_setwindow define the boundary of the window coordinate system

50 Classes of Graphics Functions

Graphics Library

2.3.3 Attribute Functions

These functions control the display of graphical images such as lines and circles. Lines and
figures are drawn using the current color (see thesetcolor function), the current line
style (see thesetlinestyle function), the current fill mask (see thesetfillmask
function), and the current plotting action (see thesetplotaction function).

The following functions are defined:

_getarcinfo get the endpoints of the most recently drawn arc
_getbkcolor get the background color
_getcolor get the current color
_getfillmask get the current fill mask
_getlinestyle get the current line style
_getplotaction get the current plotting action
_remapallpalette assign colors for all pixel values
_remappalette assign color for one pixel value
_selectpalette select a palette
_setbkcolor set the background color
_setcolor set the current color
_setfillmask set the current fill mask
_setlinestyle set the current line style
_setplotaction set the current plotting action

2.3.4 Drawing Functions

These functions display graphical images such as lines and ellipses. Functions exist to draw
straight lines (see the
lineto functions), rectangles (see therectangle functions),

polygons (see thepolygon functions), ellipses (see theellipse functions), elliptical
arcs (see thearc functions) and pie-shaped wedges from ellipses (see thepie functions).

These figures are drawn using the attributes described in the previous section. The functions
ending withw orwxy use the window coordinate system; the others use the view
coordinate system.

Classes of Graphics Functions 51

Watcom C Library Reference Volume 1

The following functions are defined:

_arc draw an arc
_arc_w draw an arc using window coordinates
_arc_wxy draw an arc using window coordinates
_clearscreen clear the screen and fill with the background color
_ellipse draw an ellipse
_ellipse_w draw an ellipse using window coordinates
_ellipse_wxy draw an ellipse using window coordinates
_floodfill fill an area of the screen with the current color
_floodfill_w fill an area of the screen in window coordinates with the

current color
_getcurrentposition get the coordinates of the current output position
_getcurrentposition_w get the window coordinates of the current output position
_getpixel get the color of the pixel at the specified position
_getpixel_w get the color of the pixel at the specified position in

window coordinates
_lineto draw a line from the current position to a specified

position
_lineto_w draw a line from the current position to a specified

position in window coordinates
_moveto set the current output position
_moveto_w set the current output position using window coordinates
_pie draw a wedge of a "pie"
_pie_w draw a wedge of a "pie" using window coordinates
_pie_wxy draw a wedge of a "pie" using window coordinates
_polygon draw a polygon
_polygon_w draw a polygon using window coordinates
_polygon_wxy draw a polygon using window coordinates
_rectangle draw a rectangle
_rectangle_w draw a rectangle using window coordinates
_rectangle_wxy draw a rectangle using window coordinates
_setpixel set the color of the pixel at the specified position
_setpixel_w set the color of the pixel at the specified position in

window coordinates

2.3.5 Text Functions

These functions deal with displaying text in both graphics and text modes. This type of text
output can be displayed in only one size.

This text is displayed using theouttext andoutmem functions. The output position for
text follows the last text that was displayed or can be reset (see thesettextposition

52 Classes of Graphics Functions

Graphics Library

function). Text windows can be created (see thesettextwindow function) in which the
text will scroll. Text is displayed with the current text color (see thesettextcolor
function).

The following functions are defined:

_clearscreen clear the screen and fill with the background color
_displaycursor determine whether the cursor is to be displayed after a

graphics function completes execution
_getbkcolor get the background color
_gettextcolor get the color used to display text
_gettextcursor get the shape of the text cursor
_gettextposition get the current output position for text
_gettextwindow get the boundary of the current text window
_outmem display a text string of a specified length
_outtext display a text string
_scrolltextwindow scroll the contents of the text window
_setbkcolor set the background color
_settextcolor set the color used to display text
_settextcursor set the shape of the text cursor
_settextposition set the output position for text
_settextwindow set the boundary of the region used to display text
_wrapon permit or disallow wrap-around of text in a text window

2.3.6 Graphics Text Functions

These functions deal with displaying graphics text. Graphics text is displayed as a sequence
of line segments, and can be drawn in different sizes (see thesetcharsize function),
with different orientations (see thesettextorient function) and alignments (see thesettextalign function). The functions ending withw use the window coordinate
system; the others use the view coordinate system.

The following functions are defined:

_gettextextent get the bounding rectangle for a graphics text string
_gettextsettings get information about the current settings used to display

graphics text
_grtext display graphics text
_grtext_w display graphics text using window coordinates
_setcharsize set the character size used to display graphics text
_setcharsize_w set the character size in window coordinates used to

display graphics text
_setcharspacing set the character spacing used to display graphics text

Classes of Graphics Functions 53

Watcom C Library Reference Volume 1

_setcharspacing_w set the character spacing in window coordinates used to
display graphics text

_settextalign set the alignment used to display graphics text
_settextorient set the orientation used to display graphics text
_settextpath set the path used to display graphics text

2.3.7 Image Manipulation Functions

These functions are used to transfer screen images. Thegetimage function transfers a
rectangular image from the screen into memory. Theputimage function transfers an
image from memory back onto the screen. The functions ending withw orwxy use the
window coordinate system; the others use the view coordinate system.

The following functions are defined:

_getimage store an image of an area of the screen into memory
_getimage_w store an image of an area of the screen in window

coordinates into memory
_getimage_wxy store an image of an area of the screen in window

coordinates into memory
_imagesize get the size of a screen area
_imagesize_w get the size of a screen area in window coordinates
_imagesize_wxy get the size of a screen area in window coordinates
_putimage display an image from memory on the screen
_putimage_w display an image from memory on the screen using

window coordinates

2.3.8 Font Manipulation Functions

These functions are for the display of fonts compatible with Microsoft Windows. Fonts are
contained in files with an extension of .FON. Before font based text can be displayed, the
fonts must be registered with theregisterfonts function, and a font must be selected
with thesetfont function.

54 Classes of Graphics Functions

Graphics Library

The following functions are defined:

_getfontinfo get information about the currently selected font
_getgtextextent get the length in pixels of a text string
_getgtextvector get the current value of the font text orientation vector
_outgtext display a string of text in the current font
_registerfonts initialize the font graphics system
_setfont select a font from among the registered fonts
_setgtextvector set the font text orientation vector
_unregisterfonts frees memory allocated by the font graphics system

2.3.9 Presentation Graphics Functions

These functions provide a system for displaying and manipulating presentation graphics
elements such as bar charts and pie charts. The presentation graphics functions can be further
divided into three classes:

Display Functions
These functions are for the initialization of the presentation graphics system and
the displaying of charts.

Analyze Functions
These functions calculate default values for chart elements without actually
displaying the chart.

Utility Functions
These functions provide additional support to control the appearance of
presentation graphics elements.

The following subsections describe these function classes in more detail. Each function in the
class is noted with a brief description of its purpose.

2.3.9.1 Display Functions

These functions are for the initialization of the presentation graphics system and the
displaying of charts. Thepginitchart function initializes the system and should be the
first presentation graphics function called. The single-series functions display a single set of
data on a chart; the multi-series functions (those ending with ms) display several sets of data
on the same chart.

Classes of Graphics Functions 55

Watcom C Library Reference Volume 1

The following functions are defined:

_pg_chart display a bar, column or line chart
_pg_chartms display a multi-series bar, column or line chart
_pg_chartpie display a pie chart
_pg_chartscatter display a scatter chart
_pg_chartscatterms display a multi-series scatter chart
_pg_defaultchart initialize the chart environment for a specific chart type
_pg_initchart initialize the presentation graphics system

2.3.9.2 Analyze Functions

These functions calculate default values for chart elements without actually displaying the
chart. The functions ending with ms analyze multi-series charts; the others analyze
single-series charts.

The following functions are defined:

_pg_analyzechart analyze a bar, column or line chart
_pg_analyzechartms analyze a multi-series bar, column or line chart
_pg_analyzepie analyze a pie chart
_pg_analyzescatter analyze a scatter chart
_pg_analyzescatterms analyze a multi-series scatter chart

2.3.9.3 Utility Functions

These functions provide additional support to control the appearance of presentation graphics
elements.

The following functions are defined:

_pg_getchardef get bit-map definition for a specific character
_pg_getpalette get presentation graphics palette (colors, line styles, fill

patterns and plot characters)
_pg_getstyleset get presentation graphics style-set (line styles for window

borders and grid lines)
_pg_hlabelchart display text horizontally on a chart
_pg_resetpalette reset presentation graphics palette to default values
_pg_resetstyleset reset presentation graphics style-set to default values
_pg_setchardef set bit-map definition for a specific character
_pg_setpalette set presentation graphics palette (colors, line styles, fill

patterns and plot characters)

56 Classes of Graphics Functions

Graphics Library

_pg_setstyleset set presentation graphics style-set (line styles for window
borders and grid lines)

_pg_vlabelchart display text vertically on a chart

2.4 Graphics Header Files

All program modules which use the Graphics Library should include the header file
graph.h. This file contains prototypes for all the functions in the library as well as the
structures and constants used by them.

Modules using the presentation graphics functions should also include the header file
pgchart.h.

Graphics Header Files 57

Watcom C Library Reference Volume 1

58 Graphics Header Files

3 Library Functions and Macros

Each of the functions or macros in the C Library is described in this chapter. Each description
consists of a number of subsections:

Synopsis: This subsection gives the header files that should be included within a source file that
references the function or macro. It also shows an appropriate declaration for the function or
for a function that could be substituted for a macro. This declaration is not included in your
program; only the header file(s) should be included.

When a pointer argument is passed to a function and that function does not modify the item
indicated by that pointer, the argument is shown with const before the argument. For
example,

const char *string

indicates that the array pointed at by string is not changed.

Constraints: This subsection describes Runtime-constraints for Safer C Library functions.

Safer C: This subsection points to the Safer C version of the described "unsafe" function.

Description: This subsection is a description of the function or macro.

Returns: This subsection describes the return value (if any) for the function or macro.

Errors: This subsection describes the possible errno values.

See Also: This optional subsection provides a list of related functions or macros.

Example: This optional subsection consists of one or more examples of the use of the function. The
examples are often just fragments of code (not complete programs) for illustration purposes.

Classification: This subsection provides an indication of where the function or macro is commonly found.
The following notation is used:

Library Functions and Macros 59

Watcom C Library Reference Volume 1

ANSI These functions or macros are defined by the ANSI/ISO C standard.

Intel These functions or macros are neither ANSI/ISO nor POSIX. It
performs a function related to the Intel x86 architecture. It may be found
in other implementations of C for personal computers using Intel chips.
Use these functions with caution, if portability is a consideration.

POSIX 1003.1 The functions or macros are not defined by the ANSI/ISO C standard.
These functions are specified in the document IEEE Standard Portable
Operating System Interface for Computer Environments (IEEE Draft
Standard 1003.1-1990).

POSIX 1003.2 These functions or macros are not defined by the ANSI/ISO C standard.
These functions are specified in the document Shell and Utility
Application Interface for Computer Operating System Environments
(IEEE Computer Society Working Group 1003.2).

POSIX 1003.4 These functions or macros are not defined by the ANSI/ISO C standard.
These functions are specified in the document Realtime Extensions for
Computer Operating System Environments (IEEE Computer Society
Working Group 1003.4).

QNX These functions or macros are neither ANSI/ISO nor POSIX. They
perform a function related to QNX. They may be found in other
implementations of C for personal computers with QNX. Use these
functions with caution, if portability is a consideration.

UNIX These functions exist on some UNIX systems but are outside of the
POSIX or ANSI/ISO standards.

WATCOM These functions or macros are neither ANSI/ISO nor POSIX. They may
be found in other implementations of the C language, but caution should
be used if portability is a consideration.

TR 24731 These functions are "safer" versions of normal C library functions. They
perform more checks on parameters and should be used in preference
over their "unsafe" version.

Systems: This subsection provides an indication of where the function or macro is supported. The
following notation is used:

60 Library Functions and Macros

Library Functions and Macros

All This function is available on all systems (we do not include Netware or
DOS/PM in this category).

DOS This function is available on both 16-bit DOS and 32-bit extended DOS.

DOS/16 This function is available on 16-bit, real-mode DOS.

DOS/32 This function is available on 32-bit, protected-mode extended DOS.

DOS/PM This 16-bit DOS protected-mode function is supported under Phar Lap’s
286|DOS-Extender "RUN286". The function is found in one of
Watcom’s 16-bit protected-mode DOS libraries (DOSPM*.LIB under
the 16-bit OS2 subdirectory).

MACRO This function is implemented as a macro (#define) on all systems.

Math This function is a math function. Math functions are available on all
systems.

Netware This function is available on the 32-bit Novell Netware operating
system.

OS/2 1.x This function is available on IBM OS/2 1.x, a 16-bit protected-mode
system for Intel 80286 and upwards compatible systems.

When "(MT)" appears after OS/2, it refers to the CLIBMTL library
which supports multi-threaded applications.

When "(DL)" appears after OS/2, it refers to the CLIBDLL library
which supports creation of Dynamic Link Libraries.

When "(all)" appears after "OS/2 1", it means all versions of the OS/2
1.x libraries.

If a function is missing from the OS/2 library, it may be found in
Watcom’s 16-bit protected-mode DOS libraries (DOSPM*.LIB) for Phar
Lap’s 286|DOS-Extender (RUN286).

OS/2-32 This function is available on 32-bit IBM OS/2, a protected-mode system
for Intel 80386 and upwards compatible systems.

QNX This function is available on QNX Software Systems’ 16 or 32-bit
operating systems.

Library Functions and Macros 61

Watcom C Library Reference Volume 1

QNX/16 This function is available on QNX Software Systems’ 16-bit operating
system.

QNX/32 This function is available on QNX Software Systems’ 32-bit operating
system.

Windows This function is available on 16-bit, protected-mode Windows 3.x.

Win386 This function is available on Microsoft Windows 3.x, using Watcom’s
Windows Extender for 32-bit protected-mode applications running on
Intel 386 or upward compatible systems.

Win32 This function is available on 32-bit Microsoft Windows platforms
(Windows 95, Windows 98, Windows NT, Windows 2000, etc.). It may
also be available for Windows 3.x using Win32s support.

62 Library Functions and Macros

abort

Synopsis: #include <stdlib.h>
void abort(void);

Description: The abort function raises the signal SIGABRT. The default action for SIGABRT is to
terminate program execution, returning control to the process that started the calling program
(usually the operating system). The status unsuccessful termination is returned to the
invoking process by means of the function call raise(SIGABRT). Under QNX, the
status value is 12.

Returns: The abort function does not return to its caller.

See Also: atexit,
bgetcmd, close, exec Functions, exit,

Exit,exit, getcmd,
getenv, main, onexit, putenv, signal, spawn Functions, system, wait

Example: #include <stdlib.h>

void main()
{intmajorerror=1;if(majorerror)

abort();
}

Classification: ANSI

Systems: All, Netware

Library Functions and Macros 63

abort_handler_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdlib.h>voidaborthandlers(

const char * restrict msg,
void * restrict ptr,errnoterror);

Description: Theaborthandlers function may be passed as an argument to thesetconstrainthandlers function. It writes a message on the standard error
stream in the following format:

Runtime-constraint violation: <msg>

Theaborthandlers function then calls the abort function.

Returns: Theaborthandlers function does not return to its caller.

See Also:
ignorehandlers,setconstrainthandlers

Example:
#defineSTDCWANTLIBEXT11
#include <stdlib.h>
#include <stdio.h>

void main(void)
{constrainthandlertoldhandler;oldhandler=setconstrainthandlers(aborthandlers);if(getenvs(NULL,NULL,0,NULL)){printf("getenvsfailed\n");

}setconstrainthandlers(oldhandler);
}

produces the following:Runtime�constraintviolation:getenvs,name==NULL.
ABNORMAL TERMINATION

Classification: TR 24731

Systems: All, Netware

64 Library Functions and Macros

abs

Synopsis: #include <stdlib.h>
int abs(int j);

Description: The abs function returns the absolute value of its integer argument j.

Returns: The abs function returns the absolute value of its argument.

See Also: labs, llabs, imaxabs, fabs

Example: #include <stdio.h>
#include <stdlib.h>

void main(void)
{

printf("%d %d %d\n", abs(-5), abs(0), abs(5));
}

produces the following:

5 0 5

Classification: ISO C90

Systems: All, Netware

Library Functions and Macros 65

acos

Synopsis: #include <math.h>
double acos(double x);

Description: The acos function computes the principal value of the arccosine of x. A domain error
occurs for arguments not in the range [-1,1].

Returns: The acos function returns the arccosine in the range [0,π]. When the argument is outside
the permissible range, the matherr function is called. Unless the default matherr
function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN
error" diagnostic message using the stderr stream.

See Also: asin, atan, atan2, matherr

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", acos(.5));
}

produces the following:

1.047197

Classification: ANSI

Systems: Math

66 Library Functions and Macros

acosh

Synopsis: #include <math.h>
double acosh(double x);

Description: The acosh function computes the inverse hyperbolic cosine of x. A domain error occurs if
the value of x is less than 1.0.

Returns: The acosh function returns the inverse hyperbolic cosine value. When the argument is
outside the permissible range, the matherr function is called. Unless the default matherr
function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN
error" diagnostic message using the stderr stream.

See Also: asinh, atanh, cosh, matherr

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", acosh(1.5));
}

produces the following:

0.962424

Classification: WATCOM

Systems: Math

Library Functions and Macros 67

alloca

Synopsis: #include <malloc.h>void*alloca(sizetsize);
Description: The alloca function allocates space for an object of size bytes from the stack. The

allocated space is automatically discarded when the current function exits. The alloca
function should not be used in an expression that is an argument to a function.

Returns: The alloca function returns a pointer to the start of the allocated memory. The return
value is NULL if there is insufficient stack space available.

See Also: calloc, malloc, stackavail

Example: #include <stdio.h>
#include <string.h>
#include <malloc.h>FILE*openerrfile(char*);
void main()

{
FILE *fp;fp=openerrfile("alloca");
if(fp == NULL) {

printf("Unable to open error file\n");
} else {

fclose(fp);
}

}FILE*openerrfile(char*name)
{

char *buffer;
/* allocate temp buffer for file name */
buffer = (char *) alloca(strlen(name) + 5);
if(buffer) {

sprintf(buffer, "%s.err", name);
return(fopen(buffer, "w"));

}
return((FILE *) NULL);

}

Classification: WATCOM

Systems: MACRO

68 Library Functions and Macros

_arc Functions

Synopsis: #include <graph.h>shortFARarc(shortx1,shorty1,
short x2, short y2,
short x3, short y3,
short x4, short y4);shortFARarcw(doublex1,doubley1,

double x2, double y2,
double x3, double y3,
double x4, double y4);shortFARarcwxy(structwxycoordFAR*p1,structwxycoordFAR*p2,structwxycoordFAR*p3,structwxycoordFAR*p4);

Description: Thearc functions draw elliptical arcs. Thearc function uses the view coordinate
system. Thearcw andarcwxy functions use the window coordinate system.

The center of the arc is the center of the rectangle established by the points (x1,y1) and
(x2,y2). The arc is a segment of the ellipse drawn within this bounding rectangle. The
arc starts at the point on this ellipse that intersects the vector from the centre of the ellipse to
the point (x3,y3). The arc ends at the point on this ellipse that intersects the vector from
the centre of the ellipse to the point (x4,y4). The arc is drawn in a counter-clockwise
direction with the current plot action using the current color and the current line style.

The following picture illustrates the way in which the bounding rectangle and the vectors
specifying the start and end points are defined.

Library Functions and Macros 69

_arc Functions

When the coordinates (x1,y1) and (x2,y2) establish a line or a point (this happens
when one or more of the x-coordinates or y-coordinates are equal), nothing is drawn.

The current output position for graphics output is set to be the point at the end of the arc that
was drawn.

Returns: Thearc functions return a non-zero value when the arc was successfully drawn; otherwise,
zero is returned.

See Also: ellipse,pie,rectangle,getarcinfo,setcolor,setlinestyle,setplotaction

70 Library Functions and Macros

_arc Functions

Example: #include <conio.h>
#include <graph.h>

main()
{ setvideomode(VRES16COLOR);arc(120,90,520,390,500,20,450,460);

getch();setvideomode(DEFAULTMODE);
}

produces the following:

Classification: PC Graphics

Systems: arc�DOS,QNXarcw�DOS,QNXarcwxy�DOS,QNX
Library Functions and Macros 71

asctime Functions

Synopsis: #include <time.h>
char * asctime(const struct tm *timeptr);char*asctime(conststructtm*timeptr,char*buf);wchart*wasctime(conststructtm*timeptr);wchart*wasctime(conststructtm*timeptr,wchart*buf);
struct tm {inttmsec;/*secondsaftertheminute��[0,61]*/inttmmin;/*minutesafterthehour��[0,59]*/inttmhour;/*hoursaftermidnight��[0,23]*/inttmmday;/*dayofthemonth��[1,31]*/inttmmon;/*monthssinceJanuary��[0,11]*/inttmyear;/*yearssince1900 */inttmwday;/*dayssinceSunday��[0,6]*/inttmyday;/*dayssinceJanuary1��[0,365]*/inttmisdst;/*DaylightSavingsTimeflag*/
};

Safer C: The Safer C Library extension provides the function which is a safer alternative to asctime.
This newerasctimes function is recommended to be used instead of the traditional
"unsafe" asctime function.

Description: The asctime functions convert the time information in the structure pointed to by timeptr
into a string containing exactly 26 characters. This string has the form shown in the
following example:

Sat Mar 21 15:58:27 1987\n\0

All fields have a constant width. The new-line character ’\n’ and the null character ’\0’
occupy the last two positions of the string.

The ANSI function asctime places the result string in a static buffer that is re-used each time
asctime or ctime is called. The non-ANSI functionasctime places the result string in
the buffer pointed to by buf.

Thewasctime andwasctime functions are identical to their asctime andasctime counterparts except that they deal with wide-character strings.

Returns: The asctime functions return a pointer to the character string result.

See Also: clock, ctime, difftime, gmtime, localtime, mktime, strftime, time,
tzset

72 Library Functions and Macros

asctime Functions

Example: #include <stdio.h>
#include <time.h>

void main()
{structtmtimeofday;timetltime;

auto char buf[26];

time(<ime);localtime(<ime,&timeofday);
printf("Date and time is: %s\n",asctime(&timeofday,buf));

}

produces the following:

Date and time is: Sat Mar 21 15:58:27 1987

Classification: asctime is ANSI, _asctime is not ANSI, _wasctime is not ANSI, __wasctime is not ANSI

Systems: asctime - All, Netwareasctime�All,Netwarewasctime�Allwasctime�All

Library Functions and Macros 73

asin

Synopsis: #include <math.h>
double asin(double x);

Description: The asin function computes the principal value of the arcsine of x. A domain error occurs
for arguments not in the range [-1,1].

Returns: The asin function returns the arcsine in the range [-π/2,π/2]. When the argument is outside
the permissible range, the matherr function is called. Unless the default matherr
function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN
error" diagnostic message using the stderr stream.

See Also: acos, atan, atan2, matherr

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", asin(.5));
}

produces the following:

0.523599

Classification: ANSI

Systems: Math

74 Library Functions and Macros

asinh

Synopsis: #include <math.h>
double asinh(double x);

Description: The asinh function computes the inverse hyperbolic sine of x.

Returns: The asinh function returns the inverse hyperbolic sine value.

See Also: acosh, atanh, sinh, matherr

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", asinh(0.5));
}

produces the following:

0.481212

Classification: WATCOM

Systems: Math

Library Functions and Macros 75

assert

Synopsis: #include <assert.h>
void assert(int expression);

Description: The assert macro prints a diagnostic message upon the stderr stream and terminates
the program if expression is false (0). The diagnostic message has the form

Assertion failed: expression, file filename, line linenumber

where filename is the name of the source file and linenumber is the line number of the
assertion that failed in the source file. Filename and linenumber are the values of the
preprocessing macrosFILE and

LINE
 respectively. No action is taken if

expression is true (non-zero).

The assert macro is typically used during program development to identify program logic
errors. The given expression should be chosen so that it is true when the program is
functioning as intended. After the program has been debugged, the special "no debug"
identifier NDEBUG can be used to remove assert calls from the program when it is
re-compiled. If NDEBUG is defined (with any value) with a -d command line option or with
a #define directive, the C preprocessor ignores all assert calls in the program source.

Returns: The assert macro does not return a value.

Example: #include <stdio.h>
#include <assert.h>voidprocessstring(char*string)

{
/* use assert to check argument */
assert(string != NULL);
assert(*string != ’\0’);
/* rest of code follows here */

}

void main()
{processstring("hello");processstring("");
}

Classification: ANSI

Systems: MACRO

76 Library Functions and Macros

atan

Synopsis: #include <math.h>
double atan(double x);

Description: The atan function computes the principal value of the arctangent of x.

Returns: The atan function returns the arctangent in the range (-π/2,π/2).

See Also: acos, asin, atan2

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", atan(.5));
}

produces the following:

0.463648

Classification: ANSI

Systems: Math

Library Functions and Macros 77

atan2

Synopsis: #include <math.h>
double atan2(double y, double x);

Description: The atan2 function computes the principal value of the arctangent of y/x, using the signs of
both arguments to determine the quadrant of the return value. A domain error occurs if both
arguments are zero.

Returns: The atan2 function returns the arctangent of y/x, in the range (-π,π). When the argument is
outside the permissible range, the matherr function is called. Unless the default matherr
function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN
error" diagnostic message using the stderr stream.

See Also: acos, asin, atan, matherr

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", atan2(.5, 1.));
}

produces the following:

0.463648

Classification: ANSI

Systems: Math

78 Library Functions and Macros

atanh

Synopsis: #include <math.h>
double atanh(double x);

Description: The atanh function computes the inverse hyperbolic tangent of x. A domain error occurs if
the value of x is outside the range (-1,1).

Returns: The atanh function returns the inverse hyperbolic tangent value. When the argument is
outside the permissible range, the matherr function is called. Unless the default matherr
function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN
error" diagnostic message using the stderr stream.

See Also: acosh, asinh, matherr, tanh

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", atanh(0.5));
}

produces the following:

0.549306

Classification: WATCOM

Systems: Math

Library Functions and Macros 79

atexit

Synopsis: #include <stdlib.h>
int atexit(void (*func)(void));

Description: The atexit function is passed the address of function func to be called when the program
terminates normally. Successive calls to atexit create a list of functions that will be
executed on a "last-in, first-out" basis. No more than 32 functions can be registered with the
atexit function.

The functions have no parameters and do not return values.

Returns: The atexit function returns zero if the registration succeeds, non-zero if it fails.

See Also: abort,exit, exit
Example: #include <stdio.h>

#include <stdlib.h>

void main()
{

extern void func1(void), func2(void), func3(void);

atexit(func1);
atexit(func2);
atexit(func3);
printf("Do this first.\n");

}

void func1(void) { printf("last.\n"); }

void func2(void) { printf("this "); }

void func3(void) { printf("Do "); }

produces the following:

Do this first.
Do this last.

Classification: ANSI

Systems: All, Netware

80 Library Functions and Macros

atof, _wtof

Synopsis: #include <stdlib.h>
double atof(const char *ptr);doublewtof(constwchart*ptr);

Description: The atof function converts the string pointed to by ptr to double representation. It is
equivalent to

strtod(ptr, (char **)NULL)

Thewtof function is identical to atof except that it accepts a wide-character string
argument. It is equivalent to

 wcstod(ptr,(wchart**)NULL)
Returns: The atof function returns the converted value. Zero is returned when the input string

cannot be converted. In this case, errno is not set. When an error has occurred, errno
contains a value indicating the type of error that has been detected.

See Also: sscanf, strtod

Example: #include <stdlib.h>

void main()
{

double x;

x = atof("3.1415926");
}

Classification: atof is ANSI, _wtof is not ANSI

Systems: atof - Mathwtof�Math

Library Functions and Macros 81

atoi, _wtoi

Synopsis: #include <stdlib.h>
int atoi(const char *ptr);intwtoi(constwchart*ptr);

Description: The atoi function converts the string pointed to by ptr to int representation.

Thewtoi function is identical to atoi except that it accepts a wide-character string
argument.

Returns: The atoi function returns the converted value.

See Also: atol, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoul,
strtoull, strtoimax, strtoumax, ultoa, ulltoa, utoa

Example: #include <stdlib.h>

void main()
{

int x;

x = atoi("-289");
}

Classification: atoi is ANSI, _wtoi is not ANSI

Systems: atoi - All, Netwarewtoi�All

82 Library Functions and Macros

atol, _wtol

Synopsis: #include <stdlib.h>
long int atol(const char *ptr);longintwtol(constwchart*ptr);

Description: The atol function converts the string pointed to by ptr to long int representation.

Thewtol function is identical to atol except that it accepts a wide-character string
argument.

Returns: The atol function returns the converted value.

See Also: atoi, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoul,
strtoull, strtoimax, strtoumax, ultoa, ulltoa, utoa

Example: #include <stdlib.h>

void main()
{

long int x;

x = atol("-289");
}

Classification: atol is ANSI, _wtol is not ANSI

Systems: atol - All, Netwarewtol�All

Library Functions and Macros 83

atoll, _wtoll

Synopsis: #include <stdlib.h>
long long int atoll(const char *ptr);longlongintwtoll(constwchart*ptr);

Description: The atoll function converts the string pointed to by ptr to long long int
representation.

Thewtoll function is identical to atoll except that it accepts a wide-character string
argument.

Returns: The atoll function returns the converted value.

See Also: atoi, atol, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoul,
strtoull, strtoimax, strtoumax, ultoa, ulltoa, utoa

Example: #include <stdlib.h>

void main()
{

long int x;

x = atoll("-289356768201");
}

Classification: atoll is ANSI, _wtoll is not ANSI

Systems: atoll - All, Netwarewtoll�All

84 Library Functions and Macros

_atouni

Synopsis: #include <stdlib.h>wchart*atouni(wchart*wcs,constchar*sbcs);
Description: Theatouni function converts the string pointed to by sbcs to a wide-character string and

places it in the buffer pointed to by wcs.

The conversion ends at the first null character.

Returns: Theatouni function returns the first argument as a result.

See Also: atoi, atol, itoa, ltoa, strtod, strtol, strtoul, ultoa, utoa

Example: #include <stdlib.h>

void main()
{wchartwcs[12];atouni(wcs,"Helloworld");
}

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 85

basename

Synopsis: #include <libgen.h>
char *basename(char *path);

Description: The basename function returns a pointer to the final component of a pathname pointed to
by the path argument, deleting trailing path separators.

If the string pointed to by path consists entirely of path separators, a string consisting of
single path separator is returned.

If path is a null pointer or points to an empty string, a pointer to the string "." is returned.

The basename function may modify the string pointed to by path and may return a pointer
to static storage that may be overwritten by a subsequent call to basename.

The basename function is not re-entrant or thread-safe.

Returns: The basename function returns a pointer to the final component of path.

See Also: dirname

Example: #include <stdio.h>
#include <libgen.h>

int main(void)
{

puts(basename("/usr/lib"));
puts(basename("//usr//lib//"));
puts(basename("///"));
puts(basename("foo"));
puts(basename(NULL));
return(0);

}

produces the following:

lib
lib
/
foo
.

Classification: POSIX

86 Library Functions and Macros

basename

Systems: All, Netware

Library Functions and Macros 87

bessel Functions

Synopsis: #include <math.h>
double j0(double x);
double j1(double x);
double jn(int n, double x);
double y0(double x);
double y1(double x);
double yn(int n, double x);

Description: Functions j0, j1, and jn return Bessel functions of the first kind.

Functions y0, y1, and yn return Bessel functions of the second kind. The argument x must
be positive. If x is negative,matherr will be called to print a DOMAIN error message to
stderr, set errno to EDOM, and return the value�HUGEVAL. This error handling can
be modified by using the matherr routine.

Returns: These functions return the result of the desired Bessel function of x.

See Also: matherr

Example: #include <stdio.h>
#include <math.h>

void main()
{

double x, y, z;

x = j0(2.4);
y = y1(1.58);
z = jn(3, 2.4);
printf("j0(2.4) = %f, y1(1.58) = %f\n", x, y);
printf("jn(3,2.4) = %f\n", z);

}

Classification: WATCOM

Systems: j0 - Math
j1 - Math
jn - Math
y0 - Math
y1 - Math
yn - Math

88 Library Functions and Macros

bcmp

Synopsis: #include <string.h>intbcmp(constvoid*s1,constvoid*s2,sizetn);
Description: The bcmp function compares the byte string pointed to by s1 to the string pointed to by s2.

The number of bytes to compare is specified by n. Null characters may be included in the
comparision.

Note that this function is similar to the ANSI memcmp function but just tests for equality
(new code should use the ANSI function).

Returns: The bcmp function returns zero if the byte strings are identical otherwise it returns 1.

See Also: bcopy, bzero, memcmp, strcmp

Example: #include <stdio.h>
#include <string.h>

void main()
{

if(bcmp("Hello there", "Hello world", 6)) {
printf("Not equal\n");

} else {
printf("Equal\n");

}
}

produces the following:

Equal

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 89

bcopy

Synopsis: #include <string.h>voidbcopy(constvoid*src,void*dst,sizetn);
Description: The bcopy function copies the byte string pointed to by src (including any null characters)

into the array pointed to by dst. The number of bytes to copy is specified by n. Copying of
overlapping objects is guaranteed to work properly.

Note that this function is similar to the ANSI memmove function but the order of arguments
is different (new code should use the ANSI function).

Returns: The bcopy function has no return value.

See Also: bcmp, bzero, memmove, strcpy

Example: #include <stdio.h>
#include <string.h>

void main()
{

auto char buffer[80];

bcopy("Hello ", buffer, 6);
bcopy("world", &buffer[6], 6);
printf("%s\n", buffer);

}

produces the following:

Hello world

Classification: WATCOM

Systems: All, Netware

90 Library Functions and Macros

_bfreeseg

Synopsis: #include <malloc.h>intbfreeseg(segmentseg);
Description: The
bfreeseg function frees a based-heap segment.

The argument seg indicates the segment returned by an earlier call to
bheapseg.

Returns: The
bfreeseg function returns 0 if successful and -1 if an error occurred.

See Also:
bcalloc,bexpand,bfree,bheapseg,bmalloc,brealloc

Example: #include <stdio.h>
#include <stdlib.h>
#include <malloc.h>

struct list {structlistbased(self)*next;
int value;

};

void main()
{

int i;segmentseg;structlistbased(seg)*head;structlistbased(seg)*p;
/* allocate based heap */seg=bheapseg(1024);if(seg==NULLSEG){

printf("Unable to allocate based heap\n");
exit(1);

}

Library Functions and Macros 91

_bfreeseg

/* create a linked list in the based heap */
head = 0;
for(i = 1; i < 10; i++) {p=bmalloc(seg,sizeof(structlist));if(p==NULLOFF){printf("bmallocfailed\n");

break;
}
p->next = head;
p->value = i;
head = p;

}

/* traverse the linked list, printing out values */
for(p = head; p != 0; p = p->next) {

printf("Value = %d\n", p->value);
}

/* free all the elements of the linked list */
for(; p = head;) {

head = p->next;bfree(seg,p);
}
/* free the based heap */bfreeseg(seg);

}

Classification: WATCOM

Systems: DOS/16, Windows, QNX/16, OS/2 1.x(all)

92 Library Functions and Macros

_bgetcmd

Synopsis: #include <process.h>intbgetcmd(char*cmdline,intlen);
Description: The
bgetcmd function causes the command line information, with the program name

removed, to be copied to cmd_line. The argument len specifies the size of cmd_line. The
information is terminated with a ’\0’ character. This provides a method of obtaining the
original parameters to a program as a single string of text.

This information can also be obtained by examining the vector of program parameters passed
to the main function in the program.

Returns: The number of bytes required to store the entire command line, excluding the terminating
null character, is returned.

See Also: abort, atexit, close, exec Functions, exit,
Exit,exit, getcmd, getenv,

main, onexit, putenv, signal, spawn Functions, system, wait

Example: Suppose a program were invoked with the command line

myprog arg-1 (my stuff) here

where that program contains

#include <stdio.h>
#include <stdlib.h>
#include <process.h>

void main()
{

char *cmdline;
int cmdlen;cmdlen=bgetcmd(NULL,0)+1;
cmdline = malloc(cmdlen);
if(cmdline != NULL) {cmdlen=bgetcmd(cmdline,cmdlen);

printf("%s\n", cmdline);
}

}

produces the following:

arg-1 (my stuff) here

Library Functions and Macros 93

_bgetcmd

Classification: WATCOM

Systems: All, Netware

94 Library Functions and Macros

_bheapseg

Synopsis: #include <malloc.h>segmentbheapseg(sizetsize);
Description: The
bheapseg function allocates a based-heap segment of at least size bytes.

The argument size indicates the initial size for the heap. The heap will automatically be
enlarged as needed if there is not enough space available within the heap to satisfy an
allocation request by
bcalloc,bexpand,bmalloc, or

brealloc.
The value returned by
bheapseg is the segment value or selector for the based heap. This

value must be saved and used as an argument to other based heap functions to indicate which
based heap to operate upon.

Each call to
bheapseg allocates a new based heap.

Returns: The value returned by
bheapseg is the segment value or selector for the based heap. This

value must be saved and used as an argument to other based heap functions to indicate which
based heap to operate upon. A special value of

NULLSEG
 is returned if the segment could

not be allocated.

See Also:
bfreeseg,bcalloc,bexpand,bmalloc,brealloc

Example: #include <stdio.h>
#include <stdlib.h>
#include <malloc.h>

struct list {structlistbased(self)*next;
int value;

};

void main()
{

int i;segmentseg;structlistbased(seg)*head;structlistbased(seg)*p;
/* allocate based heap */seg=bheapseg(1024);if(seg==NULLSEG){

printf("Unable to allocate based heap\n");
exit(1);

}

Library Functions and Macros 95

_bheapseg

/* create a linked list in the based heap */
head = 0;
for(i = 1; i < 10; i++) {p=bmalloc(seg,sizeof(structlist));if(p==NULLOFF){printf("bmallocfailed\n");

break;
}
p->next = head;
p->value = i;
head = p;

}

/* traverse the linked list, printing out values */
for(p = head; p != 0; p = p->next) {

printf("Value = %d\n", p->value);
}

/* free all the elements of the linked list */
for(; p = head;) {

head = p->next;bfree(seg,p);
}
/* free the based heap */bfreeseg(seg);

}

Classification: WATCOM

Systems: DOS/16, Windows, QNX/16, OS/2 1.x(all)

96 Library Functions and Macros

_bprintf, _bwprintf

Synopsis: #include <stdio.h>intbprintf(char*buf,sizetbufsize,
const char *format, ...);intbwprintf(wchart*buf,sizetbufsize,constwchart*format,...);

Description: The
bprintf function is equivalent to the sprintf function, except that the argument

bufsize specifies the size of the character array buf into which the generated output is placed.
A null character is placed at the end of the generated character string. The format string is
described under the description of the printf function.

The
bwprintf function is identical to

bprintf except that the argument buf specifies
an array of wide characters into which the generated output is to be written, rather than
converted to multibyte characters and written to a stream. The

bwprintf function
accepts a wide-character string argument for format

Returns: The
bprintf function returns the number of characters written into the array, not

counting the terminating null character. An error can occur while converting a value for
output. When an error has occurred, errno contains a value indicating the type of error that
has been detected.

See Also: cprintf, fprintf, printf, sprintf,vbprintf, vcprintf, vfprintf,
vprintf, vsprintf

Example: #include <stdio.h>

void main(int argc, char *argv[])
{charfilename[9];charfileext[4];bprintf(filename,9,"%s",argv[1]);bprintf(fileext,4,"%s",argv[2]);printf("%s.%s\n",filename,fileext);
}

Classification: WATCOM

Systems:
bprintf�All,Netwarebwprintf�All

Library Functions and Macros 97

bsearch

Synopsis: #include <stdlib.h>
void *bsearch(const void *key,

const void *base,sizetnum,sizetwidth,
int (*compar)(const void *pkey,

const void *pbase));

Safer C: The Safer C Library extension provides the
bsearchs function which is a safer

alternative to bsearch. This newer
bsearchs function is recommended to be used

instead of the traditional "unsafe" bsearch function.

Description: The bsearch function performs a binary search of a sorted array of num elements, which is
pointed to by base, for an item which matches the object pointed to by key. Each element in
the array is width bytes in size. The comparison function pointed to by compar is called with
two arguments that point to elements in the array. The first argument pkey points to the same
object pointed to by key. The second argument pbase points to a element in the array. The
comparison function shall return an integer less than, equal to, or greater than zero if the key
object is less than, equal to, or greater than the element in the array.

Returns: The bsearch function returns a pointer to the matching member of the array, or NULL if a
matching object could not be found. If there are multiple values in the array which are equal
to the key, the return value is not necessarily the first occurrence of a matching value when
the array is searched linearly.

See Also:
bsearchs, lfind, lsearch, qsort,qsorts

Example: #include <stdio.h>
#include <stdlib.h>
#include <string.h>

static const char *keywords[] = {
"auto",
"break",
"case",
"char",
/* . */
/* . */
/* . */
"while"

};#defineNUMKWsizeof(keywords)/sizeof(char*)
98 Library Functions and Macros

bsearchintkwcompare(constvoid*p1,constvoid*p2)
{

const char *p1c = (const char *) p1;
const char **p2c = (const char **) p2;
return(strcmp(p1c, *p2c));

}intkeywordlookup(constchar*name)
{

const char **key;key=(charconst**)bsearch(name,keywords,NUMKW,sizeof(char*),kwcompare);
if(key == NULL) return(-1);
return key - keywords;

}

void main()
{printf("%d\n",keywordlookup("case"));printf("%d\n",keywordlookup("crigger"));printf("%d\n",keywordlookup("auto"));
}
//************ Sample program output ************
//2
//-1
//0

produces the following:

2
-1
0

Classification: ANSI

Systems: All, Netware

Library Functions and Macros 99

bsearch_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdlib.h>void*bsearchs(constvoid*key,

const void *base,rsizetnmemb,rsizetsize,
int (*compar)(const void *k, const void *y, void *context

),
void *context);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked and

bsearchs will return a non-zero value to
indicate an error, or the runtime-constraint handler aborts the program.

Neither nmemb nor size shall be greater than
RSIZEMAX. If nmemb is not equal to zero,

then none of key, base, or compar shall be a null pointer. If there is a runtime-constraint
violation, the
bsearchs function does not search the array.

Description: The
bsearchs function searches an array of nmemb objects, the initial element of which

is pointed to by base, for an element that matches the object pointed to by key. The size of
each element of the array is specified by size. The comparison function pointed to by
compar is called with three arguments. The first two point to the key object and to an array
element, in that order. The function shall return an integer less than, equal to, or greater than
zero if the key object is considered, respectively, to be less than, to match, or to be greater
than the array element. The array shall consist of: all the elements that compare less than,
all the elements that compare equal to, and all the elements that compare greater than the key
object, in that order. The third argument to the comparison function is the context argument
passed to
bsearchs The sole use of context by &funcs is to pass it to the comparison

function.

Returns: The
bsearchs function returns a pointer to a matching element of the array,or a null

pointer if no match is found or there is a runtime-constraint violation. If two elements
compare as equal, which element is matched is unspecified.

See Also: bsearch, lfind, lsearch, qsort,qsorts
Example:

100 Library Functions and Macros

bsearch_s#defineSTDCWANTLIBEXT11
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static const char *keywords[] = {
"auto",
"break",
"case",
"char",
/* . */
/* . */
/* . */
"while"

};
static void * context = NULL;#defineNUMKWsizeof(keywords)/sizeof(char*)intkwcompare(constvoid*p1,constvoid*p2,void*context
)
{

const char *p1c = (const char *) p1;
const char **p2c = (const char **) p2;
return(strcmp(p1c, *p2c));

}intkeywordlookup(constchar*name)
{

const char **key;key=(charconst**)bsearchs(name,keywords,NUMKW,sizeof(char*),kwcompare,context);
if(key == NULL) return(-1);
return key - keywords;

}

int main()
{printf("%d\n",keywordlookup("case"));printf("%d\n",keywordlookup("crigger"));printf("%d\n",keywordlookup("auto"));

return 0;
}
//************ Sample program output ************
//2
//-1
//0

Library Functions and Macros 101

bsearch_s

produces the following:

2
-1
0

Classification: TR 24731

Systems: All, Netware

102 Library Functions and Macros

bzero

Synopsis: #include <string.h>voidbzero(void*dst,sizetn);
Description: The bzero function fills the first n bytes of the object pointed to by dst with zero (null)

bytes.

Note that this function is similar to the ANSI memset function (new code should use the
ANSI function).

Returns: The bzero function has no return value.

See Also: bcmp, bcopy, memset, strset

Example: #include <string.h>

void main()
{

char buffer[80];

bzero(buffer, 80);
}

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 103

cabs

Synopsis: #include <math.h>
double cabs(struct complex value);structcomplex{

double x; /* real part */
double y; /* imaginary part */

};

Description: The cabs function computes the absolute value of the complex number value by a
calculation which is equivalent to

sqrt((value.x*value.x) + (value.y*value.y))

In certain cases, overflow errors may occur which will cause the matherr routine to be
invoked.

Returns: The absolute value is returned.

Example: #include <stdio.h>
#include <math.h>structcomplexc={�3.0,4.0};
void main()

{
printf("%f\n", cabs(c));

}

produces the following:

5.000000

Classification: WATCOM

Systems: Math

104 Library Functions and Macros

calloc Functions

Synopsis: #include <stdlib.h> For ANSI compatibility (calloc only)
#include <malloc.h> Required for other function prototypesvoid*calloc(sizetn,sizetsize);voidbased(void)*bcalloc(segmentseg,sizetn,sizetsize);voidfar*fcalloc(sizetn,sizetsize);voidnear*ncalloc(sizetn,sizetsize);

Description: The calloc functions allocate space for an array of n objects, each of length size bytes. Each
element is initialized to 0.

Each function allocates memory from a particular heap, as listed below:

Function Heap

calloc Depends on data model of the program

_bcalloc Based heap specified by seg value

_fcalloc Far heap (outside the default data segment)

_ncalloc Near heap (inside the default data segment)

In a small data memory model, the calloc function is equivalent to thencalloc function;
in a large data memory model, the calloc function is equivalent to the

fcalloc function.

A block of memory allocated should be freed using the appropriate free function.

Returns: The calloc functions return a pointer to the start of the allocated memory. The return value is
NULL (
NULLOFF for
bcalloc) if there is insufficient memory available or if the value

of the size argument is zero.

See Also: expand Functions, free Functions, halloc, hfree, malloc Functions,msize
Functions, realloc Functions, sbrk

Library Functions and Macros 105

calloc Functions

Example: #include <stdlib.h>

void main()
{

char *buffer;

buffer = (char *)calloc(80, sizeof(char));
}

Classification: calloc is ANSI, _fcalloc is not ANSI, _bcalloc is not ANSI, _ncalloc is not ANSI

Systems: calloc - All, Netwarebcalloc�DOS/16,Windows,QNX/16,OS/21.x(all)fcalloc�DOS/16,Windows,QNX/16,OS/21.x(all)ncalloc�DOS,Windows,Win386,Win32,QNX,OS/21.x,OS/2
1.x(MT), OS/2-32

106 Library Functions and Macros

ceil

Synopsis: #include <math.h>
double ceil(double x);

Description: The ceil function (ceiling function) computes the smallest integer not less than x.

Returns: The ceil function returns the smallest integer not less than x, expressed as a double.

See Also: floor

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f %f %f %f %f\n", ceil(-2.1), ceil(-2.),
ceil(0.0), ceil(2.), ceil(2.1));

}

produces the following:

-2.000000 -2.000000 0.000000 2.000000 3.000000

Classification: ANSI

Systems: Math

Library Functions and Macros 107

cgets

Synopsis: #include <conio.h>
char *cgets(char *buf);

Description: The cgets function gets a string of characters directly from the console and stores the
string and its length in the array pointed to by buf. The first element of the array buf[0] must
contain the maximum length in characters of the string to be read. The array must be big
enough to hold the string, a terminating null character, and two additional bytes.

The cgets function reads characters until a newline character is read, or until the specified
number of characters is read. The string is stored in the array starting at buf[2]. The newline
character, if read, is replaced by a null character. The actual length of the string read is
placed in buf[1].

Returns: The cgets function returns a pointer to the start of the string which is at buf[2].

See Also: fgets, getch, getche, gets

Example: #include <conio.h>

void main()
{

char buffer[82];

buffer[0] = 80;
cgets(buffer);
cprintf("%s\r\n", &buffer[2]);

}

Classification: WATCOM

Systems: All, Netware

108 Library Functions and Macros

chdir

Synopsis: #include <sys/types.h>
#include <unistd.h>
int chdir(const char *path);

Description: The chdir function changes the current working directory to the specified path. The path
can be either relative to the current working directory or it can be an absolute path name.

Returns: The chdir function returns zero if successful. Otherwise, -1 is returned, errno is set to
indicate the error, and the current working directory remains unchanged.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

EACCES Search permission is denied for a component of path.

ENAMETOOLONG The argument path exceeds {PATH_MAX} in length, or a pathname
component is longer than {NAME_MAX}.

ENOENT The specified path does not exist or path is an empty string.

ENOMEM Not enough memory to allocate a control structure.

ENOTDIR A component of path is not a directory.

See Also: getcwd, mkdir, rmdir, stat, umask

Example: #include <stdio.h>
#include <stdlib.h>
#include <direct.h>

void main(int argc, char *argv[])
{

if(argc != 2) {
fprintf(stderr, "Use: cd <directory>\n");
exit(1);

}

Library Functions and Macros 109

chdir

if(chdir(argv[1]) == 0) {
printf("Directory changed to %s\n", argv[1]);
exit(0);

} else {
perror(argv[1]);
exit(1);

}
}

Classification: POSIX 1003.1

Systems: All, Netware

110 Library Functions and Macros

chsize

Synopsis: #include <unistd.h>
int chsize(int fildes, long size);

Description: The chsize function changes the size of the file associated with fildes by extending or
truncating the file to the length specified by size. If the file needs to be extended, the file is
padded with NULL (’\0’) characters.

Note that the chsize function call ignores advisory locks which may have been set by the
fcntl, lock, or locking functions.

Returns: The chsize function returns zero if successful. A return value of -1 indicates an error, and
errno is set to indicate the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

EACCES The specified file is locked against access.
EBADF Invalid file descriptor. or file not opened for write.
ENOSPC Not enough space left on the device to extend the file.

See Also: close, creat, open

Example: #include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/stat.h>

void main()
{

int fildes;fildes=open("file",ORDWR|OCREAT,SIRUSR|SIWUSR|SIRGRP|SIWGRP);
if(fildes != -1) {

if(chsize(fildes, 32 * 1024L) != 0) {
printf("Error extending file\n");

}
close(fildes);

}
}

Library Functions and Macros 111

chsize

Classification: WATCOM

Systems: All, Netware

112 Library Functions and Macros

_clear87

Synopsis: #include <float.h>unsignedintclear87(void);
Description: Theclear87 function clears the floating-point status word which is used to record the

status of 8087/80287/80387/80486 floating-point operations.

Returns: Theclear87 function returns the old floating-point status. The description of this status
is found in the <float.h> header file.

See Also: control87,controlfp,finite,fpreset,status87
Example: #include <stdio.h>

#include <float.h>

void main()
{unsignedintfpstatus;fpstatus=clear87();

printf("80x87 status =");if(fpstatus&SWINVALID)
printf(" invalid");if(fpstatus&SWDENORMAL)
printf(" denormal");if(fpstatus&SWZERODIVIDE)printf("zerodivide");if(fpstatus&SWOVERFLOW)
printf(" overflow");if(fpstatus&SWUNDERFLOW)
printf(" underflow");if(fpstatus&SWINEXACT)printf("inexactresult");

printf("\n");
}

Classification: Intel

Systems: Math

Library Functions and Macros 113

clearenv

Synopsis: #include <env.h>
int clearenv(void);

Description: The clearenv function clears the process environment area. No environment variables are
defined immediately after a call to the clearenv function. Note that this clears the PATH,
SHELL, TERM, TERMINFO, LINES, COLUMNS, and TZ environment variables which may
then affect the operation of other library functions.

The clearenv function may manipulate the value of the pointer environ.

Returns: The clearenv function returns zero upon successful completion. Otherwise, it will return
a non-zero value and set errno to indicate the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

ENOMEM Not enough memory to allocate a control structure.

See Also: exec Functions, getenv,getenvs, putenv,searchenv, setenv, spawn
Functions, system

Example: The following example clears the entire environment area and sets up a new TZ environment
variable.

#include <env.h>

void main()
{

clearenv();
setenv("TZ", "EST5EDT", 0);

}

Classification: WATCOM

Systems: All, Netware

114 Library Functions and Macros

clearerr

Synopsis: #include <stdio.h>
void clearerr(FILE *fp);

Description: The clearerr function clears the end-of-file and error indicators for the stream pointed to
by fp. These indicators are cleared only when the file is opened or by an explicit call to the
clearerr or rewind functions.

Returns: The clearerr function returns no value.

See Also: feof, ferror, perror, strerror

Example: #include <stdio.h>

void main()
{

FILE *fp;
int c;

c = ’J’;
fp = fopen("file", "w");
if(fp != NULL) {

fputc(c, fp);
if(ferror(fp)) { /* if error */

clearerr(fp); /* clear the error */
fputc(c, fp); /* and retry it */

}
}

}

Classification: ANSI

Systems: All, Netware

Library Functions and Macros 115

_clearscreen

Synopsis: #include <graph.h>voidFARclearscreen(shortarea);
Description: Theclearscreen function clears the indicated area and fills it with the background

color. The area argument must be one of the following values:

_GCLEARSCREEN area is entire screen

_GVIEWPORT area is current viewport or clip region

_GWINDOW area is current text window

Returns: Theclearscreen function does not return a value.

See Also: setbkcolor,setviewport,setcliprgn,settextwindow
Example: #include <conio.h>

#include <graph.h>

main()
{ setvideomode(VRES16COLOR);rectangle(GFILLINTERIOR,100,100,540,380);

getch();setviewport(200,200,440,280);clearscreen(GVIEWPORT);
getch();setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

116 Library Functions and Macros

clock

Synopsis: #include <time.h>clocktclock(void);
Description: The clock function returns the number of clock ticks of processor time used by program

since the program started executing. This can be converted to seconds by dividing by the
value of the macro
CLOCKSPERSEC.

Returns: The clock function returns the number of clock ticks that have occurred since the program
started executing.

See Also: asctime, ctime, difftime, gmtime, localtime, mktime, strftime, time,
tzset

Example: #include <stdio.h>
#include <math.h>
#include <time.h>

void compute(void)
{

int i, j;
double x;

x = 0.0;
for(i = 1; i <= 100; i++)

for(j = 1; j <= 100; j++)
x += sqrt((double) i * j);

printf("%16.7f\n", x);
}

void main()
{clocktstarttime,endtime;starttime=clock();

compute();endtime=clock();
printf("Execution time was %lu seconds\n",(endtime�starttime)/CLOCKSPERSEC);

}

Classification: ANSI

Systems: All, Netware

Library Functions and Macros 117

close

Synopsis: #include <unistd.h>
int close(int fildes);

Description: The close function closes a file at the operating system level. The fildes value is the file
descriptor returned by a successful execution of one of the creat, dup, dup2, fcntl,
open or sopen functions.

Returns: The close function returns zero if successful. Otherwise, it returns -1 and errno is set to
indicate the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

EBADF The fildes argument is not a valid file descriptor.

EINTR The close function was interrupted by a signal.

EIO An i/o error occurred while updating the directory information.

ENOSPC A previous buffered write call has failed.

See Also: creat, dup, dup2, open, sopen

Example: #include <fcntl.h>
#include <unistd.h>

void main()
{

int fildes;fildes=open("file",ORDONLY);
if(fildes != -1) {

/* process file */
close(fildes);

}
}

Classification: POSIX 1003.1

Systems: All, Netware

118 Library Functions and Macros

closedir

Synopsis: #include <dirent.h>
int closedir(DIR *dirp);

Description: The closedir function closes the directory specified by dirp and frees the memory
allocated by opendir.

The result of using a directory stream after one of the exec or spawn family of functions is
undefined. After a call to the fork function, either the parent or the child (but not both)
may continue processing the directory stream using readdir or rewinddir or both. If
both the parent and child processes use these functions, the result is undefined. Either or
both processes may use the closedir function.

Returns: If successful, the closedir function returns zero. Otherwise -1 is returned and errno is
set to indicate the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

EBADF The argument dirp does not refer to an open directory stream.

EINTR The closedir function was interrupted by a signal.

See Also: opendir, readdir, rewinddir

Example: To get a list of files contained in the directory /home/fred of your node:

#include <stdio.h>
#include <dirent.h>

void main()
{

DIR *dirp;
struct dirent *direntp;

Library Functions and Macros 119

closedir

dirp = opendir("/home/fred");
if(dirp != NULL) {

for(;;) {
direntp = readdir(dirp);
if(direntp == NULL) break;printf("%s\n",direntp�>dname);

}
closedir(dirp);

}
}

Classification: POSIX 1003.1

Systems: All, Netware

120 Library Functions and Macros

_cmdname

Synopsis: #include <process.h>char*cmdname(char*buffer);
Description: Thecmdname function obtains a copy of the executing program’s pathname and places it

in buffer.

Returns: If the pathname of the executing program cannot be determined then NULL is returned;
otherwise the address of buffer is returned.

See Also: getcmd

Example: #include <stdio.h>
#include <process.h>

void main()
{charbuffer[PATHMAX];printf("%s\n",cmdname(buffer));
}

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 121

_control87

Synopsis: #include <float.h>unsignedintcontrol87(unsignedintnewcw,
unsigned int mask);

Description: Thecontrol87 function updates the control word of the 8087/80287/80387/80486. If
mask is zero, then the control word is not updated. If mask is non-zero, then the control word
is updated with bits from newcw corresponding to every bit that is on in mask.

Returns: Thecontrol87 function returns the new control word. The description of bits defined
for the control word is found in the <float.h> header file.

See Also: clear87,controlfp,finite,fpreset,status87
Example: #include <stdio.h>

#include <float.h>

char *status[2] = { "disabled", "enabled" };

void main()
{unsignedintfpcw=0;unsignedintfpmask=0;

unsigned int bits;fpcw=control87(fpcw,fpmask);
printf("Interrupt Exception Masks\n");bits=fpcw&MCWEM;
printf(" Invalid Operation exception %s\n",status[(bits&EMINVALID)==0]);
printf(" Denormalized exception %s\n",status[(bits&EMDENORMAL)==0]);
printf(" Divide-By-Zero exception %s\n",status[(bits&EMZERODIVIDE)==0]);
printf(" Overflow exception %s\n",status[(bits&EMOVERFLOW)==0]);
printf(" Underflow exception %s\n",status[(bits&EMUNDERFLOW)==0]);
printf(" Precision exception %s\n",status[(bits&EMPRECISION)==0]);

122 Library Functions and Macros

_control87

printf("Infinity Control = ");bits=fpcw&MCWIC;if(bits==ICAFFINE)printf("affine\n");if(bits==ICPROJECTIVE)printf("projective\n");
printf("Rounding Control = ");bits=fpcw&MCWRC;if(bits==RCNEAR)printf("near\n");if(bits==RCDOWN)printf("down\n");if(bits==RCUP)printf("up\n");if(bits==RCCHOP)printf("chop\n");
printf("Precision Control = ");bits=fpcw&MCWPC;if(bits==PC24)printf("24bits\n");if(bits==PC53)printf("53bits\n");if(bits==PC64)printf("64bits\n");

}

Classification: Intel

Systems: All, Netware

Library Functions and Macros 123

_controlfp

Synopsis: #include <float.h>unsignedintcontrolfp(unsignedintnewcw,
unsigned int mask);

Description: Thecontrolfp function updates the control word of the 8087/80287/80387/80486. If
mask is zero, then the control word is not updated. If mask is non-zero, then the control word
is updated with bits from newcw corresponding to every bit that is on in mask.

Returns: Thecontrolfp function returns the new control word. The description of bits defined
for the control word is found in the <float.h> header file.

See Also: clear87,control87,finite,fpreset,status87
Example: #include <stdio.h>

#include <float.h>

char *status[2] = { "disabled", "enabled" };

void main()
{unsignedintfpcw=0;unsignedintfpmask=0;

unsigned int bits;fpcw=controlfp(fpcw,fpmask);
printf("Interrupt Exception Masks\n");bits=fpcw&MCWEM;
printf(" Invalid Operation exception %s\n",status[(bits&EMINVALID)==0]);
printf(" Denormalized exception %s\n",status[(bits&EMDENORMAL)==0]);
printf(" Divide-By-Zero exception %s\n",status[(bits&EMZERODIVIDE)==0]);
printf(" Overflow exception %s\n",status[(bits&EMOVERFLOW)==0]);
printf(" Underflow exception %s\n",status[(bits&EMUNDERFLOW)==0]);
printf(" Precision exception %s\n",status[(bits&EMPRECISION)==0]);

124 Library Functions and Macros

_controlfp

printf("Infinity Control = ");bits=fpcw&MCWIC;if(bits==ICAFFINE)printf("affine\n");if(bits==ICPROJECTIVE)printf("projective\n");
printf("Rounding Control = ");bits=fpcw&MCWRC;if(bits==RCNEAR)printf("near\n");if(bits==RCDOWN)printf("down\n");if(bits==RCUP)printf("up\n");if(bits==RCCHOP)printf("chop\n");
printf("Precision Control = ");bits=fpcw&MCWPC;if(bits==PC24)printf("24bits\n");if(bits==PC53)printf("53bits\n");if(bits==PC64)printf("64bits\n");

}

Classification: Intel

Systems: All, Netware

Library Functions and Macros 125

cos

Synopsis: #include <math.h>
double cos(double x);

Description: The cos function computes the cosine of x (measured in radians). A large magnitude
argument may yield a result with little or no significance.

Returns: The cos function returns the cosine value.

See Also: acos, sin, tan

Example: #include <math.h>

void main()
{

double value;
value = cos(3.1415278);

}

Classification: ANSI

Systems: Math

126 Library Functions and Macros

cosh

Synopsis: #include <math.h>
double cosh(double x);

Description: The cosh function computes the hyperbolic cosine of x. A range error occurs if the
magnitude of x is too large.

Returns: The cosh function returns the hyperbolic cosine value. When the argument is outside the
permissible range, the matherr function is called. Unless the default matherr function is
replaced, it will set the global variable errno to ERANGE, and print a "RANGE error"
diagnostic message using the stderr stream.

See Also: sinh, tanh, matherr

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", cosh(.5));
}

produces the following:

1.127626

Classification: ANSI

Systems: Math

Library Functions and Macros 127

cprintf

Synopsis: #include <conio.h>
int cprintf(const char *format, ...);

Description: The cprintf function writes output directly to the console under control of the argument
format. The putch function is used to output characters to the console. The format string is
described under the description of the printf function.

Returns: The cprintf function returns the number of characters written.

See Also:
bprintf, fprintf, printf, sprintf,vbprintf, vcprintf, vfprintf,

vprintf, vsprintf

Example: #include <conio.h>

void main()
{

char *weekday, *month;
int day, year;

weekday = "Saturday";
month = "April";
day = 18;
year = 1987;
cprintf("%s, %s %d, %d\n",

weekday, month, day, year);
}

produces the following:

Saturday, April 18, 1987

Classification: WATCOM

Systems: All, Netware

128 Library Functions and Macros

cputs

Synopsis: #include <conio.h>
int cputs(const char *buf);

Description: The cputs function writes the character string pointed to by buf directly to the console
using the putch function. Unlike the puts function, the carriage-return and line-feed
characters are not appended to the string. The terminating null character is not written.

Returns: The cputs function returns a non-zero value if an error occurs; otherwise, it returns zero.
When an error has occurred, errno contains a value indicating the type of error that has
been detected.

See Also: fputs, putch, puts

Example: #include <conio.h>

void main()
{

char buffer[82];

buffer[0] = 80;
cgets(buffer);
cputs(&buffer[2]);
putch(’\r’);
putch(’\n’);

}

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 129

creat

Synopsis: #include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>intcreat(constchar*path,modetmode);

Description: The creat function creates (and opens) a file at the operating system level. It is equivalent
to:

 open(path,OWRONLY|OCREAT|OTRUNC,mode);
The name of the file to be created is given by path. When the file exists (it must be
writeable), it is truncated to contain no data and the preceding mode setting is unchanged.

When the file does not exist, it is created with access permissions given by the mode
argument. The access permissions for the file or directory are specified as a combination of
bits (defined in the <sys/stat.h> header file).

The following bits define permissions for the owner.

Permission Meaning

S_IRWXU Read, write, execute/search
S_IRUSR Read permission
S_IWUSR Write permission
S_IXUSR Execute/search permission

The following bits define permissions for the group.

Permission Meaning

S_IRWXG Read, write, execute/search
S_IRGRP Read permission
S_IWGRP Write permission
S_IXGRP Execute/search permission

The following bits define permissions for others.

Permission Meaning

S_IRWXO Read, write, execute/search
S_IROTH Read permission

130 Library Functions and Macros

creat

S_IWOTH Write permission
S_IXOTH Execute/search permission

The following bits define miscellaneous permissions used by other implementations.

Permission Meaning

S_IREAD is equivalent to S_IRUSR (read permission)
S_IWRITE is equivalent to S_IWUSR (write permission)
S_IEXEC is equivalent to S_IXUSR (execute/search permission)

Returns: If successful, creat returns a descriptor for the file. When an error occurs while opening
the file, -1 is returned, and errno is set to indicate the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

EACCES Search permission is denied on a component of the path prefix, or the
file exists and the permissions specified by mode are denied, or the file
does not exist and write permission is denied for the parent directory of
the file to be created.

EBADFSYS While attempting to open the named file, either the file itself or a
component of the path prefix was found to be corrupted. A system
failure -- from which no automatic recovery is possible -- occurred
while the file was being written to or while the directory was being
updated. It will be necessary to invoke appropriate systems
administrative procedures to correct this situation before proceeding.

EBUSY The file named by path is a block special device which is already open
for writing, or path names a file which is on a file system mounted on a
block special device which is already open for writing.

EINTR The creat operation was interrupted by a signal.

EISDIR The named file is a directory and the file creation flags specify
write-only or read/write access.

EMFILE Too many file descriptors are currently in use by this process.

ENAMETOOLONG The length of the path string exceeds {PATH_MAX}, or a pathname
component is longer than {NAME_MAX}.

Library Functions and Macros 131

creat

ENFILE Too many files are currently open in the system.

ENOENT Either the path prefix does not exist or the path argument points to an
empty string.

ENOSPC The directory or file system which would contain the new file cannot be
extended.

ENOTDIR A component of the path prefix is not a directory.

EROFS The named file resides on a read-only file system and eitherOWRONLY,ORDWR,OCREAT (if the file does not exist), orOTRUNC
 is set.

See Also: chsize, close, dup, dup2, eof, exec Functions, fdopen, filelength, fileno,
fstat, lseek, open, read, setmode, sopen, stat, tell, write, umask

Example: #include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

void main()
{

int fildes;

fildes = creat("file",SIRUSR|SIWUSR|SIRGRP|SIWGRP);
if(fildes != -1) {

/* process file */

close(fildes);
}

}

Classification: POSIX 1003.1

Systems: All, Netware

132 Library Functions and Macros

cscanf

Synopsis: #include <conio.h>
int cscanf(const char *format, ...);

Description: The cscanf function scans input from the console under control of the argument format.
Following the format string is a list of addresses to receive values. The cscanf function
uses the function getche to read characters from the console. The format string is
described under the description of the scanf function.

Returns: The cscanf function returns EOF when the scanning is terminated by reaching the end of
the input stream. Otherwise, the number of input arguments for which values were
successfully scanned and stored is returned. When a file input error occurs, the errno
global variable may be set.

See Also: fscanf, scanf, sscanf, vcscanf, vfscanf, vscanf, vsscanf

Example: To scan a date in the form "Saturday April 18 1987":

#include <conio.h>

void main()
{

int day, year;
char weekday[10], month[10];

cscanf("%s %s %d %d",
weekday, month, &day, &year);

cprintf("\n%s, %s %d, %d\n",
weekday, month, day, year);

}

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 133

ctime Functions

Synopsis: #include <time.h>char*ctime(consttimet*timer);char*ctime(consttimet*timer,char*buf);wchart*wctime(consttimet*timer);wchart*wctime(consttimet*timer,wchart*buf);
Safer C: The Safer C Library extension provides the function which is a safer alternative to ctime.

This newerctimes function is recommended to be used instead of the traditional "unsafe"
ctime function.

Description: The ctime functions convert the calendar time pointed to by timer to local time in the form
of a string. The ctime function is equivalent to

asctime(localtime(timer))

The ctime functions convert the time into a string containing exactly 26 characters. This
string has the form shown in the following example:

Sat Mar 21 15:58:27 1987\n\0

All fields have a constant width. The new-line character ’\n’ and the null character ’\0’
occupy the last two positions of the string.

The ANSI function ctime places the result string in a static buffer that is re-used each time
ctime or asctime is called. The non-ANSI functionctime places the result string in the
buffer pointed to by buf.

The wide-character functionwctime is identical to ctime except that it produces a
wide-character string (which is twice as long). The wide-character functionwctime is
identical toctime except that it produces a wide-character string (which is twice as long).

Whenever the ctime functions are called, the tzset function is also called.

The calendar time is usually obtained by using the time function. That time is Coordinated
Universal Time (UTC) (formerly known as Greenwich Mean Time (GMT)).

The time set on the computer with the QNX date command reflects Coordinated Universal
Time (UTC). The environment variable TZ is used to establish the local time zone. See the
section The TZ Environment Variable for a discussion of how to set the time zone.

Returns: The ctime functions return the pointer to the string containing the local time.

134 Library Functions and Macros

ctime Functions

See Also: asctime, clock, difftime, gmtime, localtime, mktime, strftime, time,
tzset

Example: #include <stdio.h>
#include <time.h>

void main()
{timettimeofday;

auto char buf[26];timeofday=time(NULL);printf("Itisnow:%s",ctime(&timeofday,buf));
}

produces the following:

It is now: Fri Dec 25 15:58:42 1987

Classification: ctime is ANSI, _ctime is not ANSI, _wctime is not ANSI, __wctime is not ANSI

Systems: ctime - All, Netwarectime�Allwctime�Allwctime�All

Library Functions and Macros 135

delay

Synopsis: #include <i86.h>
unsigned int delay(unsigned int milliseconds);

Description: The delay function suspends the calling process until the number of real time milliseconds
specified by the milliseconds argument have elapsed, or a signal whose action is to either
terminate the process or call a signal handler is received. The suspension time may be
greater than the requested amount due to the scheduling of other, higher priority activity by
the system.

Returns: The delay function returns zero if the full time specified was completed; otherwise it
returns the number of milliseconds unslept if interrupted by a signal.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

EAGAIN No timer resources available to satisfy the request.

See Also: sleep

Example: #include <i86.h>

void main()
{

sound(200);
delay(500); /* delay for 1/2 second */
nosound();

}

Classification: WATCOM

Systems: All, Netware

136 Library Functions and Macros

_dieeetomsbin

Synopsis: #include <math.h>externintdieeetomsbin(double*src,double*dest);
Description: The
dieeetomsbin function loads the double pointed to by src in IEEE format and

converts it to Microsoft binary format, storing the result into the double pointed to by dest.

For
dieeetomsbin, IEEE Nan’s and Infinities will cause overflow. IEEE denormals

will be converted if within range. Otherwise, they will be converted to 0 in the Microsoft
binary format.

The range of Microsoft binary format floats is 2.938736e-39 to 1.701412e+38. The range of
Microsoft binary format doubles is 2.938735877056e-39 to 1.701411834605e+38.

Microsoft Binary Format was used by early versions of Microsoft QuickBASIC before
coprocessors became standard.

Returns: The
dieeetomsbin function returns 0 if the conversion was successful. Otherwise, it

returns 1 if conversion would cause an overflow.

See Also:
dmsbintoieee,fieeetomsbin,fmsbintoieee

Example: #include <stdio.h>
#include <math.h>

void main()
{

float fieee, fmsb;
double dieee, dmsb;

fieee = 0.5;
dieee = -2.0;

/* Convert IEEE format to Microsoft binary format */fieeetomsbin(&fieee,&fmsb);dieeetomsbin(&dieee,&dmsb);
/* Convert Microsoft binary format back to IEEE format */fmsbintoieee(&fmsb,&fieee);dmsbintoieee(&dmsb,&dieee);
/* Display results */
printf("fieee = %f, dieee = %f\n", fieee, dieee);

}

Library Functions and Macros 137

_dieeetomsbin

produces the following:

fieee = 0.500000, dieee = -2.000000

Classification: WATCOM

Systems: All, Netware

138 Library Functions and Macros

difftime

Synopsis: #include <time.h>doubledifftime(timettime1,timettime0);
Description: The difftime function calculates the difference between the two calendar times:

time1 - time0

Returns: The difftime function returns the difference between the two times in seconds as a
double.

See Also: asctime, clock, ctime, gmtime, localtime, mktime, strftime, time, tzset

Example: #include <stdio.h>
#include <time.h>

void compute(void);

void main()
{timetstarttime,endtime;starttime=time(NULL);

compute();endtime=time(NULL);
printf("Elapsed time: %f seconds\n",difftime(endtime,starttime));

}

void compute(void)
{

int i, j;

for(i = 1; i <= 20; i++) {
for(j = 1; j <= 20; j++)

printf("%3d ", i * j);
printf("\n");

}
}

Classification: ANSI

Systems: Math

Library Functions and Macros 139

dirname

Synopsis: #include <libgen.h>
char *dirname(char *path);

Description: The dirname function takes a pointer to a character string that contains a pathname, and
returns a pointer to a string that is a pathname of the parent directory of that file. Trailing
path separators are not considered as part of the path.

The dirname function may modify the string pointed to by path and may return a pointer to
static storage that may be overwritten by a subsequent call to dirname.

The dirname function is not re-entrant or thread-safe.

Returns: The dirname function returns a pointer to a string that is the parent directory of path. If
path is a null pointer or points to an empty string, a pointer to the string "." is returned.

See Also: basename

Example: #include <stdio.h>
#include <libgen.h>

int main(void)
{

puts(dirname("/usr/lib"));
puts(dirname("/usr/"));
puts(dirname("usr"));
puts(dirname("/"));
puts(dirname(".."));
return(0);

}

produces the following:

/usr
/
.
/
.

Classification: POSIX

Systems: All, Netware

140 Library Functions and Macros

_disable

Synopsis: #include <i86.h>voiddisable(void);
Description: The
disable function causes interrupts to become disabled.

The
disable function would be used in conjunction with theenable function to make

sure that a sequence of instructions are executed without any intervening interrupts
occurring.

When you use the
disable function, your program must be linked for privity level 1 and

the process must be run by the superuser. See the Watcom C/C++ User’s Guide discussion
of privity levels and the documentation of the Watcom Linker PRIVILEGE option.

Returns: The
disable function returns no value.

See Also: enable
Example: #include <stdio.h>

#include <stdlib.h>
#include <i86.h>structlistentry{structlistentry*next;

int data;
};volatilestructlistentry*ListHead=NULL;volatilestructlistentry*ListTail=NULL;voidinsert(structlistentry*newentry)

{/*insertnewentryatendoflinkedlist*/newentry�>next=NULL;disable();/*disableinterrupts*/
if(ListTail == NULL) {ListHead=newentry;
} else {ListTail�>next=newentry;
}ListTail=newentry;enable();/*enableinterruptsnow*/

}

Library Functions and Macros 141

_disable

void main()
{structlistentry*p;

int i;

for(i = 1; i <= 10; i++) {p=(structlistentry*)malloc(sizeof(structlistentry));
if(p == NULL) break;
p->data = i;
insert(p);

}
}

Classification: Intel

Systems: All, Netware

142 Library Functions and Macros

_displaycursor

Synopsis: #include <graph.h>shortFARdisplaycursor(shortmode);
Description: The
displaycursor function is used to establish whether the text cursor is to be

displayed when graphics functions complete. On entry to a graphics function, the text cursor
is turned off. When the function completes, the mode setting determines whether the cursor
is turned back on. The mode argument can have one of the following values:

_GCURSORON the cursor will be displayed

_GCURSOROFF the cursor will not be displayed

Returns: The
displaycursor function returns the previous setting for mode.

See Also: gettextcursor,settextcursor
Example: #include <stdio.h>

#include <graph.h>

main()
{

char buf[80];setvideomode(TEXTC80);settextposition(2,1);displaycursor(GCURSORON);outtext("CursorON\n\nEnteryourname>");
gets(buf);displaycursor(GCURSOROFF);settextposition(6,1);outtext("CursorOFF\n\nEnteryourname>");
gets(buf);setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 143

div

Synopsis: #include <stdlib.h>divtdiv(intnumer,intdenom);
typedef struct {

int quot; /* quotient */
int rem; /* remainder */}divt;

Description: The div function calculates the quotient and remainder of the division of the numerator
numer by the denominator denom.

Returns: The div function returns a structure of type
divt which contains the fields quot and

rem.

See Also: ldiv, lldiv, imaxdiv

Example: #include <stdio.h>
#include <stdlib.h>voidprinttime(intseconds)
{ divtminsec;minsec=div(seconds,60);

printf("It took %d minutes and %d seconds\n",minsec.quot,minsec.rem);
}

void main(void)
{printtime(130);
}

produces the following:

It took 2 minutes and 10 seconds

Classification: ISO C90

Systems: All, Netware

144 Library Functions and Macros

_dmsbintoieee

Synopsis: #include <math.h>externintdmsbintoieee(double*src,double*dest);
Description: The
dmsbintoieee function loads the double pointed to by src in Microsoft binary

format and converts it to IEEE format, storing the result into the double pointed to by dest.

The range of Microsoft binary format floats is 2.938736e-39 to 1.701412e+38. The range of
Microsoft binary format doubles is 2.938735877056e-39 to 1.701411834605e+38.

Microsoft Binary Format was used by early versions of Microsoft QuickBASIC before
coprocessors became standard.

Returns: The
dmsbintoieee function returns 0 if the conversion was successful. Otherwise, it

returns 1 if conversion would cause an overflow.

See Also:
dieeetomsbin,fieeetomsbin,fmsbintoieee

Example: #include <stdio.h>
#include <math.h>

void main()
{

float fieee, fmsb;
double dieee, dmsb;

fieee = 0.5;
dieee = -2.0;

/* Convert IEEE format to Microsoft binary format */fieeetomsbin(&fieee,&fmsb);dieeetomsbin(&dieee,&dmsb);
/* Convert Microsoft binary format back to IEEE format */fmsbintoieee(&fmsb,&fieee);dmsbintoieee(&dmsb,&dieee);
/* Display results */
printf("fieee = %f, dieee = %f\n", fieee, dieee);

}

produces the following:

fieee = 0.500000, dieee = -2.000000

Library Functions and Macros 145

_dmsbintoieee

Classification: WATCOM

Systems: All, Netware

146 Library Functions and Macros

dup

Synopsis: #include <unistd.h>
int dup(int fildes);

Description: The dup function duplicates the file descriptor given by the argument fildes. The new file
descriptor refers to the same open file descriptor as the original file descriptor, and shares
any locks. The new file descriptor is identical to the original in that it references the same
file or device, it has the same open mode (read and/or write) and it will have file position
identical to the original. Changing the position with one descriptor will result in a changed
position in the other.

The call
 dupfildes=dup(fildes);

is equivalent to:
 dupfildes=fcntl(fildes,FDUPFD,0);

Returns: If successful, the new file descriptor is returned to be used with the other functions which
operate on the file. Otherwise, -1 is returned and errno is set to indicate the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

EBADF The argument fildes is not a valid open file descriptor.

EMFILE The number of file descriptors would exceed {OPEN_MAX}.

See Also: chsize, close, creat, dup2, eof, exec Functions, fdopen, filelength,
fileno, fstat, lseek, open, read, setmode, sopen, stat, tell, write, umask

Example: #include <fcntl.h>
#include <unistd.h>

void main()
{intfildes,dupfildes;

Library Functions and Macros 147

dup

fildes = open("file",OWRONLY|OCREAT|OTRUNC,SIRUSR|SIWUSR|SIRGRP|SIWGRP);
if(fildes != -1) {dupfildes=dup(fildes);if(dupfildes!=�1){

/* process file */close(dupfildes);
}
close(fildes);

}
}

Classification: POSIX 1003.1

Systems: All, Netware

148 Library Functions and Macros

dup2

Synopsis: #include <unistd.h>
int dup2(int fildes, int fildes2);

Description: The dup2 function duplicates the file descriptor given by the argument fildes. The new file
descriptor is identical to the original in that it references the same file or device, it has the
same open mode (read and/or write) and it will have identical file position to the original
(changing the position with one descriptor will result in a changed position in the other).

The number of the new descriptor is fildes2. If a file already is opened with this descriptor,
the file is closed before the duplication is attempted.

The call
 dupfildes=dup2(fildes,fildes2);

is equivalent to:

close(fildes2);dupfildes=fcntl(fildes,FDUPFD,fildes2);
Returns: The dup2 function returns the value of fildes2 if successful. Otherwise, -1 is returned and

errno is set to indicate the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

EBADF The argument fildes is not a valid open file descriptor or fildes2 is out
of range.

EMFILE The number of file descriptors would exceed {OPEN_MAX}, or no file
descriptors above fildes2 are available.

See Also: chsize, close, creat, dup, eof, exec Functions, fdopen, filelength, fileno,
fstat, lseek, open, read, setmode, sopen, stat, tell, write, umask

Library Functions and Macros 149

dup2

Example: #include <fcntl.h>
#include <unistd.h>

void main()
{intfildes,dupfildes;

fildes = open("file",OWRONLY|OCREAT|OTRUNC,SIRUSR|SIWUSR|SIRGRP|SIWGRP);
if(fildes != -1) {dupfildes=4;if(dup2(fildes,dupfildes)!=�1){

/* process file */close(dupfildes);
}
close(fildes);

}
}

Classification: POSIX 1003.1

Systems: All, Netware

150 Library Functions and Macros

ecvt, _ecvt

Synopsis: #include <stdlib.h>
char *ecvt(double value,

int ndigits,
int *dec,
int *sign);char*ecvt(doublevalue,
int ndigits,
int *dec,
int *sign);

Description: The ecvt function converts the floating-point number value into a character string. The
parameter ndigits specifies the number of significant digits desired. The converted number
will be rounded to ndigits of precision.

The character string will contain only digits and is terminated by a null character. The
integer pointed to by dec will be filled in with a value indicating the position of the decimal
point relative to the start of the string of digits. A zero or negative value indicates that the
decimal point lies to the left of the first digit. The integer pointed to by sign will contain 0 if
the number is positive, and non-zero if the number is negative.

Theecvt function is identical to ecvt. Useecvt for ANSI/ISO naming conventions.

Returns: The ecvt function returns a pointer to a static buffer containing the converted string of
digits. Note: ecvt and fcvt both use the same static buffer.

See Also: fcvt, gcvt, printf

Example: #include <stdio.h>
#include <stdlib.h>

void main()
{

char *str;
int dec, sign;

str = ecvt(123.456789, 6, &dec, &sign);
printf("str=%s, dec=%d, sign=%d\n", str,dec,sign);

}

produces the following:

str=123457, dec=3, sign=0

Library Functions and Macros 151

ecvt, _ecvt

Classification: WATCOM

_ecvt conforms to ANSI/ISO naming conventions

Systems: ecvt - Mathecvt�Math

152 Library Functions and Macros

_ellipse Functions

Synopsis: #include <graph.h>shortFARellipse(shortfill,shortx1,shorty1,
short x2, short y2);shortFARellipsew(shortfill,doublex1,doubley1,

double x2, double y2);shortFARellipsewxy(shortfill,structwxycoordFAR*p1,structwxycoordFAR*p2);
Description: Theellipse functions draw ellipses. Theellipse function uses the view coordinate

system. Theellipsew andellipsewxy functions use the window coordinate
system.

The center of the ellipse is the center of the rectangle established by the points (x1,y1)
and (x2,y2).

The argument fill determines whether the ellipse is filled in or has only its outline drawn.
The argument can have one of two values:

_GFILLINTERIOR fill the interior by writing pixels with the current plot action using
the current color and the current fill mask

_GBORDER leave the interior unchanged; draw the outline of the figure with
the current plot action using the current color and line style

When the coordinates (x1,y1) and (x2,y2) establish a line or a point (this happens
when one or more of the x-coordinates or y-coordinates are equal), nothing is drawn.

Returns: Theellipse functions return a non-zero value when the ellipse was successfully drawn;
otherwise, zero is returned.

See Also: arc,rectangle,setcolor,setfillmask,setlinestyle,setplotaction

Library Functions and Macros 153

_ellipse Functions

Example: #include <conio.h>
#include <graph.h>

main()
{ setvideomode(VRES16COLOR);ellipse(GBORDER,120,90,520,390);

getch();setvideomode(DEFAULTMODE);
}

produces the following:

Classification: _ellipse is PC Graphics

Systems: ellipse�DOS,QNXellipsew�DOS,QNXellipsewxy�DOS,QNX
154 Library Functions and Macros

_enable

Synopsis: #include <i86.h>voidenable(void);
Description: Theenable function causes interrupts to become enabled.

Theenable function would be used in conjunction with the
disable function to make

sure that a sequence of instructions are executed without any intervening interrupts
occurring.

When you use theenable function, your program must be linked for privity level 1 and
the process must be run by the superuser. See the Watcom C/C++ User’s Guide discussion
of privity levels and the documentation of the Watcom Linker PRIVILEGE option.

Returns: Theenable function returns no value.

See Also:
disable

Example: #include <stdio.h>
#include <stdlib.h>
#include <i86.h>structlistentry{structlistentry*next;

int data;
};structlistentry*ListHead=NULL;structlistentry*ListTail=NULL;voidinsert(structlistentry*newentry)

{/*insertnewentryatendoflinkedlist*/newentry�>next=NULL;disable();/*disableinterrupts*/
if(ListTail == NULL) {ListHead=newentry;
} else {ListTail�>next=newentry;
}ListTail=newentry;enable();/*enableinterruptsnow*/

}

Library Functions and Macros 155

_enable

void main()
{structlistentry*p;

int i;

for(i = 1; i <= 10; i++) {p=(structlistentry*)malloc(sizeof(structlistentry));
if(p == NULL) break;
p->data = i;
insert(p);

}
}

Classification: Intel

Systems: All, Netware

156 Library Functions and Macros

eof

Synopsis: #include <unistd.h>
int eof(int fildes);

Description: The eof function determines, at the operating system level, if the end of the file has been
reached for the file whose file descriptor is given by fildes. Because the current file position
is set following an input operation, the eof function may be called to detect the end of the
file before an input operation beyond the end of the file is attempted.

Returns: The eof function returns 1 if the current file position is at the end of the file, 0 if the current
file position is not at the end. A return value of -1 indicates an error, and in this case errno
is set to indicate the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

EBADF The fildes argument is not a valid file descriptor.

See Also: read

Example: #include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

void main()
{

int fildes, len;
char buffer[100];fildes=open("file",ORDONLY);
if(fildes != -1) {

while(! eof(fildes)) {
len = read(fildes, buffer, sizeof(buffer) - 1);
buffer[len] = ’\0’;
printf("%s", buffer);

}
close(fildes);

}
}

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 157

exec Functions

Synopsis: #include <process.h>
int execl(path, arg0, arg1..., argn, NULL);
int execle(path, arg0, arg1..., argn, NULL, envp);
int execlp(file, arg0, arg1..., argn, NULL);
int execlpe(file, arg0, arg1..., argn, NULL, envp);
int execv(path, argv);
int execve(path, argv, envp);
int execvp(file, argv);
int execvpe(file, argv, envp);

const char *path; /* file name incl. path */
const char *file; /* file name */
const char *arg0, ..., *argn; /* arguments */
const char *const argv[]; /* array of arguments */
const char *const envp[]; /* environment strings */intwexecl(path,arg0,arg1...,argn,NULL);intwexecle(path,arg0,arg1...,argn,NULL,envp);intwexeclp(file,arg0,arg1...,argn,NULL);intwexeclpe(file,arg0,arg1...,argn,NULL,envp);intwexecv(path,argv);intwexecve(path,argv,envp);intwexecvp(file,argv);intwexecvpe(file,argv,envp);constwchart*path;/*filenameincl.path*/constwchart*file;/*filename*/constwchart*arg0,...,*argn;/*arguments*/constwchart*constargv[];/*arrayofarguments*/constwchart*constenvp[];/*environmentstrings*/

Description: The exec functions load and execute a new child process, named by path or file. If the child
process is successfully loaded, it replaces the current process in memory. No return is made
to the original program.

1. The "l" form of the exec functions (execl...) contain an argument list terminated by
a NULL pointer. The argument arg0 should point to a filename that is associated
with the program being loaded.

2. The "v" form of the exec functions (execv...) contain a pointer to an argument
vector. The value in argv[0] should point to a filename that is associated with the
program being loaded. The last member of argv must be a NULL pointer. The
value of argv cannot be NULL, but argv[0] can be a NULL pointer if no argument
strings are passed.

3. The "p" form of the exec functions (execlp..., execvp...) use paths listed in the
"PATH" environment variable to locate the program to be loaded provided that the
following conditions are met. The argument file identifies the name of program to

158 Library Functions and Macros

exec Functions

be loaded. If no path character (/) is included in the name, an attempt is made to
load the program from one of the paths in the "PATH" environment variable. If
"PATH" is not defined, the current working directory is used. If a path character
(/) is included in the name, the program is loaded as in the following point.

4. If a "p" form of the exec functions is not used, path must identify the program to
be loaded, including a path if required. Unlike the "p" form of the exec functions,
only one attempt is made to locate and load the program.

5. The "e" form of the exec functions (exec...e) pass a pointer to a new environment
for the program being loaded. The argument envp is an array of character pointers
to null-terminated strings. The array of pointers is terminated by a NULL pointer.
The value of envp cannot be NULL, but envp[0] can be a NULL pointer if no
environment strings are passed.

An error is detected when the program cannot be found.

Arguments are passed to the child process by supplying one or more pointers to character
strings as arguments in the exec call.

The arguments may be passed as a list of arguments (execl, execle, execlp, and
execlpe) or as a vector of pointers (execv, execve, execvp, and execvpe). At least
one argument, arg0 or argv[0], must be passed to the child process. By convention, this first
argument is a pointer to the name of the program.

If the arguments are passed as a list, there must be a NULL pointer to mark the end of the
argument list. Similarly, if a pointer to an argument vector is passed, the argument vector
must be terminated by a NULL pointer.

The environment for the invoked program is inherited from the parent process when you use
the execl, execlp, execv, and execvp functions. The execle, execlpe, execve,
and execvpe functions allow a different environment to be passed to the child process
through the envp argument. The argument envp is a pointer to an array of character pointers,
each of which points to a string defining an environment variable. The array is terminated
with a NULL pointer. Each pointer locates a character string of the form

variable=value

that is used to define an environment variable. If the value of envp is NULL, then the child
process inherits the environment of the parent process.

The environment is the collection of environment variables whose values have been defined
with the QNX export command or by the successful execution of the putenv or setenv
functions. A program may read these values with the getenv function.

Library Functions and Macros 159

exec Functions

The execvpe and execlpe functions are extensions to POSIX 1003.1. The
wide-characterwexecl,wexecle,wexeclp,wexeclpe,wexecv,wexecve,wexecvp andwexecvpe functions are similar to their counterparts but
operate on wide-character strings.

Returns: When the invoked program is successfully initiated, no return occurs. When an error is
detected while invoking the indicated program, exec returns -1 and errno is set to indicate
the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected. See theqnxspawn function for a description of possible errno values.

See Also: abort, atexit, exit,exit, getcmd, getenv, main, putenv, spawn Functions,
system

Example: #include <stddef.h>
#include <process.h>

execl("myprog",
"myprog", "ARG1", "ARG2", NULL);

The preceding invokes "myprog" as if

myprog ARG1 ARG2

had been entered as a command to QNX. The program will be found if "myprog" is found in
the current working directory.

#include <stddef.h>
#include <process.h>char*envlist[]={"SOURCE=MYDATA",

"TARGET=OUTPUT",
"lines=65",
NULL

};

execle("myprog",
"myprog", "ARG1", "ARG2", NULL,envlist);

The preceding invokes "myprog" as if

myprog ARG1 ARG2

160 Library Functions and Macros

exec Functions

had been entered as a command to QNX. The program will be found if "myprog" is found in
the current working directory. The QNX environment for the invoked program will consist
of the three environment variables SOURCE, TARGET and lines.

#include <stddef.h>
#include <process.h>char*arglist[]={"myprog","ARG1","ARG2",NULL};execv("myprog",arglist);
The preceding invokes "myprog" as if

myprog ARG1 ARG2

had been entered as a command to QNX. The program will be found if "myprog" is found in
the current working directory.

Classification: exec... is POSIX 1003.1 with extensions, _wexec... is not POSIX

Systems: execl - DOS/16, Win32, QNX, OS/2 1.x(all), OS/2-32
execle - DOS/16, Win32, QNX, OS/2 1.x(all), OS/2-32
execlp - DOS/16, Win32, QNX, OS/2 1.x(all), OS/2-32
execlpe - DOS/16, Win32, QNX, OS/2 1.x(all), OS/2-32
execv - DOS/16, Win32, QNX, OS/2 1.x(all), OS/2-32
execve - DOS/16, Win32, QNX, OS/2 1.x(all), OS/2-32
execvp - DOS/16, Win32, QNX, OS/2 1.x(all), OS/2-32
execvpe - DOS/16, Win32, QNX, OS/2 1.x(all), OS/2-32

Library Functions and Macros 161

_exit, _Exit

Synopsis: #include <stdlib.h>voidexit(intstatus);voidExit(intstatus);
Description: Theexit function causes normal program termination to occur.

1. The functions registered by the atexit or onexit functions are not called.

2. All open file descriptors and directory streams in the calling process are closed.

3. If the parent process of the calling process is executing a wait or waitpid, it
is notified of the calling process’s termination and the low order 8 bits of status
are made available to it.

4. If the parent process of the calling process is not executing a wait or waitpid
function, the exit status code is saved for return to the parent process whenever the
parent process executes an appropriate subsequent wait or waitpid.

5. Termination of a process does not directly terminate its children. The sending of a
SIGHUP signal as described below indirectly terminates children in some
circumstances. Children of a terminated process shall be assigned a new parent
process ID, corresponding to an implementation-defined system process.

6. If the implementation supports the SIGCHLD signal, a SIGCHLD signal shall be
sent to the parent process.

7. If the process is a controlling process, the SIGHUP signal will be sent to each
process in the foreground process group of the controlling terminal belonging to
the calling process.

8. If the process is a controlling process, the controlling terminal associated with the
session is disassociated from the session, allowing it to be acquired by a new
controlling process.

9. If the implementation supports job control, and if the exit of the process causes a
process group to become orphaned, and if any member of the newly-orphaned
process group is stopped, then a SIGHUP signal followed by a SIGCONT signal
will be sent to each process in the newly-orphaned process group.

These consequences will occur on process termination for any reason.

Returns: Theexit function does not return to its caller.

162 Library Functions and Macros

_exit, _Exit

See Also: abort, atexit,
bgetcmd, close, exec Functions, exit,

Exit, getcmd,
getenv, main, onexit, putenv, signal, spawn Functions, system, wait

Example: #include <stdio.h>
#include <stdlib.h>

void main(int argc, char *argv[])
{

FILE *fp;

if(argc <= 1) {
fprintf(stderr, "Missing argument\n");exit(EXITFAILURE);

}

fp = fopen(argv[1], "r");
if(fp == NULL) {

fprintf(stderr, "Unable to open ’%s’\n", argv[1]);exit(EXITFAILURE);
}
fclose(fp);exit(EXITSUCCESS);

}

Classification: POSIX 1003.1

_Exit is ISO C99

Systems: exit�All,NetwareExit�All,Netware

Library Functions and Macros 163

exit

Synopsis: #include <stdlib.h>
void exit(int status);

Description: The exit function causes normal program termination to occur.

First, all functions registered by the atexit function are called in the reverse order of their
registration. Next, all open files are flushed and closed, and all files created by the
tmpfile function are removed. Finally, the return status is made available to the parent
process. The status value is typically set to 0 to indicate successful termination and set to
some other value to indicate an error.

Returns: The exit function does not return to its caller.

See Also: abort, atexit,exit, onexit
Example: #include <stdio.h>

#include <stdlib.h>

void main(int argc, char *argv[])
{

FILE *fp;

if(argc <= 1) {
fprintf(stderr, "Missing argument\n");exit(EXITFAILURE);

}

fp = fopen(argv[1], "r");
if(fp == NULL) {

fprintf(stderr, "Unable to open ’%s’\n", argv[1]);exit(EXITFAILURE);
}
fclose(fp);exit(EXITSUCCESS);

}

Classification: ANSI

Systems: All, Netware

164 Library Functions and Macros

exp

Synopsis: #include <math.h>
double exp(double x);

Description: The exp function computes the exponential function of x. A range error occurs if the
magnitude of x is too large.

Returns: The exp function returns the exponential value. When the argument is outside the
permissible range, the matherr function is called. Unless the default matherr function is
replaced, it will set the global variable errno to ERANGE, and print a "RANGE error"
diagnostic message using the stderr stream.

See Also: log, matherr

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", exp(.5));
}

produces the following:

1.648721

Classification: ANSI

Systems: Math

Library Functions and Macros 165

_expand Functions

Synopsis: #include <malloc.h>void*expand(void*memblk,sizetsize);voidbased(void)*bexpand(segmentseg,voidbased(void)*memblk,sizetsize);voidfar*fexpand(voidfar*memblk,sizetsize);voidnear*nexpand(voidnear*memblk,sizetsize);
Description: Theexpand functions change the size of the previously allocated block pointed to by

mem_blk by attempting to expand or contract the memory block without moving its location
in the heap. The argument size specifies the new desired size for the memory block. The
contents of the memory block are unchanged up to the shorter of the new and old sizes.

Each function expands the memory from a particular heap, as listed below:

Function Heap Expanded

_expand Depends on data model of the program

_bexpand Based heap specified by seg value

_fexpand Far heap (outside the default data segment)

_nexpand Near heap (inside the default data segment)

In a small data memory model, theexpand function is equivalent to thenexpand
function; in a large data memory model, theexpand function is equivalent to thefexpand function.

Returns: Theexpand functions return the value mem_blk if it was successful in changing the size
of the block. The return value is NULL (

NULLOFF for
bexpand) if the memory block

could not be expanded to the desired size. It will be expanded as much as possible in this
case.

The appropriatemsize function can be used to determine the new size of the expanded
block.

See Also: calloc Functions, free Functions, halloc, hfree, malloc Functions,msize
Functions, realloc Functions, sbrk

166 Library Functions and Macros

_expand Functions

Example: #include <stdio.h>
#include <malloc.h>

void main()
{

char *buf;charfar*buf2;
buf = (char *) malloc(80);printf("Sizeofbufferis%u\n",msize(buf));if(expand(buf,100)==NULL){

printf("Unable to expand buffer\n");
}printf("Newsizeofbufferis%u\n",msize(buf));buf2=(charfar*)fmalloc(2000);printf("Sizeoffarbufferis%u\n",fmsize(buf2));if(fexpand(buf2,8000)==NULL){

printf("Unable to expand far buffer\n");
}
printf("New size of far buffer is %u\n",fmsize(buf2));

}

produces the following:

Size of buffer is 80
Unable to expand buffer
New size of buffer is 80
Size of far buffer is 2000
New size of far buffer is 8000

Classification: WATCOM

Systems: expand�Allbexpand�DOS/16,Windows,QNX/16,OS/21.x(all)fexpand�DOS/16,Windows,QNX/16,OS/21.x(all)nexpand�DOS,Windows,Win386,Win32,QNX,OS/21.x,OS/2
1.x(MT), OS/2-32

Library Functions and Macros 167

fabs

Synopsis: #include <math.h>
double fabs(double x);

Description: The fabs function computes the absolute value of the argument x.

Returns: The fabs function returns the absolute value of x.

See Also: abs, labs, imaxabs

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f %f\n", fabs(.5), fabs(-.5));
}

produces the following:

0.500000 0.500000

Classification: ANSI

Systems: Math

168 Library Functions and Macros

fclose

Synopsis: #include <stdio.h>
int fclose(FILE *fp);

Description: The fclose function closes the file fp. If there was any unwritten buffered data for the file,
it is written out before the file is closed. Any unread buffered data is discarded. If the
associated buffer was automatically allocated, it is deallocated.

Returns: The fclose function returns zero if the file was successfully closed, or non-zero if any
errors were detected. When an error has occurred, errno contains a value indicating the
type of error that has been detected.

See Also: fcloseall, fdopen, fopen, freopen,
fsopen

Example: #include <stdio.h>

void main()
{

FILE *fp;

fp = fopen("stdio.h", "r");
if(fp != NULL) {

fclose(fp);
}

}

Classification: ANSI

Systems: All, Netware

Library Functions and Macros 169

fcloseall

Synopsis: #include <stdio.h>
int fcloseall(void);

Description: The fcloseall function closes all open stream files, except stdin, stdout, and
stderr. This includes streams created (and not yet closed) by fdopen, fopen and
freopen.

Returns: The fcloseall function returns the number of streams that were closed if no errors were
encountered. When an error occurs, EOF is returned.

See Also: fclose, fdopen, fopen, freopen,
fsopen

Example: #include <stdio.h>

void main()
{

printf("The number of files closed is %d\n",
fcloseall());

}

Classification: WATCOM

Systems: All, Netware

170 Library Functions and Macros

fcvt, _fcvt, _wfcvt

Synopsis: #include <stdlib.h>
char *fcvt(double value,

int ndigits,
int *dec,
int *sign);char*fcvt(doublevalue,
int ndigits,
int *dec,
int *sign);wchart*wfcvt(doublevalue,

int ndigits,
int *dec,
int *sign);

Description: The fcvt function converts the floating-point number value into a character string. The
parameter ndigits specifies the number of digits desired after the decimal point. The
converted number will be rounded to this position.

The character string will contain only digits and is terminated by a null character. The
integer pointed to by dec will be filled in with a value indicating the position of the decimal
point relative to the start of the string of digits. A zero or negative value indicates that the
decimal point lies to the left of the first digit. The integer pointed to by sign will contain 0 if
the number is positive, and non-zero if the number is negative.

The
fcvt function is identical to fcvt. Use

fcvt for ANSI/ISO naming conventions.

Thewfcvt function is identical to fcvt except that it produces a wide-character string.

Returns: The fcvt function returns a pointer to a static buffer containing the converted string of
digits. Note: ecvt and fcvt both use the same static buffer.

See Also: ecvt, gcvt, printf

Example: #include <stdio.h>
#include <stdlib.h>

void main()
{

char *str;
int dec, sign;

str = fcvt(-123.456789, 5, &dec, &sign);
printf("str=%s, dec=%d, sign=%d\n", str,dec,sign);

}

Library Functions and Macros 171

fcvt, _fcvt, _wfcvt

produces the following:

str=12345679, dec=3, sign=-1

Classification: WATCOM

_fcvt conforms to ANSI/ISO naming conventions

Systems: fcvt - Mathfcvt�Mathwfcvt�Math

172 Library Functions and Macros

fdopen, _fdopen, _wfdopen

Synopsis: #include <stdio.h>
FILE *fdopen(int fildes, const char *mode);FILE*fdopen(intfildes,constchar*mode);FILE*wfdopen(intfildes,constwchart*mode);

Description: The fdopen function associates a stream with the file descriptor fildes which represents an
opened file or device. The descriptor was returned by one of creat, dup, dup2,
fcntl, open, pipe, or sopen. The open mode mode must match the mode with
which the file or device was originally opened.

The argument mode is described in the description of the fopen function.

The
fdopen function is identical to fdopen. Use

fdopen for ANSI/ISO naming
conventions.

Thewfdopen function is identical to fdopen except that it accepts a wide character
string for the second argument.

Returns: The fdopen function returns a pointer to the object controlling the stream. This pointer
must be passed as a parameter to subsequent functions for performing operations on the file.
If the open operation fails, fdopen returns a NULL pointer. When an error has occurred,
errno contains a value indicating the type of error that has been detected.

See Also: creat, dup, dup2, fopen, freopen,
fsopen, open, sopen

Example: #include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

void main()
{

int fildes;
FILE *fp;

Library Functions and Macros 173

fdopen, _fdopen, _wfdopenfildes=open("file",ORDONLY);
if(fildes != -1) {

fp = fdopen(fildes, "r");
if(fp != NULL) {

/*
process the stream

*/
fclose(fp);

} else {
close(fildes);

}
}

}

Classification: fdopen is POSIX 1003.1, _fdopen is not POSIX, _wfdopen is not POSIX

Systems: fdopen - All, Netwarefdopen�All,Netwarewfdopen�All

174 Library Functions and Macros

feof

Synopsis: #include <stdio.h>
int feof(FILE *fp);

Description: The feof function tests the end-of-file indicator for the stream pointed to by fp. Because
this indicator is set when an input operation attempts to read past the end of the file the feof
function will detect the end of the file only after an attempt is made to read beyond the end of
the file. Thus, if a file contains 10 lines, the feof will not detect end of file after the tenth
line is read; it will detect end of file once the program attempts to read more data.

Returns: The feof function returns non-zero if the end-of-file indicator is set for fp.

See Also: clearerr, ferror, fopen, freopen, perror, read, strerror

Example: #include <stdio.h>voidprocessrecord(char*buf)
{

printf("%s\n", buf);
}

void main()
{

FILE *fp;
char buffer[100];

fp = fopen("file", "r");
fgets(buffer, sizeof(buffer), fp);
while(! feof(fp)) {processrecord(buffer);

fgets(buffer, sizeof(buffer), fp);
}
fclose(fp);

}

Classification: ANSI

Systems: All, Netware

Library Functions and Macros 175

ferror

Synopsis: #include <stdio.h>
int ferror(FILE *fp);

Description: The ferror function tests the error indicator for the stream pointed to by fp.

Returns: The ferror function returns non-zero if the error indicator is set for fp.

See Also: clearerr, feof, perror, strerror

Example: #include <stdio.h>

void main()
{

FILE *fp;
int c;

fp = fopen("file", "r");
if(fp != NULL) {

c = fgetc(fp);
if(ferror(fp)) {

printf("Error reading file\n");
}

}
fclose(fp);

}

Classification: ANSI

Systems: All, Netware

176 Library Functions and Macros

fflush

Synopsis: #include <stdio.h>
int fflush(FILE *fp);

Description: If the file fp is open for output or update, the fflush function causes any unwritten data to
be written to the file. If the file fp is open for input or update, the fflush function undoes
the effect of any preceding ungetc operation on the stream. If the value of fp is NULL,
then all files that are open will be flushed.

Returns: The fflush function returns non-zero if a write error occurs and zero otherwise. When an
error has occurred, errno contains a value indicating the type of error that has been
detected.

See Also: fgetc, fgets, flushall, fopen, getc, gets, setbuf, setvbuf, ungetc

Example: #include <stdio.h>
#include <conio.h>

void main()
{

printf("Press any key to continue...");
fflush(stdout);
getch();

}

Classification: ANSI

Systems: All, Netware

Library Functions and Macros 177

ffs

Synopsis: #include <strings.h>
int ffs(int i);

Description: The ffs finds the first bit set, beginning with the least significant bit, in i. Bits are
numbered starting at one (the least significant bit).

Returns: The ffs function returns the index of the first bit set. If i is 0, ffs returns zero.

See Also:
lrotl,lrotr,rotl,rotr

Example: #include <stdio.h>
#include <strings.h>

int main(void)
{

printf("%d\n", ffs(0));
printf("%d\n", ffs(16));
printf("%d\n", ffs(127));
printf("%d\n", ffs(-16));
return(0);

}

produces the following:

0
5
1
5

Classification: POSIX

Systems: All, Netware

178 Library Functions and Macros

fgetc, fgetwc

Synopsis: #include <stdio.h>
int fgetc(FILE *fp);
#include <stdio.h>
#include <wchar.h>winttfgetwc(FILE*fp);

Description: The fgetc function gets the next character from the file designated by fp. The character is
signed.

The fgetwc function is identical to fgetc except that it gets the next multibyte character
(if present) from the input stream pointed to by fp and converts it to a wide character.

Returns: The fgetc function returns the next character from the input stream pointed to by fp. If the
stream is at end-of-file, the end-of-file indicator is set and fgetc returns EOF. If a read
error occurs, the error indicator is set and fgetc returns EOF.

The fgetwc function returns the next wide character from the input stream pointed to by fp.
If the stream is at end-of-file, the end-of-file indicator is set and fgetwc returns WEOF. If
a read error occurs, the error indicator is set and fgetwc returns WEOF. If an encoding
error occurs, errno is set to EILSEQ and fgetwc returns WEOF.

When an error has occurred, errno contains a value indicating the type of error that has
been detected.

See Also: fgetchar, fgets, fopen, getc, getchar, gets, ungetc

Example: #include <stdio.h>

void main()
{

FILE *fp;
int c;

fp = fopen("file", "r");
if(fp != NULL) {

while((c = fgetc(fp)) != EOF)
fputc(c, stdout);

fclose(fp);
}

}

Classification: fgetc is ANSI, fgetwc is ANSI

Library Functions and Macros 179

fgetc, fgetwc

Systems: fgetc - All, Netware
fgetwc - All

180 Library Functions and Macros

fgetchar, _fgetchar, _fgetwchar

Synopsis: #include <stdio.h>
int fgetchar(void);intfgetchar(void);winttfgetwchar(void);

Description: The fgetchar function is equivalent to fgetc with the argument stdin.

The
fgetchar function is identical to fgetchar. Use

fgetchar for ANSI naming
conventions.

The
fgetwchar function is identical to fgetchar except that it gets the next multibyte

character (if present) from the input stream pointed to by stdin and converts it to a wide
character.

Returns: The fgetchar function returns the next character from the input stream pointed to by
stdin. If the stream is at end-of-file, the end-of-file indicator is set and fgetchar
returns EOF. If a read error occurs, the error indicator is set and fgetchar returns EOF.

The
fgetwchar function returns the next wide character from the input stream pointed to

by stdin. If the stream is at end-of-file, the end-of-file indicator is set and
fgetwchar

returns WEOF. If a read error occurs, the error indicator is set and
fgetwchar returns

WEOF. If an encoding error occurs, errno is set to EILSEQ and
fgetwchar returns

WEOF.

When an error has occurred, errno contains a value indicating the type of error that has
been detected.

See Also: fgetc, fgets, fopen, getc, getchar, gets, ungetc

Example: #include <stdio.h>

void main()
{

FILE *fp;
int c;

fp = freopen("file", "r", stdin);
if(fp != NULL) {

while((c = fgetchar()) != EOF)
fputchar(c);

fclose(fp);
}

}

Library Functions and Macros 181

fgetchar, _fgetchar, _fgetwchar

Classification: WATCOM

Systems: fgetchar - All, Netwarefgetchar�All,Netwarefgetwchar�All

182 Library Functions and Macros

fgetpos

Synopsis: #include <stdio.h>intfgetpos(FILE*fp,fpost*pos);
Description: The fgetpos function stores the current position of the file fp in the object pointed to by

pos. The value stored is usable by the fsetpos function for repositioning the file to its
position at the time of the call to the fgetpos function.

Returns: The fgetpos function returns zero if successful, otherwise, the fgetpos function returns
a non-zero value. When an error has occurred, errno contains a value indicating the type
of error that has been detected.

See Also: fopen, fseek, fsetpos, ftell

Example: #include <stdio.h>

void main()
{

FILE *fp;fpostposition;
auto char buffer[80];

fp = fopen("file", "r");
if(fp != NULL) {

fgetpos(fp, &position); /* get position */
fgets(buffer, 80, fp); /* read record */
fsetpos(fp, &position); /* set position */
fgets(buffer, 80, fp); /* read same record */
fclose(fp);

}
}

Classification: ANSI

Systems: All, Netware

Library Functions and Macros 183

fgets, fgetws

Synopsis: #include <stdio.h>
char *fgets(char *buf, int n, FILE *fp);
#include <stdio.h>
#include <wchar.h>wchart*fgetws(wchart*buf,intn,FILE*fp);

Description: The fgets function gets a string of characters from the file designated by fp and stores
them in the array pointed to by buf. The fgets function stops reading characters when
end-of-file is reached, or when a newline character is read, or when n-1 characters have been
read, whichever comes first. The new-line character is not discarded. A null character is
placed immediately after the last character read into the array.

The fgetws function is identical to fgets except that it gets a string of multibyte
characters (if present) from the input stream pointed to by fp, converts them to wide
characters, and stores them in the wide-character array pointed to by buf. In this case, n
specifies the number of wide characters, less one, to be read.

A common programming error is to assume the presence of a new-line character in every
string that is read into the array. A new-line character will not be present when more than
n-1 characters occur before the new-line. Also, a new-line character may not appear as the
last character in a file, just before end-of-file.

The gets function is similar to fgets except that it operates with stdin, it has no size
argument, and it replaces a newline character with the null character.

Returns: The fgets function returns buf if successful. NULL is returned if end-of-file is
encountered, or a read error occurs. When an error has occurred, errno contains a value
indicating the type of error that has been detected.

See Also: fgetc, fgetchar, fopen, getc, getchar, gets, ungetc

Example: #include <stdio.h>

void main()
{

FILE *fp;
char buffer[80];

184 Library Functions and Macros

fgets, fgetws

fp = fopen("file", "r");
if(fp != NULL) {

while(fgets(buffer, 80, fp) != NULL)
fputs(buffer, stdout);

fclose(fp);
}

}

Classification: fgets is ANSI, fgetws is ANSI

Systems: fgets - All, Netware
fgetws - All

Library Functions and Macros 185

_fieeetomsbin

Synopsis: #include <math.h>externintfieeetomsbin(float*src,float*dest);
Description: The
fieeetomsbin function loads the float pointed to by src in IEEE format and

converts it to Microsoft binary format, storing the result into the float pointed to by dest.

For
fieeetomsbin, IEEE Nan’s and Infinities will cause overflow. IEEE denormals

will be converted if within range. Otherwise, they will be converted to 0 in the Microsoft
binary format.

The range of Microsoft binary format floats is 2.938736e-39 to 1.701412e+38. The range of
Microsoft binary format doubles is 2.938735877056e-39 to 1.701411834605e+38.

Microsoft Binary Format was used by early versions of Microsoft QuickBASIC before
coprocessors became standard.

Returns: The
fieeetomsbin function returns 0 if the conversion was successful. Otherwise, it

returns 1 if conversion would cause an overflow.

See Also:
dieeetomsbin,dmsbintoieee,fmsbintoieee

Example: #include <stdio.h>
#include <math.h>

void main()
{

float fieee, fmsb;
double dieee, dmsb;

fieee = 0.5;
dieee = -2.0;

/* Convert IEEE format to Microsoft binary format */fieeetomsbin(&fieee,&fmsb);dieeetomsbin(&dieee,&dmsb);
/* Convert Microsoft binary format back to IEEE format */fmsbintoieee(&fmsb,&fieee);dmsbintoieee(&dmsb,&dieee);
/* Display results */
printf("fieee = %f, dieee = %f\n", fieee, dieee);

}

186 Library Functions and Macros

_fieeetomsbin

produces the following:

fieee = 0.500000, dieee = -2.000000

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 187

filelength

Synopsis: #include <unistd.h>
long filelength(int fildes);int64filelengthi64(intfildes);

Description: The filelength function returns, as a 32-bit long integer, the number of bytes in the
opened file indicated by the file descriptor fildes.

The _ filelengthi64 function returns, as a 64-bit integer, the number of bytes in the
opened file indicated by the file descriptor fildes.

Returns: If an error occurs in filelength, (-1L) is returned.

If an error occurs in _ filelengthi64, (-1I64) is returned.

When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Otherwise, the number of bytes written to the file is returned.

See Also: fstat, lseek, tell

Example: #include <sys/types.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>

void main()
{

int fildes;

/* open a file for input */fildes=open("file",ORDONLY);
if(fildes != -1) {

printf("Size of file is %ld bytes\n",
filelength(fildes));

close(fildes);
}

}

produces the following:

Size of file is 461 bytes

188 Library Functions and Macros

filelength

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 189

FILENAME_MAX

Synopsis: #include <stdio.h>#defineFILENAMEMAX123
Description: TheFILENAMEMAX macro is the size of an array of char big enough to hold a string

naming any file that the implementation expects to open; If there is no practical file name
length limit,FILENAMEMAX is the recommended size of such an array. As file name
string contents must meet other system-specific constraints, some strings of lengthFILENAMEMAX may not work.FILENAMEMAX typically sizes an array to hold a file name.

Returns: TheFILENAMEMAX macro returns a positive integer value.

Example: #include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{

if(argc) {charfname[FILENAMEMAX];
strcpy(fname, argv[0]);
puts(fname);

}
return(0);

}

Classification: ANSI

Systems: MACRO

190 Library Functions and Macros

fileno

Synopsis: #include <stdio.h>
int fileno(FILE *stream);

Description: The fileno function returns the number of the file descriptor for the file designated by
stream. This number can be used in POSIX input/output calls anywhere the value returned
by open can be used. The following symbolic values in <unistd.h> define the file
descriptors that are associated with the C language stdin, stdout, and stderr files when the
application is started.

Value Meaning

STDIN_FILENO Standard input file number, stdin (0)
STDOUT_FILENO Standard output file number, stdout (1)
STDERR_FILENO Standard error file number, stderr (2)

Returns: The fileno function returns the number of the file descriptor for the file designated by
stream. If an error occurs, a value of -1 is returned and errno is set to indicate the error.

See Also: open

Example: #include <stdio.h>

void main()
{

FILE *stream;

stream = fopen("file", "r");
printf("File number is %d\n", fileno(stream));
fclose(stream);

}

produces the following:

File number is 7

Classification: POSIX 1003.1

Systems: All, Netware

Library Functions and Macros 191

_finite

Synopsis: #include <float.h>intfinite(doublex);
Description: The
finite function determines whether the double precision floating-point argument is

a valid number (i.e., not infinite and not a NAN).

Returns: The
finite function returns 0 if the number is not valid and non-zero otherwise.

See Also: clear87,control87,controlfp,fpreset, printf,status87
Example: #include <stdio.h>

#include <float.h>

void main()
{printf("%s\n",(finite(1.797693134862315e+308))

? "Valid" : "Invalid");printf("%s\n",(finite(1.797693134862320e+308))
? "Valid" : "Invalid");

}

produces the following:

Valid
Invalid

Classification: WATCOM

Systems: Math

192 Library Functions and Macros

_floodfill Functions

Synopsis: #include <graph.h>shortFARfloodfill(shortx,shorty,shortstopcolor);shortFARfloodfillw(doublex,doubley,shortstopcolor);
Description: The
floodfill functions fill an area of the screen. The

floodfill function uses the
view coordinate system. The
floodfillw function uses the window coordinate system.

The filling starts at the point (x,y) and continues in all directions: when a pixel is filled,
the neighbouring pixels (horizontally and vertically) are then considered for filling. Filling is
done using the current color and fill mask. No filling will occur if the point (x,y) lies
outside the clipping region.

If the argument stop_color is a valid pixel value, filling will occur in each direction until a
pixel is encountered with a pixel value of stop_color. The filled area will be the area around
(x,y), bordered by stop_color. No filling will occur if the point (x,y) has the pixel
value stop_color.

If stop_color has the value (-1), filling occurs until a pixel is encountered with a pixel value
different from the pixel value of the starting point (x,y). No filling will occur if the pixel
value of the point (x,y) is the current color.

Returns: The
floodfill functions return zero when no filling takes place; a non-zero value is

returned to indicate that filling has occurred.

See Also: setcliprgn,setcolor,setfillmask,setplotaction
Example: #include <conio.h>

#include <graph.h>

main()
{ setvideomode(VRES16COLOR);setcolor(1);ellipse(GBORDER,120,90,520,390);setcolor(2);floodfill(320,240,1);

getch();setvideomode(DEFAULTMODE);
}

Library Functions and Macros 193

_floodfill Functions

Classification: PC Graphics

Systems:
floodfill�DOS,QNXfloodfillw�DOS,QNX

194 Library Functions and Macros

floor

Synopsis: #include <math.h>
double floor(double x);

Description: The floor function computes the largest integer not greater than x.

Returns: The floor function computes the largest integer not greater than x, expressed as a
double.

See Also: ceil, fmod

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", floor(-3.14));
printf("%f\n", floor(-3.));
printf("%f\n", floor(0.));
printf("%f\n", floor(3.14));
printf("%f\n", floor(3.));

}

produces the following:

-4.000000
-3.000000
0.000000
3.000000
3.000000

Classification: ANSI

Systems: Math

Library Functions and Macros 195

flushall

Synopsis: #include <stdio.h>
int flushall(void);

Description: The flushall function clears all buffers associated with input streams and writes any
buffers associated with output streams. A subsequent read operation on an input file causes
new data to be read from the associated file or device.

Calling the flushall function is equivalent to calling the fflush for all open stream
files.

Returns: The flushall function returns the number of open streams. When an output error occurs
while writing to a file, the errno global variable will be set.

See Also: fopen, fflush

Example: #include <stdio.h>

void main()
{

printf("The number of open files is %d\n",
flushall());

}

produces the following:

The number of open files is 4

Classification: WATCOM

Systems: All, Netware

196 Library Functions and Macros

fmod

Synopsis: #include <math.h>
double fmod(double x, double y);

Description: The fmod function computes the floating-point remainder of x/y, even if the quotient x/y is
not representable.

Returns: The fmod function returns the value x - (i * y), for some integer i such that, if y is non-zero,
the result has the same sign as x and magnitude less than the magnitude of y. If the value of y
is zero, then the value returned is zero.

See Also: ceil, fabs, floor

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", fmod(4.5, 2.0));
printf("%f\n", fmod(-4.5, 2.0));
printf("%f\n", fmod(4.5, -2.0));
printf("%f\n", fmod(-4.5, -2.0));

}

produces the following:

0.500000
-0.500000
0.500000
-0.500000

Classification: ANSI

Systems: Math

Library Functions and Macros 197

_fmsbintoieee

Synopsis: #include <math.h>externintfmsbintoieee(float*src,float*dest);
Description: The
fmsbintoieee function loads the float pointed to by src in Microsoft binary format

and converts it to IEEE format, storing the result &into the float pointed to by dest.

The range of Microsoft binary format floats is 2.938736e-39 to 1.701412e+38. The range of
Microsoft binary format doubles is 2.938735877056e-39 to 1.701411834605e+38.

Microsoft Binary Format was used by early versions of Microsoft QuickBASIC before
coprocessors became standard.

Returns: The
fmsbintoieee function returns 0 if the conversion was successful. Otherwise, it

returns 1 if conversion would cause an overflow.

See Also:
dieeetomsbin,dmsbintoieee,fieeetomsbin

Example: #include <stdio.h>
#include <math.h>

void main()
{

float fieee, fmsb;
double dieee, dmsb;

fieee = 0.5;
dieee = -2.0;

/* Convert IEEE format to Microsoft binary format */fieeetomsbin(&fieee,&fmsb);dieeetomsbin(&dieee,&dmsb);
/* Convert Microsoft binary format back to IEEE format */fmsbintoieee(&fmsb,&fieee);dmsbintoieee(&dmsb,&dieee);
/* Display results */
printf("fieee = %f, dieee = %f\n", fieee, dieee);

}

produces the following:

fieee = 0.500000, dieee = -2.000000

198 Library Functions and Macros

_fmsbintoieee

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 199

fopen, _wfopen

Synopsis: #include <stdio.h>
FILE *fopen(const char *filename, const char *mode);FILE*wfopen(constwchart*filename,constwchart*mode);

Safer C: The Safer C Library extension provides the
fopens function which is a safer alternative to

fopen. This newer
fopens function is recommended to be used instead of the traditional

"unsafe" fopen function.

Description: The fopen function opens the file whose name is the string pointed to by filename, and
associates a stream with it. The argument mode points to a string beginning with one of the
following sequences:

Mode Meaning

"r" open file for reading

"w" create file for writing, or truncate to zero length

"a" append: open file or create for writing at end-of-file

"r+" open file for update (reading and/or writing)

"w+" create file for update, or truncate to zero length

"a+" append: open file or create for update, writing at end-of-file

In addition to the above characters, you can also include one of the following characters in
mode to specify the translation mode for newline characters:

t The letter "t" may be added to any of the above sequences in the second or later
position to indicate that the file is (or must be) a text file.

b The letter "b" may be added to any of the above sequences in the second or
later position to indicate that the file is (or must be) a binary file (an ANSI
requirement for portability to systems that make a distinction between text and
binary files).

Under QNX, there is no difference between text files and binary files.

You can also include one of the following characters to enable or disable the "commit" flag
for the associated file.

200 Library Functions and Macros

fopen, _wfopen

c The letter "c" may be added to any of the above sequences in the second or later
position to indicate that any output is committed by the operating system
whenever a flush (fflush or flushall) is done.

This option is not supported under Netware.

n The letter "n" may be added to any of the above sequences in the second or
later position to indicate that the operating system need not commit any output
whenever a flush is done. It also overrides the global commit flag if you link
your program with COMMODE.OBJ. The global commit flag default is
"no-commit" unless you explicitly link your program with COMMODE.OBJ.

This option is not supported under Netware.

The "t", "c", and "n" mode options are extensions for fopen and
fdopen and should not

be used where ANSI portability is desired.

Opening a file with read mode (r as the first character in the mode argument) fails if the file
does not exist or it cannot be read. Opening a file with append mode (a as the first character
in the mode argument) causes all subsequent writes to the file to be forced to the current
end-of-file, regardless of previous calls to the fseek function. When a file is opened with
update mode (+ as the second or later character of the mode argument), both input and output
may be performed on the associated stream.

When a stream is opened in update mode, both reading and writing may be performed.
However, writing may not be followed by reading without an intervening call to the fflush
function or to a file positioning function (fseek, fsetpos, rewind). Similarly,
reading may not be followed by writing without an intervening call to a file positioning
function, unless the read resulted in end-of-file.

Thewfopen function is identical to fopen except that it accepts wide-character string
arguments for filename and mode.

Returns: The fopen function returns a pointer to the object controlling the stream. This pointer must
be passed as a parameter to subsequent functions for performing operations on the file. If the
open operation fails, fopen returns NULL. When an error has occurred, errno contains a
value indicating the type of error that has been detected.

See Also: fclose, fcloseall, fdopen,
fopens, freopen,
freopens,fsopen, open,

sopen

Library Functions and Macros 201

fopen, _wfopen

Example: #include <stdio.h>

void main()
{

FILE *fp;

fp = fopen("file", "r");
if(fp != NULL) {

/* rest of code goes here */
fclose(fp);

}
}

Classification: fopen is ANSI, _wfopen is not ANSI

Systems: fopen - All, Netwarewfopen�All

202 Library Functions and Macros

fopen_s, _wfopen_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdio.h>errnotfopens(FILE*restrict*restrictstreamptr,

const char * restrict filename,
const char * restrict mode);errnotwfopens(FILE*restrict*restrictstreamptr,constwchart*restrictfilename,constwchart*restrictmode);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked and

fopens will return a non-zero value to
indicate an error, or the runtime-constraint handler aborts the program.

None of streamptr, filename, or mode shall be a null pointer. If there is a runtime-constraint
violation,
fopens does not attempt to open a file. Furthermore, if streamptr is not a null

pointer,
fopens sets *streamptr to the null pointer.

Description: The
fopens function opens the file whose name is the string pointed to by filename, and

associates a stream with it. The mode string shall be as described for fopen, with the addition
that modes starting with the character ’w’ or ’a’ may be preceded by the character ’u’, see
below:

Mode Meaning

"uw" truncate to zero length or create text file for writing, default permissions

"ua" append; open or create text file for writing at end-of-file, default permissions

"uwb" truncate to zero length or create binary file for writing, default permissions

"uab" append; open or create binary file for writing at end-of-file, default permissions

"uw+" truncate to zero length or create text file for update, default permissions

"ua+" append; open or create text file for update, writing at end-of-file, default
permissions

"uw+b or uwb+" truncate to zero length or create binary file for update, default permissions

"ua+b or uab+" append; open or create binary file for update, writing at end-of-file, default
permissions

Library Functions and Macros 203

fopen_s, _wfopen_s

To the extent that the underlying system supports the concepts, files opened for writing shall
be opened with exclusive (also known as non-shared) access. If the file is being created, and
the first character of the mode string is not ’u’, to the extent that the underlying system
supports it, the file shall have a file permission that prevents other users on the system from
accessing the file. If the file is being created and first character of the mode string is ’u’,
then by the time the file has been closed, it shall have the system default file access
permissions. If the file was opened successfully, then the pointer to FILE pointed to by
streamptr will be set to the pointer to the object controlling the opened file. Otherwise, the
pointer to FILE pointed to by streamptr will be set to a null pointer.

In addition to the above characters, you can also include one of the following characters in
mode to specify the translation mode for newline characters:

t The letter "t" may be added to any of the above sequences in the second or later
position to indicate that the file is (or must be) a text file.

b The letter "b" may be added to any of the above sequences in the second or
later position to indicate that the file is (or must be) a binary file (an ANSI
requirement for portability to systems that make a distinction between text and
binary files).

Under QNX, there is no difference between text files and binary files.

You can also include one of the following characters to enable or disable the "commit" flag
for the associated file.

c The letter "c" may be added to any of the above sequences in the second or later
position to indicate that any output is committed by the operating system
whenever a flush (fflush or flushall) is done.

This option is not supported under Netware.

n The letter "n" may be added to any of the above sequences in the second or
later position to indicate that the operating system need not commit any output
whenever a flush is done. It also overrides the global commit flag if you link
your program with COMMODE.OBJ. The global commit flag default is
"no-commit" unless you explicitly link your program with COMMODE.OBJ.

This option is not supported under Netware.

The "t", "c", and "n" mode options are extensions for
fopens and should not be used

where ANSI portability is desired.

204 Library Functions and Macros

fopen_s, _wfopen_s

Opening a file with read mode (r as the first character in the mode argument) fails if the file
does not exist or it cannot be read. Opening a file with append mode (a as the first character
in the mode argument) causes all subsequent writes to the file to be forced to the current
end-of-file, regardless of previous calls to the fseek function. When a file is opened with
update mode (+ as the second or later character of the mode argument), both input and output
may be performed on the associated stream.

When a stream is opened in update mode, both reading and writing may be performed.
However, writing may not be followed by reading without an intervening call to the fflush
function or to a file positioning function (fseek, fsetpos, rewind). Similarly,
reading may not be followed by writing without an intervening call to a file positioning
function, unless the read resulted in end-of-file.

Thewfopens function is identical to
fopens except that it accepts wide-character

string arguments for filename and mode.

Returns: The
fopens function returns zero if it opened the file. If it did not open the file or if there

was a runtime-constraint violation,
fopens returns a non-zero value.

See Also: fclose, fcloseall, fdopen, fopen, freopen,
freopens,fsopen, open,

sopen

Example:
#defineSTDCWANTLIBEXT11
#include <stdio.h>

void main()
{errnotrc;

FILE *fp;rc=fopens(&fp,"file","r");
if(fp != NULL) {

/* rest of code goes here */
fclose(fp);

}
}

Classification: fopen_s is TR 24371, _wfopen_s is WATCOM

Systems:
fopens�All,Netwarewfopens�All

Library Functions and Macros 205

FP_OFF

Synopsis: #include <i86.h>unsignedFPOFF(voidfar*farptr);
Description: TheFPOFF macro can be used to obtain the offset portion of the far pointer value given in

far_ptr.

Returns: The macro returns an unsigned integer value which is the offset portion of the pointer value.

See Also:FPSEG,MKFP, segread
Example: #include <stdio.h>

#include <i86.h>

char ColourTable[256][3];

void main()
{

union REGPACK r;
int i;

/* read block of colour registers */
r.h.ah = 0x10;
r.h.al = 0x17;#ifdefined(386)
r.x.ebx = 0;
r.x.ecx = 256;r.x.edx=FPOFF(ColourTable);r.w.ds=r.w.fs=r.w.gs=FPSEG(&r);

#else
r.w.bx = 0;
r.w.cx = 256;r.w.dx=FPOFF(ColourTable);

#endifr.w.es=FPSEG(ColourTable);
intr(0x10, &r);

for(i = 0; i < 256; i++) {
printf("Colour index = %d "

"{ Red=%d, Green=%d, Blue=%d }\n",
i,
ColourTable[i][0],
ColourTable[i][1],
ColourTable[i][2]);

}
}

206 Library Functions and Macros

FP_OFF

Classification: Intel

Systems: MACRO

Library Functions and Macros 207

FP_SEG

Synopsis: #include <i86.h>unsignedFPSEG(voidfar*farptr);
Description: TheFPSEG macro can be used to obtain the segment portion of the far pointer value given

in far_ptr.

Returns: The macro returns an unsigned integer value which is the segment portion of the pointer
value.

See Also:FPOFF,MKFP, segread
Example: #include <stdio.h>

#include <i86.h>

char ColourTable[256][3];

void main()
{

union REGPACK r;
int i;

/* read block of colour registers */
r.h.ah = 0x10;
r.h.al = 0x17;#ifdefined(386)
r.x.ebx = 0;
r.x.ecx = 256;r.x.edx=FPOFF(ColourTable);r.w.ds=r.w.fs=r.w.gs=FPSEG(&r);

#else
r.w.bx = 0;
r.w.cx = 256;r.w.dx=FPOFF(ColourTable);

#endifr.w.es=FPSEG(ColourTable);
intr(0x10, &r);

208 Library Functions and Macros

FP_SEG

for(i = 0; i < 256; i++) {
printf("Colour index = %d "

"{ Red=%d, Green=%d, Blue=%d }\n",
i,
ColourTable[i][0],
ColourTable[i][1],
ColourTable[i][2]);

}
}

Classification: Intel

Systems: MACRO

Library Functions and Macros 209

fpclassify

Synopsis: #include <math.h>
int fpclassify(x);

Description: The fpclassify macro classifies its argument x as NaN, infinite, normal, subnormal, or
zero. First, an argument represented in a format wider than its semantic type is converted to
its semantic type. Then classification is based on the type of the argument.

The argument x must be an expression of real floating type.

The possible return values of fpclassify and their meanings are listed below.

Constant Meaning

FP_INFINITE positive or negative infinity

FP_NAN NaN (not-a-number)

FP_NORMAL normal number (neither zero, subnormal, NaN, nor
infinity)

FP_SUBNORMAL subnormal number

FP_ZERO positive or negative zero

Returns: The fpclassify macro returns the value of the number classification macro appropriate to
the value of its argument x.

See Also: isfinite, isinf, isnan, isnormal, signbit

Example: #include <math.h>
#include <stdio.h>

void main(void)
{

printf("infinity %s a normal number\n",fpclassify(INFINITY)==FPNORMAL?
"is" : "is not");

}

produces the following:

infinity is not a normal number

210 Library Functions and Macros

fpclassify

Classification: ANSI

Systems: MACRO

Library Functions and Macros 211

_fpreset

Synopsis: #include <float.h>voidfpreset(void);
Description: The
fpreset function resets the floating-point unit to the default state that the math

library requires for correct function. After a floating-point exception, it may be necessary to
call the
fpreset function before any further floating-point operations are attempted.

In multi-threaded environments,
fpreset only affects the current thread.

Returns: No value is returned.

See Also: clear87,control87,controlfp,finite,status87
Example: #include <stdio.h>

#include <float.h>

char *status[2] = { "No", " " };

void main(void)
{unsignedintfpstatus;fpstatus=status87();

printf("80x87 status\n");
printf("%s invalid operation\n",status[(fpstatus&SWINVALID)==0]);
printf("%s denormalized operand\n",status[(fpstatus&SWDENORMAL)==0]);
printf("%s divide by zero\n",status[(fpstatus&SWZERODIVIDE)==0]);
printf("%s overflow\n",status[(fpstatus&SWOVERFLOW)==0]);
printf("%s underflow\n",status[(fpstatus&SWUNDERFLOW)==0]);
printf("%s inexact result\n",status[(fpstatus&SWINEXACT)==0]);fpreset();

}

Classification: Intel

Systems: All, Netware

212 Library Functions and Macros

fprintf, fwprintf

Synopsis: #include <stdio.h>
int fprintf(FILE *fp, const char *format, ...);
#include <stdio.h>
#include <wchar.h>intfwprintf(FILE*fp,constwchart*format,...);

Safer C: The Safer C Library extension provides the
fprintfs function which is a safer

alternative to fprintf. This newer
fprintfs function is recommended to be used

instead of the traditional "unsafe" fprintf function.

Description: The fprintf function writes output to the file pointed to by fp under control of the
argument format. The format string is described under the description of the printf
function.

The fwprintf function is identical to fprintf except that it accepts a wide-character
string argument for format.

Returns: The fprintf function returns the number of characters written, or a negative value if an
output error occurred. The fwprintf function returns the number of wide characters
written, or a negative value if an output error occurred. When an error has occurred, errno
contains a value indicating the type of error that has been detected.

See Also:
bprintf, cprintf, printf, sprintf,vbprintf, vcprintf, vfprintf,

vprintf, vsprintf

Example: #include <stdio.h>

char *weekday = { "Saturday" };
char *month = { "April" };

void main(void)
{

fprintf(stdout, "%s, %s %d, %d\n",
weekday, month, 18, 1987);

}

produces the following:

Saturday, April 18, 1987

Classification: fprintf is ANSI, fwprintf is ANSI

Systems: fprintf - All, Netware

Library Functions and Macros 213

fprintf, fwprintf

fwprintf - All

214 Library Functions and Macros

fprintf_s, fwprintf_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdio.h>intfprintfs(FILE*restrictstream,

const char * restrict format, ...);
#include <wchar.h>intfwprintfs(FILE*restrictstream.constwchart*restrictformat,...);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked and

fprintfs will return a non-zero value to
indicate an error, or the runtime-constraint handler aborts the program.

Neither stream nor format shall be a null pointer. The %n specifier (modified or not by flags,
field width, or precision) shall not appear in the string pointed to by format. Any argument
to
fprintfs corresponding to a %s specifier shall not be a null pointer.

If there is a runtime-constraint violation, the
fprintfs function does not attempt to

produce further output, and it is unspecified to what extent
fprintfs produced output

before discovering the runtime-constraint violation.

Description: The
fprintfs function is equivalent to the fprintf function except for the explicit

runtime-constraints listed above.

The
fwprintfs function is identical to

fprintfs except that it accepts a
wide-character string argument for format.

Returns: The
fprintfs function returns the number of characters written, or a negative value if an

output error or runtime-constraint violation occurred.

The
fwprintfs function returns the number of wide characters written, or a negative

value if an output error or runtime-constraint violation occurred.

See Also:
bprintf, cprintf, fprintf, printf, sprintf,vbprintf, vcprintf,

vfprintf, vprintf, vsprintf

Example:

Library Functions and Macros 215

fprintf_s, fwprintf_s#defineSTDCWANTLIBEXT11
#include <stdio.h>

char *weekday = { "Friday" };
char *month = { "August" };

void main(void)
{fprintfs(stdout,"%s,%s%d,%d\n",

weekday, month, 13, 2004);
}

produces the following:

Friday, August 13, 2004

Classification: fprintf_s is TR 24731, fwprintf_s is TR 24731

Systems:
fprintfs�All,Netwarefwprintfs�All

216 Library Functions and Macros

fputc, fputwc

Synopsis: #include <stdio.h>
int fputc(int c, FILE *fp);
#include <stdio.h>
#include <wchar.h>winttfputwc(winttc,FILE*fp);

Description: The fputc function writes the character specified by the argument c to the output stream
designated by fp.

The fputwc function is identical to fputc except that it converts the wide character
specified by c to a multibyte character and writes it to the output stream.

Returns: The fputc function returns the character written or, if a write error occurs, the error
indicator is set and fputc returns EOF.

The fputwc function returns the wide character written or, if a write error occurs, the error
indicator is set and fputwc returns WEOF. If an encoding error occurs, errno is set to
EILSEQ and fputwc returns WEOF.

When an error has occurred, errno contains a value indicating the type of error that has
been detected.

See Also: fopen, fputchar, fputs, putc, putchar, puts, ferror

Example: #include <stdio.h>

void main()
{

FILE *fp;
int c;

fp = fopen("file", "r");
if(fp != NULL) {

while((c = fgetc(fp)) != EOF)
fputc(c, stdout);

fclose(fp);
}

}

Classification: fputc is ANSI, fputwc is ANSI

Systems: fputc - All, Netware
fputwc - All

Library Functions and Macros 217

fputchar, _fputchar, _fputwchar

Synopsis: #include <stdio.h>
int fputchar(int c);intfputchar(intc);winttfputwchar(winttc);

Description: The fputchar function writes the character specified by the argument c to the output
stream stdout. This function is identical to the putchar function.

The function is equivalent to:

fputc(c, stdout);

The
fputchar function is identical to fputchar. Use

fputchar for ANSI naming
conventions.

The
fputwchar function is identical to fputchar except that it converts the wide

character specified by c to a multibyte character and writes it to the output stream.

Returns: The fputchar function returns the character written or, if a write error occurs, the error
indicator is set and fputchar returns EOF.

The
fputwchar function returns the wide character written or, if a write error occurs, the

error indicator is set and
fputwchar returns WEOF.

When an error has occurred, errno contains a value indicating the type of error that has
been detected.

See Also: fopen, fputc, fputs, putc, putchar, puts, ferror

Example: #include <stdio.h>

void main()
{

FILE *fp;
int c;

218 Library Functions and Macros

fputchar, _fputchar, _fputwchar

fp = fopen("file", "r");
if(fp != NULL) {

c = fgetc(fp);
while(c != EOF) {fputchar(c);

c = fgetc(fp);
}
fclose(fp);

}
}

Classification: WATCOM

Systems: fputchar - All, Netwarefputchar�All,Netwarefputwchar�All

Library Functions and Macros 219

fputs, fputws

Synopsis: #include <stdio.h>
int fputs(const char *buf, FILE *fp);
#include <stdio.h>
#include <wchar.h>intfputws(constwchart*buf,FILE*fp);

Description: The fputs function writes the character string pointed to by buf to the output stream
designated by fp. The terminating null character is not written.

The fputws function is identical to fputs except that it converts the wide character string
specified by buf to a multibyte character string and writes it to the output stream.

Returns: The fputs function returns EOF if an error occurs; otherwise, it returns a non-negative
value (the amount written including the new-line character). The fputws function returns
WEOF if a write or encoding error occurs; otherwise, it returns a non-negative value (the
amount written including the new-line character). When an error has occurred, errno
contains a value indicating the type of error that has been detected.

See Also: fopen, fputc, fputchar, putc, putchar, puts, ferror

Example: #include <stdio.h>

void main()
{

FILE *fp;
char buffer[80];

fp = fopen("file", "r");
if(fp != NULL) {

while(fgets(buffer, 80, fp) != NULL)
fputs(buffer, stdout);

fclose(fp);
}

}

Classification: fputs is ANSI, fputws is ANSI

Systems: fputs - All, Netware
fputws - All

220 Library Functions and Macros

fread

Synopsis: #include <stdio.h>sizetfread(void*buf,sizetelsize,sizetnelem,
FILE *fp);

Description: The fread function reads nelem elements of elsize bytes each from the file specified by fp
into the buffer specified by buf.

Returns: The fread function returns the number of complete elements successfully read. This value
may be less than the requested number of elements.

The feof and ferror functions can be used to determine whether the end of the file was
encountered or if an input/output error has occurred. When an error has occurred, errno
contains a value indicating the type of error that has been detected.

See Also: fopen, feof, ferror

Example: The following example reads a simple student record containing binary data. The student
record is described by thestructstudentdata declaration.

#include <stdio.h>structstudentdata{intstudentid;
unsigned char marks[10];

};sizetreaddata(FILE*fp,structstudentdata*p)
{

return(fread(p, sizeof(*p), 1, fp));
}

void main()
{

FILE *fp;structstudentdatastd;
int i;

Library Functions and Macros 221

fread

fp = fopen("file", "r");
if(fp != NULL) {while(readdata(fp,&std)!=0){printf("id=%d",std.studentid);

for(i = 0; i < 10; i++)
printf("%3d ", std.marks[i]);

printf("\n");
}
fclose(fp);

}
}

Classification: ANSI

Systems: All, Netware

222 Library Functions and Macros

free Functions

Synopsis: #include <stdlib.h> For ANSI compatibility (free only)
#include <malloc.h> Required for other function prototypes
void free(void *ptr);voidbfree(segmentseg,voidbased(void)*ptr);voidffree(voidfar*ptr);voidnfree(voidnear*ptr);

Description: When the value of the argument ptr is NULL, the free function does nothing otherwise,
the free function deallocates the memory block located by the argument ptr which points to
a memory block previously allocated through a call to the appropriate version of calloc,
malloc or realloc. After the call, the freed block is available for allocation.

Each function deallocates memory from a particular heap, as listed below:

Function Heap

free Depends on data model of the program

_bfree Based heap specified by seg value

_ffree Far heap (outside the default data segment)

_nfree Near heap (inside the default data segment)

In a large data memory model, the free function is equivalent to the
ffree function; in a

small data memory model, the free function is equivalent to thenfree function.

Returns: The free functions return no value.

See Also: calloc Functions,expand Functions, halloc, hfree, malloc Functions,msize
Functions, realloc Functions, sbrk

Example: #include <stdio.h>
#include <stdlib.h>

void main()
{

char *buffer;

Library Functions and Macros 223

free Functions

buffer = (char *)malloc(80);
if(buffer == NULL) {

printf("Unable to allocate memory\n");
} else {

/* rest of code goes here */

free(buffer); /* deallocate buffer */
}

}

Classification: free is ANSI, _ffree is not ANSI, _bfree is not ANSI, _nfree is not ANSI

Systems: free - All, Netwarebfree�DOS/16,Windows,QNX/16,OS/21.x(all)ffree�DOS/16,Windows,QNX/16,OS/21.x(all)nfree�DOS,Windows,Win386,Win32,QNX,OS/21.x,OS/2
1.x(MT), OS/2-32

224 Library Functions and Macros

_freect

Synopsis: #include <malloc.h>unsignedintfreect(sizetsize);
Description: The
freect function returns the number of times thatnmalloc (or malloc in small

data models) can be called to allocate a item of size bytes. In the tiny, small and medium
memory models, the default data segment is only extended as needed to satisfy requests for
memory allocation. Therefore, you will need to callnheapgrow in these memory models
before calling
freect in order to get a meaningful result.

Returns: The
freect function returns the number of calls as an unsigned integer.

See Also: calloc,
heapgrow Functions, malloc Functions,memavl,memmax

Example: #include <stdio.h>
#include <malloc.h>

void main()
{

int i;printf("Canallocate%ulongsbeforenheapgrow\n",freect(sizeof(long)));nheapgrow();printf("Canallocate%ulongsafternheapgrow\n",freect(sizeof(long)));
for(i = 1; i < 1000; i++) {nmalloc(sizeof(long));
}
printf("After allocating 1000 longs:\n");
printf("Can still allocate %u longs\n",freect(sizeof(long)));

}

produces the following:Canallocate0longsbeforenheapgrowCanallocate10447longsafternheapgrow
After allocating 1000 longs:
Can still allocate 9447 longs

Classification: WATCOM

Systems: All

Library Functions and Macros 225

freopen, _wfreopen

Synopsis: #include <stdio.h>
FILE *freopen(const char *filename,

const char *mode,
FILE *fp);FILE*wfreopen(constwchart*filename,constwchart*mode,

FILE *fp);

Safer C: The Safer C Library extension provides the
freopens function which is a safer

alternative to freopen. This newer
freopens function is recommended to be used

instead of the traditional "unsafe" freopen function.

Description: The stream located by the fp pointer is closed. The freopen function opens the file
whose name is the string pointed to by filename, and associates a stream with it. The stream
information is placed in the structure located by the fp pointer.

The argument mode is described in the description of the fopen function.

Thewfreopen function is identical to freopen except that it accepts wide-character
string arguments for filename and mode.

Returns: The freopen function returns a pointer to the object controlling the stream. This pointer
must be passed as a parameter to subsequent functions for performing operations on the file.
If the open operation fails, freopen returns NULL. When an error has occurred, errno
contains a value indicating the type of error that has been detected.

See Also: fclose, fcloseall, fdopen, fopen,
fopens,freopens,fsopen, open,

sopen

Example: #include <stdio.h>

void main()
{

FILE *fp;
int c;

fp = freopen("file", "r", stdin);
if(fp != NULL) {

while((c = fgetchar()) != EOF)
fputchar(c);

fclose(fp);
}

}

226 Library Functions and Macros

freopen, _wfreopen

Classification: freopen is ANSI, _wfreopen is not ANSI

Systems: freopen - All, Netwarewfreopen�All

Library Functions and Macros 227

freopen_s, _wfreopen_s

Synopsis: #include <stdio.h>#defineSTDCWANTLIBEXT11
FILE *freopen(const char *filename,

const char *mode,
FILE *fp);FILE*wfreopen(constwchart*filename,constwchart*mode,

FILE *fp);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked and

freopens will return a non-zero value to
indicate an error, or the runtime-constraint handler aborts the program.

None of newstreamptr, mode, and stream shall be a null pointer. If there is a
runtime-constraint violation,
freopens neither attempts to close any file associated with

stream nor attempts to open a file. Furthermore, if newstreamptr is not a null pointer,freopens sets *newstreamptr to the null pointer.

Description: The
freopens function opens the file whose name is the string pointed to by filename

and associates the stream pointed to by stream with it. The mode argument has the same
meaning as in the fopen_s function (including the mode’s effect on exclusive access and file
permissions). If filename is a null pointer,the

freopens function attempts to change the
mode of the stream to that specified by mode ,as if the name of the file currently associated
with the stream had been used. It is implementation-defined which changes of mode are
permitted (if any), and under what circumstances. The

freopens function first attempts
to close any file that is associated with stream. Failure to close the file is ignored. The error
and end-of-file indicators for the stream are cleared. If the file was opened successfully, then
the pointer to FILE pointed to by newstreamptr will be set to the value of stream. Otherwise,
the pointer to FILE pointed to by newstreamptr will be set to a null pointer.

Thewfreopens function is identical to
freopens except that it accepts

wide-character string arguments for filename and mode.

Returns: The
freopens function returns zero if it opened the file. If it did not open the file or

there was a runtime-constraint violation,
freopens returns a non-zero value.

See Also: fclose, fcloseall, fdopen, fopen,
fopens, freopen,
fsopen, open,

sopen

228 Library Functions and Macros

freopen_s, _wfreopen_s

Example:
#defineSTDCWANTLIBEXT11
#include <stdio.h>

void main()
{errnotrc;

FILE *fp;
int c;rc=freopens(&fp,"file","r",stdin);
if(rc == 0) {

while((c = fgetc(fp)) != EOF)
fputchar(c);

fclose(fp);
}

}

Classification: freopen_s is TR 24371, _wfreopen_s is WATCOM

Systems:
freopens�All,Netwarewfreopens�All

Library Functions and Macros 229

frexp

Synopsis: #include <math.h>
double frexp(double value, int *exp);

Description: The frexp function breaks a floating-point number into a normalized fraction and an
integral power of 2. It stores the integral power of 2 in the int object pointed to by exp.

Returns: The frexp function returns the value of x, such that x is a double with magnitude in the
interval [0.5,1) or zero, and value equals x times 2 raised to the power *exp. If value is zero,
then both parts of the result are zero.

See Also: ldexp, modf

Example: #include <stdio.h>
#include <math.h>

void main()
{

int expon;
double value;

value = frexp(4.25, &expon);
printf("%f %d\n", value, expon);
value = frexp(-4.25, &expon);
printf("%f %d\n", value, expon);

}

produces the following:

0.531250 3
-0.531250 3

Classification: ANSI

Systems: Math

230 Library Functions and Macros

fscanf, fwscanf

Synopsis: #include <stdio.h>
int fscanf(FILE *fp, const char *format, ...);
#include <stdio.h>
#include <wchar.h>intfwscanf(FILE*fp,constwchart*format,...);

Safer C: The Safer C Library extension provides the
fscanfs function which is a safer alternative

to fscanf. This newer
fscanfs function is recommended to be used instead of the

traditional "unsafe" fscanf function.

Description: The fscanf function scans input from the file designated by fp under control of the
argument format. Following the format string is a list of addresses to receive values. The
format string is described under the description of the scanf function.

The fwscanf function is identical to fscanf except that it accepts a wide-character string
argument for format.

Returns: The fscanf function returns EOF if an input failure occurred before any conversion.
Otherwise, the number of input arguments for which values were successfully scanned and
stored is returned. When a file input error occurs, the errno global variable may be set.

See Also: cscanf, scanf, sscanf, vcscanf, vfscanf, vscanf, vsscanf

Example: To scan a date in the form "Saturday April 18 1987":

#include <stdio.h>

void main(void)
{

int day, year;
char weekday[10], month[10];FILE*indata;indata=fopen("file","r");if(indata!=NULL){fscanf(indata,"%s%s%d%d",

weekday, month, &day, &year);
printf("Weekday=%s Month=%s Day=%d Year=%d\n",

weekday, month, day, year);fclose(indata);
}

}

Classification: fscanf is ISO C90, fwscanf is ISO C95

Library Functions and Macros 231

fscanf, fwscanf

Systems: fscanf - All, Netware
fwscanf - All

232 Library Functions and Macros

fscanf_s, fwscanf_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdio.h>intfscanfs(FILE*restrictstream,

const char * restrict format, ...);
#include <stdio.h>
#include <wchar.h>intfwscanfs(FILE*restrictstream,constwchart*restrictformat,...);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked and

fscanfs will return a non-zero value to
indicate an error, or the runtime-constraint handler aborts the program.

Neither stream nor format shall be a null pointer. Any argument indirected through in order
to store converted input shall not be a null pointer.

If there is a runtime-constraint violation, the
fscanfs function does not attempt to

perform further input, and it is unspecified to what extent
fscanfs performed input

before discovering the runtime-constraint violation.

Description: The
fscanfs function is equivalent to fscanf except that the c, s, and [conversion

specifiers apply to a pair of arguments (unless assignment suppression is indicated by a *).
The first of these arguments is the same as for fscanf. That argument is immediately
followed in the argument list by the second argument, which has typesizet and gives the
number of elements in the array pointed to by the first argument of the pair. If the first
argument points to a scalar object, it is considered to be an array of one element.

A matching failure occurs if the number of elements in a receiving object is insufficient to
hold the converted input (including any trailing null character).

The
fwscanfs function is identical to

fscanfs except that it accepts a wide-character
string argument for format.

Returns: The
fscanfs function returns EOF if an input failure occurred before any conversion or if

there was a runtime-constraint violation. Otherwise, the
fscanfs function returns the

number of input items successfully assigned, which can be fewer than provided for, or even
zero.

When a file input error occurs, the errno global variable may be set.

See Also: cscanf, fscanf, scanf, sscanf, vcscanf, vfscanf, vscanf, vsscanf

Library Functions and Macros 233

fscanf_s, fwscanf_s

Example: To scan a date in the form "Friday August 13 2004":#defineSTDCWANTLIBEXT11
#include <stdio.h>

void main(void)
{

int day, year;
char weekday[10], month[10];FILE*indata;indata=fopen("file","r");if(indata!=NULL){fscanfs(indata,"%s%s%d%d",

weekday, sizeof(weekday),
month, sizeof(month),
&day, &year);printfs("Weekday=%sMonth=%sDay=%dYear=%d\n",
weekday, month, day, year);fclose(indata);

}
}

Classification: fscanf_s is TR 24731, fwscanf_s is TR 24731

Systems:
fscanfs�All,Netwarefwscanfs�All

234 Library Functions and Macros

fseek

Synopsis: #include <stdio.h>
int fseek(FILE *fp, long int offset, int where);

Description: The fseek function changes the read/write position of the file specified by fp. This
position defines the character that will be read or written on the next I/O operation on the
file. The argument fp is a file pointer returned by fopen or freopen. The argument
offset is the position to seek to relative to one of three positions specified by the argument
where. Allowable values for where are:

Value Meaning

SEEK_SET The new file position is computed relative to the start of the file. The value of
offset must not be negative.

SEEK_CUR The new file position is computed relative to the current file position. The
value of offset may be positive, negative or zero.

SEEK_END The new file position is computed relative to the end of the file.

The fseek function clears the end-of-file indicator and undoes any effects of the ungetc
function on the same file.

The ftell function can be used to obtain the current position in the file before changing it.
The position can be restored by using the value returned by ftell in a subsequent call to
fseek with the where parameter set to

SEEKSET.
Returns: The fseek function returns zero if successful, non-zero otherwise. When an error has

occurred, errno contains a value indicating the type of error that has been detected.

See Also: fgetpos, fopen, fsetpos, ftell

Example: The size of a file can be determined by the following example which saves and restores the
current position of the file.

#include <stdio.h>

long int filesize(FILE *fp)
{longintsavepos,sizeoffile;

Library Functions and Macros 235

fseek savepos=ftell(fp);fseek(fp,0L,SEEKEND);sizeoffile=ftell(fp);fseek(fp,savepos,SEEKSET);return(sizeoffile);
}

void main()
{

FILE *fp;

fp = fopen("file", "r");
if(fp != NULL) {

printf("File size=%ld\n", filesize(fp));
fclose(fp);

}
}

Classification: ANSI

Systems: All, Netware

236 Library Functions and Macros

fsetpos

Synopsis: #include <stdio.h>intfsetpos(FILE*fp,fpost*pos);
Description: The fsetpos function positions the file fp according to the value of the object pointed to

by pos, which shall be a value returned by an earlier call to the fgetpos function on the
same file.

Returns: The fsetpos function returns zero if successful, otherwise, the fsetpos function returns
a non-zero value. When an error has occurred, errno contains a value indicating the type
of error that has been detected.

See Also: fgetpos, fopen, fseek, ftell

Example: #include <stdio.h>

void main()
{

FILE *fp;fpostposition;
auto char buffer[80];

fp = fopen("file", "r");
if(fp != NULL) {

fgetpos(fp, &position); /* get position */
fgets(buffer, 80, fp); /* read record */
fsetpos(fp, &position); /* set position */
fgets(buffer, 80, fp); /* read same record */
fclose(fp);

}
}

Classification: ANSI

Systems: All, Netware

Library Functions and Macros 237

_fsopen, _wfsopen

Synopsis: #include <stdio.h>FILE*fsopen(constchar*filename,
const char *mode, int share);FILE*wfsopen(constwchart*filename,constwchart*mode,intshare);

Description: The
fsopen function opens the file whose name is the string pointed to by filename, and

associates a stream with it. The arguments mode and share control shared reading or writing.
The argument mode points to a string beginning with one of the following sequences:

Mode Meaning

"r" open file for reading

"w" create file for writing, or truncate to zero length

"a" append: open text file or create for writing at end-of-file

"r+" open file for update (reading and/or writing); use default file translation

"w+" create file for update, or truncate to zero length; use default file translation

"a+" append; open file or create for update, writing at end-of-file; use default file
translation

The letter "b" may be added to any of the above sequences in the second or third position to
indicate that the file is (or must be) a binary file (an ANSI requirement for portability to
systems that make a distinction between text and binary files). Under QNX, there is no
difference between text files and binary files.

Opening a file with read mode (’r’ as the first character in the mode argument) fails if the
file does not exist or it cannot be read. Opening a file with append mode (’a’ as the first
character in the mode argument) causes all subsequent writes to the file to be forced to the
current end-of-file, regardless of previous calls to the fseek function. When a file is
opened with update mode (’+’ as the second or third character of the mode argument), both
input and output may be performed on the associated stream.

When a stream is opened in update mode, both reading and writing may be performed.
However, writing may not be followed by reading without an intervening call to the fflush
function or to a file positioning function (fseek, fsetpos, rewind). Similarly,
reading may not be followed by writing without an intervening call to a file positioning
function, unless the read resulted in end-of-file.

238 Library Functions and Macros

_fsopen, _wfsopen

The shared access for the file, share, is established by a combination of bits defined in the
<share.h> header file. The following values may be set:

Value Meaning

SH_COMPAT Set compatibility mode.
SH_DENYRW Prevent read or write access to the file.
SH_DENYWR Prevent write access of the file.
SH_DENYRD Prevent read access to the file.
SH_DENYNO Permit both read and write access to the file.

Note that

fopen(filename, mode);

is the same as:
 fsopen(filename,mode,SHCOMPAT);

Thewfsopen function is identical to
fsopen except that it accepts wide-character

string arguments for filename and mode.

Returns: The
fsopen function returns a pointer to the object controlling the stream. This pointer

must be passed as a parameter to subsequent functions for performing operations on the file.
If the open operation fails,
fsopen returns NULL. When an error has occurred, errno

contains a value indicating the type of error that has been detected.

See Also: fclose, fcloseall, fdopen, fopen, freopen, open, sopen

Example: #include <stdio.h>
#include <share.h>

void main()
{

FILE *fp;

Library Functions and Macros 239

_fsopen, _wfsopen

/*
open a file and prevent others from writing to it

*/fp=fsopen("report.dat","w",SHDENYWR);
if(fp != NULL) {

/* rest of code goes here */
fclose(fp);

}
}

Classification: WATCOM

Systems:
fsopen�All,Netwarewfsopen�All

240 Library Functions and Macros

fstat

Synopsis: #include <sys/types.h>
#include <sys/stat.h>
int fstat(int fildes, struct stat *buf);intfstati64(inthandle,structstati64*buf);intwfstat(inthandle,structstat*buf);intwfstati64(inthandle,structstati64*buf);

Description: The fstat functions obtain information about an open file whose file descriptor is fildes.
This information is placed in the structure located at the address indicated by buf.

The file <sys/stat.h> contains definitions for the structure stat.

At least the following macros are defined in the <sys/stat.h> header file.

Macro Meaning

S_ISFIFO(m) Test for FIFO.

S_ISCHR(m) Test for character special file.

S_ISDIR(m) Test for directory file.

S_ISBLK(m) Test for block special file.

S_ISREG(m) Test for regular file.

S_ISLNK(m) Test for symbolic link.

The value m supplied to the macros is the value of thestmode field of a stat structure.
The macro evaluates to a non-zero value if the test is true and zero if the test is false.

The following bits are encoded within thestmode field of a stat structure.

Mask Owner Permissions

S_IRWXU Read, write, search (if a directory), or execute (otherwise)
S_IRUSR Read permission bit
S_IWUSR Write permission bit
S_IXUSR Search/execute permission bit
S_IREAD ==
SIRUSR

 (for Microsoft compatibility)
S_IWRITE ==
SIWUSR

 (for Microsoft compatibility)

Library Functions and Macros 241

fstat

S_IEXEC ==
SIXUSR

 (for Microsoft compatibility)SIRWXU
 is the bitwise inclusive OR of
SIRUSR,SIWUSR, and
SIXUSR.

Mask Group Permissions

S_IRWXG Read, write, search (if a directory), or execute (otherwise)
S_IRGRP Read permission bit
S_IWGRP Write permission bit
S_IXGRP Search/execute permission bitSIRWXG

 is the bitwise inclusive OR of
SIRGRP,SIWGRP, and
SIXGRP.

Mask Other Permissions

S_IRWXO Read, write, search (if a directory), or execute (otherwise)
S_IROTH Read permission bit
S_IWOTH Write permission bit
S_IXOTH Search/execute permission bitSIRWXO

 is the bitwise inclusive OR of
SIROTH,SIWOTH, and
SIXOTH.

Mask Meaning

S_ISUID Set user ID on execution. The process’s effective user ID shall be set to
that of the owner of the file when the file is run as a program. On a
regular file, this bit should be cleared on any write.

S_ISGID Set group ID on execution. Set effective group ID on the process to the
file’s group when the file is run as a program. On a regular file, this bit
should be cleared on any write.

The
fstati64,wfstat, andwfstati64 functions differ from fstat in the type

of structure that they are asked to fill in. Thewfstat andwfstati64 functions deal
with wide character strings. The differences in the structures are described above.

Returns: All forms of the fstat function return zero when the information is successfully obtained.
Otherwise, -1 is returned.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

242 Library Functions and Macros

fstat

Constant Meaning

EBADF The fildes argument is not a valid file descriptor.

See Also: creat, dup, dup2, open, sopen, stat

Example: #include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

void main()
{

int fildes, rc;
struct stat buf;fildes=open("file",ORDONLY);
if(fildes != -1) {

rc = fstat(fildes, &buf);
if(rc != -1)printf("Filesize=%d\n",buf.stsize);
close(fildes);

}
}

Classification: POSIX

Systems: All, Netware

Library Functions and Macros 243

fsync

Synopsis: #include <unistd.h>
int fsync(int fd);

Description: The fsync function writes to disk all the currently queued data for the open file specified
by fd. All necessary file system information required to retrieve the data is also written to
disk. The file access times are also updated.

The fsync function is used when you wish to ensure that both the file data and file system
information required to recover the complete file have been written to the disk.

The fsync function does not return until the transfer is completed.

Returns: The fsync function returns zero if successful. Otherwise, it returns -1 and errno is set to
indicate the error. If the fsync function fails, outstanding i/o operations are not guaranteed
to have been completed.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

EBADF The fd argument is not a valid file descriptor.

EINVAL Synchronized i/o is not supported for this file.

EIO A physical I/O error occurred (e.g., a bad block). The precise meaning
is device dependent.

ENOSYS The fsync function is not supported.

See Also: fstat, open, stat, write

Example: /*
* Write a file and make sure it is on disk.
*/

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

char buf[512];

244 Library Functions and Macros

fsync

void main()
{

int fildes;
int i;

fildes = creat("file",SIRUSR|SIWUSR|SIRGRP|SIWGRP);
if(fildes == -1) {

perror("Error creating file");exit(EXITFAILURE);
}

for(i = 0; i < 255; ++i) {
memset(buf, i, sizeof(buf));
if(write(fildes, buf, sizeof(buf)) != sizeof(buf)) {

perror("Error writing file");exit(EXITFAILURE);
}

}

if(fsync(fildes) == -1) {
perror("Error sync’ing file");exit(EXITFAILURE);

}

close(fildes);exit(EXITSUCCESS);
}

Classification: POSIX 1003.4

Systems: All, Netware

Library Functions and Macros 245

ftell

Synopsis: #include <stdio.h>
long int ftell(FILE *fp);

Description: The ftell function returns the current read/write position of the file specified by fp. This
position defines the character that will be read or written by the next I/O operation on the
file. The value returned by ftell can be used in a subsequent call to fseek to set the file
to the same position.

Returns: The ftell function returns the current read/write position of the file specified by fp. When
an error is detected, -1L is returned. When an error has occurred, errno contains a value
indicating the type of error that has been detected.

See Also: fgetpos, fopen, fsetpos, fseek

Example: #include <stdio.h>

long int filesize(FILE *fp)
{longintsavepos,sizeoffile;savepos=ftell(fp);fseek(fp,0L,SEEKEND);sizeoffile=ftell(fp);fseek(fp,savepos,SEEKSET);return(sizeoffile);
}

void main()
{

FILE *fp;

fp = fopen("file", "r");
if(fp != NULL) {

printf("File size=%ld\n", filesize(fp));
fclose(fp);

}
}

Classification: ANSI

Systems: All, Netware

246 Library Functions and Macros

ftime

Synopsis: #include <sys/timeb.h>
int ftime(struct timeb *timeptr);

struct timeb {timettime;/*timeinsecondssinceJan1,1970UTC*/
unsigned short millitm; /* milliseconds */
short timezone; /* difference in minutes from UTC */
short dstflag; /* nonzero if in daylight savings time */

};

Description: The ftime function gets the current time and stores it in the structure pointed to by timeptr.

Returns: The ftime function fills in the fields of the structure pointed to by timeptr. The ftime
function returns -1 if not successful, and no useful value otherwise.

See Also: asctime, clock, ctime, difftime, gmtime, localtime, mktime, strftime,
time, tzset

Example: #include <stdio.h>
#include <time.h>
#include <sys/timeb.h>

void main()
{

struct timeb timebuf;
char *tod;

ftime(&timebuf);
tod = ctime(&timebuf.time);
printf("The time is %.19s.%hu %s",

tod, timebuf.millitm, &tod[20]);
}

produces the following:

The time is Tue Dec 25 15:58:42.870 1990

Classification: WATCOM

Systems: All

Library Functions and Macros 247

_fullpath

Synopsis: #include <stdlib.h>char*fullpath(char*buffer,
const char *path,sizetsize);

Description: The
fullpath function returns the full pathname of the file specification in path in the

specified buffer buffer of length size.

The maximum size that might be required for buffer is
MAXPATH. If the buffer provided

is too small, NULL is returned and errno is set.

If buffer is NULL then a buffer of size
MAXPATH is allocated using malloc. This buffer

may be freed using the free function.

If path is NULL or points to a null string ("") then the current working directory is returned in
buffer.

Returns: The
fullpath function returns a pointer to the full path specification if no error occurred.

Otherwise, NULL is returned.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

ENOENT The current working directory could not be obtained.

ENOMEM The buffer could not be allocated.

ERANGE The buffer passed was too small.

See Also: makepath,splitpath
Example: #include <stdio.h>

#include <stdlib.h>

void main(int argc, char *argv[])
{

int i;charbuff[PATHMAX];
248 Library Functions and Macros

_fullpath

for(i = 1; i < argc; ++i) {
puts(argv[i]);if(fullpath(buff,argv[i],PATHMAX)){

puts(buff);
} else {

puts("FAIL!");
}

}
}

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 249

fwide

Synopsis: #include <stdio.h>
#include <wchar.h>
int fwide(FILE *fp, int mode);

Description: The fwide function determines the orientation of the stream pointed to by fp. If mode is
greater than zero, the function first attempts to make the stream wide oriented. If mode is
less than zero, the function first attempts to make the stream byte oriented. Otherwise, mode
is zero and the fwide function does not alter the orientation of the stream.

Returns: The fwide function returns a value greater than zero if, after the call, the stream has wide
orientation, a value less than zero if the stream has byte orientation, or zero if the stream has
no orientation.

See Also: fopen, freopen

Example: #include <stdio.h>
#include <wchar.h>

void main(void)
{

FILE *fp;
int mode;

fp = fopen("file", "r");
if(fp != NULL) {

mode = fwide(fp, -33);
printf("orientation: %s\n",

mode > 0 ? "wide" :
mode < 0 ? "byte" : "none");

}
}

produces the following:

orientation: byte

Classification: ANSI

Systems: All

250 Library Functions and Macros

fwrite

Synopsis: #include <stdio.h>sizetfwrite(constvoid*buf,sizetelsize,sizetnelem,
FILE *fp);

Description: The fwrite function writes nelem elements of elsize bytes each to the file specified by fp.

Returns: The fwrite function returns the number of complete elements successfully written. This
value will be less than the requested number of elements only if a write error occurs. When
an error has occurred, errno contains a value indicating the type of error that has been
detected.

See Also: ferror, fopen

Example: #include <stdio.h>structstudentdata{intstudentid;
unsigned char marks[10];

};

void main()
{

FILE *fp;structstudentdatastd;
int i;

fp = fopen("file", "w");
if(fp != NULL) {std.studentid=1001;

for(i = 0; i < 10; i++)
std.marks[i] = (unsigned char) (85 + i);

/* write student record with marks */
i = fwrite(&std, sizeof(std), 1, fp);
printf("%d record written\n", i);
fclose(fp);

}
}

Classification: ANSI

Systems: All, Netware

Library Functions and Macros 251

gcvt, _gcvt, _wgcvt

Synopsis: #include <stdlib.h>
char *gcvt(double value,

int ndigits,
char *buffer);char*gcvt(doublevalue,
int ndigits,
char *buffer);wchart*wgcvt(doublevalue,

int ndigits,wchart*buffer);
Description: The gcvt function converts the floating-point number value into a character string and

stores the result in buffer. The parameter ndigits specifies the number of significant digits
desired. The converted number will be rounded to this position.

If the exponent of the number is less than -4 or is greater than or equal to the number of
significant digits wanted, then the number is converted into E-format, otherwise the number
is formatted using F-format.

Thegcvt function is identical to gcvt. Usegcvt for ANSI/ISO naming conventions.

Thewgcvt function is identical to gcvt except that it produces a wide-character string
(which is twice as long).

Returns: The gcvt function returns a pointer to the string of digits.

See Also: ecvt, fcvt, printf

Example: #include <stdio.h>
#include <stdlib.h>

void main()
{

char buffer[80];

printf("%s\n", gcvt(-123.456789, 5, buffer));
printf("%s\n", gcvt(123.456789E+12, 5, buffer));

}

produces the following:

-123.46
1.2346E+014

252 Library Functions and Macros

gcvt, _gcvt, _wgcvt

Classification: WATCOM

_gcvt conforms to ANSI/ISO naming conventions

Systems: gcvt - Mathgcvt�Mathwgcvt�Math

Library Functions and Macros 253

_getactivepage

Synopsis: #include <graph.h>shortFARgetactivepage(void);
Description: Thegetactivepage function returns the number of the currently selected active

graphics page.

Only some combinations of video modes and hardware allow multiple pages of graphics to
exist. When multiple pages are supported, the active page may differ from the visual page.
The graphics information in the visual page determines what is displayed upon the screen.
Animation may be accomplished by alternating the visual page. A graphics page can be
constructed without affecting the screen by setting the active page to be different than the
visual page.

The number of available video pages can be determined by using thegetvideoconfig
function. The default video page is 0.

Returns: Thegetactivepage function returns the number of the currently selected active
graphics page.

See Also: setactivepage,setvisualpage,getvisualpage,getvideoconfig

254 Library Functions and Macros

_getactivepage

Example: #include <conio.h>
#include <graph.h>

main()
{intoldapage;intoldvpage;setvideomode(HRES16COLOR);oldapage=getactivepage();oldvpage=getvisualpage();

/* draw an ellipse on page 0 */setactivepage(0);setvisualpage(0);ellipse(GFILLINTERIOR,100,50,540,150);
/* draw a rectangle on page 1 */setactivepage(1);rectangle(GFILLINTERIOR,100,50,540,150);
getch();
/* display page 1 */setvisualpage(1);
getch();setactivepage(oldapage);setvisualpage(oldvpage);setvideomode(DEFAULTMODE);

}

Classification: _getactivepage is PC Graphics

Systems: DOS, QNX

Library Functions and Macros 255

_getarcinfo

Synopsis: #include <graph.h>shortFARgetarcinfo(structxycoordFAR*startpt,structxycoordFAR*endpt,structxycoordFAR*insidept);
Description: Thegetarcinfo function returns information about the arc most recently drawn by thearc orpie functions. The arguments start_pt and end_pt are set to contain the

endpoints of the arc. The argument inside_pt will contain the coordinates of a point within
the pie. The points are all specified in the view coordinate system.

The endpoints of the arc can be used to connect other lines to the arc. The interior point can
be used to fill the pie.

Returns: Thegetarcinfo function returns a non-zero value when successful. If the previous arc
or pie was not successfully drawn, zero is returned.

See Also: arc,pie
Example: #include <conio.h>

#include <graph.h>

main()
{structxycoordstartpt,endpt,insidept;setvideomode(VRES16COLOR);arc(120,90,520,390,520,90,120,390);getarcinfo(&startpt,&endpt,&insidept);moveto(startpt.xcoord,startpt.ycoord);lineto(endpt.xcoord,endpt.ycoord);

getch();setvideomode(DEFAULTMODE);
}

produces the following:

256 Library Functions and Macros

_getarcinfo

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 257

_getbkcolor

Synopsis: #include <graph.h>longFARgetbkcolor(void);
Description: Thegetbkcolor function returns the current background color. In text modes, the

background color controls the area behind each individual character. In graphics modes, the
background refers to the entire screen. The default background color is 0.

Returns: Thegetbkcolor function returns the current background color.

See Also: setbkcolor,remappalette
Example: #include <conio.h>

#include <graph.h>

long colors[16] = {BLACK,BLUE,GREEN,CYAN,RED,MAGENTA,BROWN,WHITE,GRAY,LIGHTBLUE,LIGHTGREEN,LIGHTCYAN,LIGHTRED,LIGHTMAGENTA,YELLOW,BRIGHTWHITE
};

main()
{longoldbk;

int bk;setvideomode(VRES16COLOR);oldbk=getbkcolor();
for(bk = 0; bk < 16; ++bk) {setbkcolor(colors[bk]);

getch();
}setbkcolor(oldbk);setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

258 Library Functions and Macros

getc, getwc

Synopsis: #include <stdio.h>
int getc(FILE *fp);
#include <stdio.h>
#include <wchar.h>winttgetwc(FILE*fp);

Description: The getc function gets the next character from the file designated by fp. The character is
returned as an int value. The getc function is equivalent to fgetc, except that it may be
implemented as a macro.

The getwc function is identical to getc except that it gets the next multibyte character (if
present) from the input stream pointed to by fp and converts it to a wide character.

Returns: The getc function returns the next character from the input stream pointed to by fp. If the
stream is at end-of-file, the end-of-file indicator is set and getc returns EOF. If a read
error occurs, the error indicator is set and getc returns EOF.

The getwc function returns the next wide character from the input stream pointed to by fp.
If the stream is at end-of-file, the end-of-file indicator is set and getwc returns WEOF. If a
read error occurs, the error indicator is set and getwc returns WEOF. If an encoding error
occurs, errno is set to EILSEQ and getwc returns WEOF.

When an error has occurred, errno contains a value indicating the type of error that has
been detected.

See Also: fgetc, fgetchar, fgets, fopen, getchar, gets, ungetc

Example: #include <stdio.h>

void main()
{

FILE *fp;
int c;

fp = fopen("file", "r");
if(fp != NULL) {

while((c = getc(fp)) != EOF)
putchar(c);

fclose(fp);
}

}

Classification: getc is ANSI, getwc is ANSI

Library Functions and Macros 259

getc, getwc

Systems: getc - All, Netware
getwc - All

260 Library Functions and Macros

getch

Synopsis: #include <conio.h>
int getch(void);

Description: The getch function obtains the next available keystroke from the console. Nothing is
echoed on the screen (the function getche will echo the keystroke, if possible). When no
keystroke is available, the function waits until a key is depressed.

The kbhit function can be used to determine if a keystroke is available.

Returns: A value of EOF is returned when an error is detected; otherwise the getch function returns
the value of the keystroke (or character).

When the keystroke represents an extended function key (for example, a function key, a
cursor-movement key or the ALT key with a letter or a digit), 0xff is returned and the next
call to getch returns a value for the extended function.

See Also: getche, kbhit, putch, ungetch

Example: #include <stdio.h>
#include <conio.h>

void main()
{

int c;

printf("Press any key\n");
c = getch();
printf("You pressed %c(%d)\n", c, c);

}

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 261

getchar, getwchar

Synopsis: #include <stdio.h>
int getchar(void);
#include <wchar.h>winttgetwchar(void);

Description: The getchar function is equivalent to getc with the argument stdin.

The getwchar function is similar to getchar except that it is equivalent to getwc with
the argument stdin.

Returns: The getchar function returns the next character from the input stream pointed to by
stdin. If the stream is at end-of-file, the end-of-file indicator is set and getchar returns
EOF. If a read error occurs, the error indicator is set and getchar returns EOF.

The getwchar function returns the next wide character from the input stream pointed to by
stdin. If the stream is at end-of-file, the end-of-file indicator is set and getwchar
returns WEOF. If a read error occurs, the error indicator is set and getwchar returns
WEOF. If an encoding error occurs, errno is set to EILSEQ and getwchar returns
WEOF.

When an error has occurred, errno contains a value indicating the type of error that has
been detected.

See Also: fgetc, fgetchar, fgets, fopen, getc, gets, ungetc

Example: #include <stdio.h>

void main()
{

FILE *fp;
int c;

fp = freopen("file", "r", stdin);
while((c = getchar()) != EOF)

putchar(c);
fclose(fp);

}

Classification: getchar is ANSI, getwchar is ANSI

Systems: getchar - All, Netware
getwchar - All

262 Library Functions and Macros

getche

Synopsis: #include <conio.h>
int getche(void);

Description: The getche function obtains the next available keystroke from the console. The function
will wait until a keystroke is available. That character is echoed on the screen at the position
of the cursor (use getch when it is not desired to echo the keystroke).

The kbhit function can be used to determine if a keystroke is available.

Returns: A value of EOF is returned when an error is detected; otherwise, the getche function
returns the value of the keystroke (or character).

When the keystroke represents an extended function key (for example, a function key, a
cursor-movement key or the ALT key with a letter or a digit), 0xff is returned and the next
call to getche returns a value for the extended function.

See Also: getch, kbhit, putch, ungetch

Example: #include <stdio.h>
#include <conio.h>

void main()
{

int c;

printf("Press any key\n");
c = getche();
printf("You pressed %c(%d)\n", c, c);

}

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 263

_getcliprgn

Synopsis: #include <graph.h>voidFARgetcliprgn(shortFAR*x1,shortFAR*y1,shortFAR*x2,shortFAR*y2);
Description: Thegetcliprgn function returns the location of the current clipping region. A clipping

region is defined with thesetcliprgn orsetviewport functions. By default, the
clipping region is the entire screen.

The current clipping region is a rectangular area of the screen to which graphics output is
restricted. The top left corner of the clipping region is placed in the arguments (x1,y1).
The bottom right corner of the clipping region is placed in (x2,y2).

Returns: Thegetcliprgn function returns the location of the current clipping region.

See Also: setcliprgn,setviewport
Example: #include <conio.h>

#include <graph.h>

main()
{

short x1, y1, x2, y2;setvideomode(VRES16COLOR);getcliprgn(&x1,&y1,&x2,&y2);setcliprgn(130,100,510,380);ellipse(GBORDER,120,90,520,390);
getch();setcliprgn(x1,y1,x2,y2);setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

264 Library Functions and Macros

getcmd

Synopsis: #include <process.h>char*getcmd(char*cmdline);
Description: The getcmd function causes the command line information, with the program name

removed, to be copied to cmd_line. The information is terminated with a ’\0’ character.
This provides a method of obtaining the original parameters to a program as a single string of
text.

This information can also be obtained by examining the vector of program parameters passed
to the main function in the program.

Returns: The address of the target cmd_line is returned.

See Also: abort, atexit,
bgetcmd, close, exec Functions, exit,

Exit,exit, getenv,
main, onexit, putenv, signal, spawn Functions, system, wait

Example: Suppose a program were invoked with the command line

myprog arg-1 (my stuff) here

where that program contains

#include <stdio.h>
#include <process.h>

void main()
{

char cmds[128];

printf("%s\n", getcmd(cmds));
}

produces the following:

arg-1 (my stuff) here

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 265

_getcolor

Synopsis: #include <graph.h>shortFARgetcolor(void);
Description: Thegetcolor function returns the pixel value for the current color. This is the color

used for displaying graphics output. The default color value is one less than the maximum
number of colors in the current video mode.

Returns: Thegetcolor function returns the pixel value for the current color.

See Also: setcolor
Example: #include <conio.h>

#include <graph.h>

main()
{intcol,oldcol;setvideomode(VRES16COLOR);oldcol=getcolor();

for(col = 0; col < 16; ++col) {setcolor(col);rectangle(GFILLINTERIOR,100,100,540,380);
getch();

}setcolor(oldcol);setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

266 Library Functions and Macros

_getcurrentposition Functions

Synopsis: #include <graph.h>structxycoordFARgetcurrentposition(void);structwxycoordFARgetcurrentpositionw(void);
Description: Thegetcurrentposition functions return the current output position for graphics.

Thegetcurrentposition function returns the point in view coordinates. Thegetcurrentpositionw function returns the point in window coordinates.

The current position defaults to the origin, (0,0), when a new video mode is selected. It is
changed by successful calls to thearc,moveto and

lineto functions as well as thesetviewport function.

Note that the output position for graphics output differs from that for text output. The output
position for text output can be set by use of thesettextposition function.

Returns: Thegetcurrentposition functions return the current output position for graphics.

See Also: moveto,settextposition
Example: #include <conio.h>

#include <graph.h>

main()
{structxycoordoldpos;setvideomode(VRES16COLOR);oldpos=getcurrentposition();moveto(100,100);lineto(540,100);lineto(320,380);lineto(100,100);moveto(oldpos.xcoord,oldpos.ycoord);

getch();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: getcurrentposition�DOS,QNXgetcurrentpositionw�DOS,QNX
Library Functions and Macros 267

getcwd

Synopsis: #include <unistd.h>char*getcwd(char*buffer,sizetsize);
Description: The getcwd function returns the name of the current working directory. The buffer address

is either NULL or is the location at which a string containing the name of the current working
directory is placed. In the latter case, the value of size is the length (including the delimiting
’\0’ character) which can be be used to store this name.

The maximum size that might be required for buffer isPATHMAX + 1 bytes.

Extension: When buffer has a value of NULL, a string is allocated using malloc to contain
the name of the current working directory. This string may be freed using the free
function.

Returns: The getcwd function returns the address of the string containing the name of the current
working directory, unless an error occurs, in which case NULL is returned.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

EINVAL The argument size is negative.

ENOMEM Not enough memory to allocate a buffer.

ERANGE The buffer is too small (specified by size) to contain the name of the
current working directory.

See Also: chdir, mkdir, rmdir

Example: #include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

void main()
{

char *cwd;

268 Library Functions and Macros

getcwd

cwd = getcwd(NULL, 0);
if(cwd != NULL) {

printf("My working directory is %s\n", cwd);
free(cwd);

}
}

produces the following:

My working directory is /home/bill

Classification: POSIX 1003.1 with extensions

Systems: All, Netware

Library Functions and Macros 269

getenv, _wgetenv

Synopsis: #include <stdlib.h>
char *getenv(const char *name);wchart*wgetenv(constwchart*name);

Safer C: The Safer C Library extension provides thegetenvs function which is a safer alternative
to getenv. This newergetenvs function is recommended to be used instead of the
traditional "unsafe" getenv function.

Description: The getenv function searches the environment list for an entry matching the string pointed
to by name. The matching is case-sensitive; all lowercase letters are treated as different from
uppercase letters.

Entries can be added to the environment list with the QNX export command or with the
putenv or setenv functions. All entries in the environment list can be displayed by using
the QNX export command with no arguments.

To assign a string to a variable and place it in the environment list:

% export INCLUDE=/usr/include

To see what variables are in the environment list, and their current assignments:

% export
SHELL=ksh
TERM=qnx
LOGNAME=fred
PATH=:/bin:/usr/bin
HOME=/home/fred
INCLUDE=/usr/include
LIB=/usr/lib
%wgetenv is a wide-character version of getenv the argument and return value ofwgetenv are wide-character strings.

Returns: The getenv function returns a pointer to the string assigned to the environment variable if
found, and NULL if no match was found. Note: the value returned should be duplicated if
you intend to modify the contents of the string.

See Also: clearenv, exec Functions,getenvs, putenv,searchenv, setenv, spawn
Functions, system

270 Library Functions and Macros

getenv, _wgetenv

Example: #include <stdio.h>
#include <stdlib.h>

void main(void)
{

char *path;

path = getenv("INCLUDE");
if(path != NULL)

printf("INCLUDE=%s\n", path);
}

Classification: getenv is ANSI, _wgetenv is not ANSI

Systems: getenv - All, Netwarewgetenv�All

Library Functions and Macros 271

getenv_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdlib.h>errnotgetenvs(sizet*restrictlen,

char * restrict value,rsizetmaxsize,
const char * restrict name);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked andgetenvs will return a non-zero value to
indicate an error, or the runtime-constraint handler aborts the program.

name shall not be a null pointer. maxsize shall neither be equal to zero nor be greater thanRSIZEMAX. If maxsize is not equal to zero, then value shall not be a null pointer.

If there is a runtime-constraint violation, the integer pointed to by len (if len is not null) is set
to zero, and the environment list is not searched.

Description: Thegetenvs function searches the environment list for an entry matching the string
pointed to by name.

If that entry is found,getenvs performs the following actions. If len is not a null pointer,
the length of the string associated with the matched entry is stored in the integer pointed to
by len. If the length of the associated string is less than maxsize, then the associated string is
copied to the array pointed to by value.

If that entry is not found,getenvs performs the following actions. If len is not a null
pointer, zero is stored in the integer pointed to by len. If maxsize is greater than zero, then
value[0] is set to the null character.

The matching is case-sensitive; all lowercase letters are treated as different from uppercase
letters.

Entries can be added to the environment list with the QNX export command or with the
putenv or setenv functions. All entries in the environment list can be displayed by using
the QNX export command with no arguments.

To assign a string to a variable and place it in the environment list:

% export INCLUDE=/usr/include

To see what variables are in the environment list, and their current assignments:

272 Library Functions and Macros

getenv_s

% export
SHELL=ksh
TERM=qnx
LOGNAME=fred
PATH=:/bin:/usr/bin
HOME=/home/fred
INCLUDE=/usr/include
LIB=/usr/lib
%

Returns: Thegetenvs function returns zero if the environment string specified by name was found
and successfully stored in the buffer pointed to by value. Otherwise, a non-zero value is
returned.

See Also: clearenv, exec Functions, getenv, putenv,searchenv, setenv, spawn
Functions, system

Example:
#defineSTDCWANTLIBEXT11
#include <stdlib.h>
#include <stdio.h>

void main(void)
{

char buffer[128];sizetlen;if(getenvs(&len,buffer,sizeof(buffer),"INCLUDE")
== 0)

printf("INCLUDE=%s\n", buffer);
}

Classification: TR 24731

Systems: All, Netware

Library Functions and Macros 273

_getfillmask

Synopsis: #include <graph.h>unsignedcharFAR*FARgetfillmask(unsignedcharFAR*mask);
Description: Thegetfillmask function copies the current fill mask into the area located by the

argument mask. The fill mask is used by theellipse,floodfill,pie,polygon andrectangle functions that fill an area of the screen.

The fill mask is an eight-byte array which is interpreted as a square pattern (8 by 8) of 64
bits. Each bit in the mask corresponds to a pixel. When a region is filled, each point in the
region is mapped onto the fill mask. When a bit from the mask is one, the pixel value of the
corresponding point is set using the current plotting action with the current color; when the
bit is zero, the pixel value of that point is not affected.

When the fill mask is not set, a fill operation will set all points in the fill region to have a
pixel value of the current color.

Returns: If no fill mask has been set, NULL is returned; otherwise, thegetfillmask function
returns mask.

See Also:
floodfill,setfillmask,setplotaction

Example: #include <conio.h>
#include <graph.h>charoldmask[8];charnewmask[8]={0x81,0x42,0x24,0x18,

0x18, 0x24, 0x42, 0x81 };

main()
{ setvideomode(VRES16COLOR);getfillmask(oldmask);setfillmask(newmask);rectangle(GFILLINTERIOR,100,100,540,380);setfillmask(oldmask);

getch();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

274 Library Functions and Macros

_getfontinfo

Synopsis: #include <graph.h>shortFARgetfontinfo(structfontinfoFAR*info);
Description: Thegetfontinfo function returns information about the currently selected font. Fonts

are selected with thesetfont function. The font information is returned in thefontinfo structure indicated by the argument info. The structure contains the following
fields:

type 1 for a vector font, 0 for a bit-mapped font

ascent distance from top of character to baseline in pixels

pixwidth character width in pixels (0 for a proportional font)

pixheight character height in pixels

avgwidth average character width in pixels

filename name of the file containing the current font

facename name of the current font

Returns: Thegetfontinfo function returns zero if the font information is returned successfully;
otherwise a negative value is returned.

See Also: registerfonts,unregisterfonts,setfont,outgtext,getgtextextent,setgtextvector,getgtextvector

Library Functions and Macros 275

_getfontinfo

Example: #include <conio.h>
#include <graph.h>

main()
{

int width;structfontinfoinfo;setvideomode(VRES16COLOR);getfontinfo(&info);moveto(100,100);outgtext("WATCOMGraphics");width=getgtextextent("WATCOMGraphics");rectangle(GBORDER,100,100,
100 + width, 100 + info.pixheight);

getch();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

276 Library Functions and Macros

_getgtextextent

Synopsis: #include <graph.h>shortFARgetgtextextent(charFAR*text);
Description: Thegetgtextextent function returns the length in pixels of the argument text as it

would be displayed in the current font by the functionoutgtext. Note that the text is
not displayed on the screen, only its length is determined.

Returns: Thegetgtextextent function returns the length in pixels of a string.

See Also: registerfonts,unregisterfonts,setfont,getfontinfo,outgtext,setgtextvector,getgtextvector
Example: #include <conio.h>

#include <graph.h>

main()
{

int width;structfontinfoinfo;setvideomode(VRES16COLOR);getfontinfo(&info);moveto(100,100);outgtext("WATCOMGraphics");width=getgtextextent("WATCOMGraphics");rectangle(GBORDER,100,100,
100 + width, 100 + info.pixheight);

getch();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 277

_getgtextvector

Synopsis: #include <graph.h>structxycoordFARgetgtextvector(void);
Description: Thegetgtextvector function returns the current value of the text orientation vector.

This is the direction used when text is displayed by theoutgtext function.

Returns: Thegetgtextvector function returns, as an xycoord structure, the current value of
the text orientation vector.

See Also: registerfonts,unregisterfonts,setfont,getfontinfo,outgtext,getgtextextent,setgtextvector
Example: #include <conio.h>

#include <graph.h>

main()
{structxycoordoldvec;setvideomode(VRES16COLOR);oldvec=getgtextvector();setgtextvector(0,�1);moveto(100,100);outgtext("WATCOMGraphics");setgtextvector(oldvec.xcoord,oldvec.ycoord);

getch();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

278 Library Functions and Macros

_getimage Functions

Synopsis: #include <graph.h>voidFARgetimage(shortx1,shorty1,
short x2, short y2,charHUGE*image);voidFARgetimagew(doublex1,doubley1,

double x2, double y2,charHUGE*image);voidFARgetimagewxy(structwxycoordFAR*p1,structwxycoordFAR*p2,charHUGE*image);
Description: Thegetimage functions store a copy of an area of the screen into the buffer indicated by

the image argument. Thegetimage function uses the view coordinate system. Thegetimagew andgetimagewxy functions use the window coordinate system.

The screen image is the rectangular area defined by the points (x1,y1) and (x2,y2).
The buffer image must be large enough to contain the image (the size of the image can be
determined by using the
imagesize function). The image may be displayed upon the

screen at some later time by using theputimage functions.

Returns: Thegetimage functions do not return a value.

See Also:
imagesize,putimage

Library Functions and Macros 279

_getimage Functions

Example: #include <conio.h>
#include <graph.h>
#include <malloc.h>

main()
{

char *buf;
int y;setvideomode(VRES16COLOR);ellipse(GFILLINTERIOR,100,100,200,200);
buf = (char*) malloc(imagesize(100,100,201,201));
if(buf != NULL) {getimage(100,100,201,201,buf);putimage(260,200,buf,GPSET);putimage(420,100,buf,GPSET);

for(y = 100; y < 300;) {putimage(420,y,buf,GXOR);
y += 20;putimage(420,y,buf,GXOR);

}
free(buf);

}
getch();setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: getimage�DOS,QNXgetimagew�DOS,QNXgetimagewxy�DOS,QNX

280 Library Functions and Macros

_getlinestyle

Synopsis: #include <graph.h>unsignedshortFARgetlinestyle(void);
Description: Thegetlinestyle function returns the current line-style mask.

The line-style mask determines the style by which lines and arcs are drawn. The mask is
treated as an array of 16 bits. As a line is drawn, a pixel at a time, the bits in this array are
cyclically tested. When a bit in the array is 1, the pixel value for the current point is set using
the current color according to the current plotting action; otherwise, the pixel value for the
point is left unchanged. A solid line would result from a value of 0xFFFF and a dashed line
would result from a value of 0xF0F0

The default line style mask is 0xFFFF

Returns: Thegetlinestyle function returns the current line-style mask.

See Also:
lineto,pie,rectangle,polygon,setlinestyle

Example: #include <conio.h>
#include <graph.h>

#define DASHED 0xf0f0

main()
{unsignedoldstyle;setvideomode(VRES16COLOR);oldstyle=getlinestyle();setlinestyle(DASHED);rectangle(GBORDER,100,100,540,380);setlinestyle(oldstyle);

getch();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 281

_getphyscoord

Synopsis: #include <graph.h>structxycoordFARgetphyscoord(shortx,shorty);
Description: Thegetphyscoord function returns the physical coordinates of the position with view

coordinates (x,y). View coordinates are defined by thesetvieworg andsetviewport functions.

Returns: Thegetphyscoord function returns the physical coordinates, as an xycoord structure,
of the given point.

See Also: getviewcoord,setvieworg,setviewport
Example: #include <conio.h>

#include <graph.h>
#include <stdlib.h>

main()
{

struct xycoord pos;setvideomode(VRES16COLOR);setvieworg(rand()%640,rand()%480);pos=getphyscoord(0,0);rectangle(GBORDER,�pos.xcoord,�pos.ycoord,
639 - pos.xcoord, 479 - pos.ycoord);

getch();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

282 Library Functions and Macros

_getpixel Functions

Synopsis: #include <graph.h>shortFARgetpixel(shortx,shorty);shortFARgetpixelw(doublex,doubley);
Description: Thegetpixel functions return the pixel value for the point with coordinates (x,y).

Thegetpixel function uses the view coordinate system. Thegetpixelw function
uses the window coordinate system.

Returns: Thegetpixel functions return the pixel value for the given point when the point lies
within the clipping region; otherwise, (-1) is returned.

See Also: setpixel
Example: #include <conio.h>

#include <graph.h>
#include <stdlib.h>

main()
{

int x, y;
unsigned i;setvideomode(VRES16COLOR);rectangle(GBORDER,100,100,540,380);
for(i = 0; i <= 60000; ++i) {

x = 101 + rand() % 439;
y = 101 + rand() % 279;setcolor(getpixel(x,y)+1);setpixel(x,y);

}
getch();setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: getpixel�DOS,QNXgetpixelw�DOS,QNX
Library Functions and Macros 283

_getplotaction

Synopsis: #include <graph.h>shortFARgetplotaction(void);
Description: Thegetplotaction function returns the current plotting action.

The drawing functions cause pixels to be set with a pixel value. By default, the value to be
set is obtained by replacing the original pixel value with the supplied pixel value.
Alternatively, the replaced value may be computed as a function of the original and the
supplied pixel values.

The plotting action can have one of the following values:

_GPSET replace the original screen pixel value with the supplied pixel
value

_GAND replace the original screen pixel value with the bitwise and of the
original pixel value and the supplied pixel value

_GOR replace the original screen pixel value with the bitwise or of the
original pixel value and the supplied pixel value

_GXOR replace the original screen pixel value with the bitwise
exclusive-or of the original pixel value and the supplied pixel
value. Performing this operation twice will restore the original
screen contents, providing an efficient method to produce
animated effects.

Returns: Thegetplotaction function returns the current plotting action.

See Also: setplotaction

284 Library Functions and Macros

_getplotaction

Example: #include <conio.h>
#include <graph.h>

main()
{intoldact;setvideomode(VRES16COLOR);oldact=getplotaction();setplotaction(GPSET);rectangle(GFILLINTERIOR,100,100,540,380);

getch();setplotaction(GXOR);rectangle(GFILLINTERIOR,100,100,540,380);
getch();setplotaction(oldact);setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 285

gets, _getws

Synopsis: #include <stdio.h>
char *gets(char *buf);
#include <stdio.h>wchart*getws(wchart*buf);

Description: The gets function gets a string of characters from the file designated by stdin and stores
them in the array pointed to by buf until end-of-file is encountered or a new-line character is
read. Any new-line character is discarded, and a null character is placed immediately after
the last character read into the array.

Thegetws function is identical to gets except that it gets a string of multibyte characters
(if present) from the input stream pointed to by stdin, converts them to wide characters,
and stores them in the wide-character array pointed to by buf until end-of-file is encountered
or a wide-character new-line character is read.

It is recommended that fgets be used instead of gets because data beyond the array buf
will be destroyed if a new-line character is not read from the input stream stdin before the
end of the array buf is reached.

A common programming error is to assume the presence of a new-line character in every
string that is read into the array. A new-line character may not appear as the last character in
a file, just before end-of-file.

Returns: The gets function returns buf if successful. NULL is returned if end-of-file is encountered,
or if a read error occurs. When an error has occurred, errno contains a value indicating the
type of error that has been detected.

See Also: fgetc, fgetchar, fgets, fopen, getc, getchar, ungetc

Example: #include <stdio.h>

void main()
{

char buffer[80];

while(gets(buffer) != NULL)
puts(buffer);

}

Classification: gets is ANSI, _getws is not ANSI

Systems: gets - All, Netwaregetws�All
286 Library Functions and Macros

gets_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdio.h>char*getss(char*s,rsizetn);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked andgetss will set s[0] to be the null character,
and characters are read and discarded from stdin until a new-line character is read, or
end-of-file or a read error occurs.

s shall not be a null pointer. n shall neither be equal to zero nor be greater than
RSIZEMAX

. A new-line character, end-of-file, or read error shall occur within reading n-1 characters
from stdin .

Description: Thegetss function gets a string of characters from the file designated by stdin and
stores them in the array pointed to by s until end-of-file is encountered or a new-line
character is read. Size of the array s is specified by the argument n , this information is used
to protect buffer from overflow. If buffer s is about to be overflown, runtime-constraint is
activated. Any new-line character is discarded, and a null character is placed immediately
after the last character read into the array.

Returns: Thegetss function returns s if successful. NULL is returned if there was a
runtime-constraint violation, or if end-of-file is encountered and no caracters have been read
into the array, or if a read error occurs.

See Also: fgetc, fgetchar, fgets, fopen, getc, getchar, gets, ungetc

Example:
#defineSTDCWANTLIBEXT11
#include <stdio.h>

int main()
{

char buffer[80];while(getss(buffer,sizeof(buffer))!=NULL)
puts(buffer);

}

Classification: TR 24731

Library Functions and Macros 287

_gettextcolor

Synopsis: #include <graph.h>shortFARgettextcolor(void);
Description: Thegettextcolor function returns the pixel value of the current text color. This is the

color used for displaying text with theouttext andoutmem functions. The default
text color value is set to 7 whenever a new video mode is selected.

Returns: Thegettextcolor function returns the pixel value of the current text color.

See Also: settextcolor,setcolor,outtext,outmem
Example: #include <conio.h>

#include <graph.h>

main()
{intoldcol;longoldbk;setvideomode(TEXTC80);oldcol=gettextcolor();oldbk=getbkcolor();settextcolor(7);setbkcolor(BLUE);outtext("WATCOM\nGraphics");settextcolor(oldcol);setbkcolor(oldbk);

getch();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

288 Library Functions and Macros

_gettextcursor

Synopsis: #include <graph.h>shortFARgettextcursor(void);
Description: Thegettextcursor function returns the current cursor attribute, or shape. The cursor

shape is set with thesettextcursor function. See thesettextcursor function
for a description of the value returned by thegettextcursor function.

Returns: Thegettextcursor function returns the current cursor shape when successful;
otherwise, (-1) is returned.

See Also: settextcursor,displaycursor
Example: #include <conio.h>

#include <graph.h>

main()
{intoldshape;oldshape=gettextcursor();settextcursor(0x0007);outtext("\nBlockcursor");

getch();settextcursor(0x0407);outtext("\nHalfheightcursor");
getch();settextcursor(0x2000);outtext("\nNocursor");
getch();settextcursor(oldshape);

}

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 289

_gettextextent

Synopsis: #include <graph.h>voidFARgettextextent(shortx,shorty,charFAR*text,structxycoordFAR*concat,structxycoordFAR*extent);
Description: Thegettextextent function simulates the effect of using thegrtext function to

display the text string text at the position (x,y), using the current text settings. The
concatenation point is returned in the argument concat. The text extent parallelogram is
returned in the array extent.

The concatenation point is the position to use to output text after the given string. The text
extent parallelogram outlines the area where the text string would be displayed. The four
points are returned in counter-clockwise order, starting at the upper-left corner.

Returns: Thegettextextent function does not return a value.

See Also: grtext,gettextsettings
Example: #include <conio.h>

#include <graph.h>

main()
{

struct xycoord concat;
struct xycoord extent[4];setvideomode(VRES16COLOR);grtext(100,100,"hot");gettextextent(100,100,"hot",&concat,extent);polygon(GBORDER,4,extent);grtext(concat.xcoord,concat.ycoord,"dog");
getch();setvideomode(DEFAULTMODE);

}

produces the following:

290 Library Functions and Macros

_gettextextent

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 291

_gettextposition

Synopsis: #include <graph.h>structrccoordFARgettextposition(void);
Description: Thegettextposition function returns the current output position for text. This

position is in terms of characters, not pixels.

The current position defaults to the top left corner of the screen, (1,1), when a new video
mode is selected. It is changed by successful calls to theouttext,outmem,settextposition andsettextwindow functions.

Note that the output position for graphics output differs from that for text output. The output
position for graphics output can be set by use of themoveto function.

Returns: Thegettextposition function returns, as an rccoord structure, the current output
position for text.

See Also: outtext,outmem,settextposition,settextwindow,moveto
Example: #include <conio.h>

#include <graph.h>

main()
{structrccoordoldpos;setvideomode(TEXTC80);oldpos=gettextposition();settextposition(10,40);outtext("WATCOMGraphics");settextposition(oldpos.row,oldpos.col);

getch();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

292 Library Functions and Macros

_gettextsettings

Synopsis: #include <graph.h>structtextsettingsFAR*FARgettextsettings(structtextsettingsFAR*settings);
Description: Thegettextsettings function returns information about the current text settings used

when text is displayed by thegrtext function. The information is stored in the
textsettings structure indicated by the argument settings. The structure contains the
following fields (all are short fields):

basevectorx x-component of the current base vector

basevectory y-component of the current base vector

path current text path

height current text height (in pixels)

width current text width (in pixels)

spacing current text spacing (in pixels)

horizalign horizontal component of the current text alignment

vertalign vertical component of the current text alignment

Returns: Thegettextsettings function returns information about the current graphics text
settings.

See Also: grtext,setcharsize,setcharspacing,settextalign,settextpath,settextorient

Library Functions and Macros 293

_gettextsettings

Example: #include <conio.h>
#include <graph.h>

main()
{

struct textsettings ts;setvideomode(VRES16COLOR);gettextsettings(&ts);grtext(100,100,"WATCOM");setcharsize(2*ts.height,2*ts.width);grtext(100,300,"Graphics");setcharsize(ts.height,ts.width);
getch();setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

294 Library Functions and Macros

_gettextwindow

Synopsis: #include <graph.h>voidFARgettextwindow(shortFAR*row1,shortFAR*col1,shortFAR*row2,shortFAR*col2);
Description: Thegettextwindow function returns the location of the current text window. A text

window is defined with thesettextwindow function. By default, the text window is the
entire screen.

The current text window is a rectangular area of the screen. Text display is restricted to be
within this window. The top left corner of the text window is placed in the arguments
(row1,col1). The bottom right corner of the text window is placed in (row2,col2).

Returns: Thegettextwindow function returns the location of the current text window.

See Also: settextwindow,outtext,outmem,settextposition,scrolltextwindow
Example: #include <conio.h>

#include <graph.h>
#include <stdio.h>

main()
{

int i;
short r1, c1, r2, c2;
char buf[80];setvideomode(TEXTC80);gettextwindow(&r1,&c1,&r2,&c2);settextwindow(5,20,20,40);
for(i = 1; i <= 20; ++i) {

sprintf(buf, "Line %d\n", i);outtext(buf);
}
getch();settextwindow(r1,c1,r2,c2);setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 295

_getvideoconfig

Synopsis: #include <graph.h>structvideoconfigFAR*FARgetvideoconfig(structvideoconfigFAR*config);
Description: Thegetvideoconfig function returns information about the current video mode and

the hardware configuration. The information is returned in the videoconfig structure
indicated by the argument config. The structure contains the following fields (all are short
fields):

numxpixels number of pixels in x-axis

numypixels number of pixels in y-axis

numtextcols number of text columns

numtextrows number of text rows

numcolors number of actual colors

bitsperpixel number of bits in a pixel value

numvideopages number of video pages

mode current video mode

adapter adapter type

monitor monitor type

memory number of kilobytes (1024 characters) of video memory

The adapter field will contain one of the following values:

_NODISPLAY no display adapter attached

_UNKNOWN unknown adapter/monitor type

_MDPA Monochrome Display/Printer Adapter

_CGA Color Graphics Adapter

_HERCULES Hercules Monochrome Adapter

296 Library Functions and Macros

_getvideoconfig

_MCGA Multi-Color Graphics Array

_EGA Enhanced Graphics Adapter

_VGA Video Graphics Array

_SVGA SuperVGA Adapter

The monitor field will contain one of the following values:

_MONO regular monochrome

_COLOR regular color

_ENHANCED enhanced color

_ANALOGMONO analog monochrome

_ANALOGCOLOR analog color

The amount of memory reported bygetvideoconfig will not always be correct for
SuperVGA adapters. Since it is not always possible to determine the amount of memory,getvideoconfig will always report 256K, the minimum amount.

Returns: Thegetvideoconfig function returns information about the current video mode and
the hardware configuration.

See Also: setvideomode,setvideomoderows

Library Functions and Macros 297

_getvideoconfig

Example: #include <conio.h>
#include <graph.h>
#include <stdio.h>
#include <stdlib.h>

main()
{

int mode;
struct videoconfig vc;
char buf[80];getvideoconfig(&vc);
/* select "best" video mode */
switch(vc.adapter) {caseVGA:caseSVGA:mode=VRES16COLOR;

break;caseMCGA:mode=MRES256COLOR;
break;caseEGA:if(vc.monitor==MONO){mode=ERESNOCOLOR;
} else {mode=ERESCOLOR;
}
break;caseCGA:mode=MRES4COLOR;
break;caseHERCULES:mode=HERCMONO;
break;

default :
puts("No graphics adapter");
exit(1);

}if(setvideomode(mode)){getvideoconfig(&vc);
sprintf(buf, "%d x %d x %d\n", vc.numxpixels,

vc.numypixels, vc.numcolors);outtext(buf);
getch();setvideomode(DEFAULTMODE);

}
}

298 Library Functions and Macros

_getvideoconfig

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 299

_getviewcoord Functions

Synopsis: #include <graph.h>structxycoordFARgetviewcoord(shortx,shorty);structxycoordFARgetviewcoordw(doublex,doubley);structxycoordFARgetviewcoordwxy(structwxycoordFAR*p);
Description: Thegetviewcoord functions translate a point from one coordinate system to viewport

coordinates. Thegetviewcoord function translates the point (x,y) from physical
coordinates. Thegetviewcoordw andgetviewcoordwxy functions translate the
point from the window coordinate system.

Viewport coordinates are defined by thesetvieworg andsetviewport functions.
Window coordinates are defined by thesetwindow function.

Note: In previous versions of the software, thegetviewcoord function was calledgetlogcoord.
Returns: Thegetviewcoord functions return the viewport coordinates, as an xycoord structure,

of the given point.

See Also: getphyscoord,setvieworg,setviewport,setwindow
Example: #include <conio.h>

#include <graph.h>
#include <stdlib.h>

main()
{

struct xycoord pos1, pos2;setvideomode(VRES16COLOR);setvieworg(rand()%640,rand()%480);pos1=getviewcoord(0,0);pos2=getviewcoord(639,479);rectangle(GBORDER,pos1.xcoord,pos1.ycoord,
pos2.xcoord, pos2.ycoord);

getch();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

300 Library Functions and Macros

_getviewcoord Functions

Systems: getviewcoord�DOS,QNXgetviewcoordw�DOS,QNXgetviewcoordwxy�DOS,QNX

Library Functions and Macros 301

_getvisualpage

Synopsis: #include <graph.h>shortFARgetvisualpage(void);
Description: Thegetvisualpage function returns the number of the currently selected visual

graphics page.

Only some combinations of video modes and hardware allow multiple pages of graphics to
exist. When multiple pages are supported, the active page may differ from the visual page.
The graphics information in the visual page determines what is displayed upon the screen.
Animation may be accomplished by alternating the visual page. A graphics page can be
constructed without affecting the screen by setting the active page to be different than the
visual page.

The number of available video pages can be determined by using thegetvideoconfig
function. The default video page is 0.

Returns: Thegetvisualpage function returns the number of the currently selected visual
graphics page.

See Also: setvisualpage,setactivepage,getactivepage,getvideoconfig

302 Library Functions and Macros

_getvisualpage

Example: #include <conio.h>
#include <graph.h>

main()
{intoldapage;intoldvpage;setvideomode(HRES16COLOR);oldapage=getactivepage();oldvpage=getvisualpage();

/* draw an ellipse on page 0 */setactivepage(0);setvisualpage(0);ellipse(GFILLINTERIOR,100,50,540,150);
/* draw a rectangle on page 1 */setactivepage(1);rectangle(GFILLINTERIOR,100,50,540,150);
getch();
/* display page 1 */setvisualpage(1);
getch();setactivepage(oldapage);setvisualpage(oldvpage);setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 303

_getwindowcoord

Synopsis: #include <graph.h>structwxycoordFARgetwindowcoord(shortx,shorty);
Description: Thegetwindowcoord function returns the window coordinates of the position with

view coordinates (x,y). Window coordinates are defined by thesetwindow function.

Returns: Thegetwindowcoord function returns the window coordinates, as awxycoord
structure, of the given point.

See Also: setwindow,getviewcoord
Example: #include <conio.h>

#include <graph.h>

main()
{

struct xycoord centre;structwxycoordpos1,pos2;
/* draw a box 50 pixels square */
/* in the middle of the screen */setvideomode(MAXRESMODE);centre=getviewcoordw(0.5,0.5);pos1=getwindowcoord(centre.xcoord�25,

centre.ycoord - 25);pos2=getwindowcoord(centre.xcoord+25,
centre.ycoord + 25);rectanglewxy(GBORDER,&pos1,&pos2);

getch();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

304 Library Functions and Macros

gmtime Functions

Synopsis: #include <time.h>structtm*gmtime(consttimet*timer);structtm*gmtime(consttimet*timer,
struct tm *tmbuf);

struct tm {inttmsec;/*secondsaftertheminute��[0,61]*/inttmmin;/*minutesafterthehour��[0,59]*/inttmhour;/*hoursaftermidnight��[0,23]*/inttmmday;/*dayofthemonth��[1,31]*/inttmmon;/*monthssinceJanuary��[0,11]*/inttmyear;/*yearssince1900 */inttmwday;/*dayssinceSunday��[0,6]*/inttmyday;/*dayssinceJanuary1��[0,365]*/inttmisdst;/*DaylightSavingsTimeflag*/
};

Safer C: The Safer C Library extension provides the function which is a safer alternative to gmtime.
This newergmtimes function is recommended to be used instead of the traditional
"unsafe" gmtime function.

Description: The gmtime functions convert the calendar time pointed to by timer into a broken-down
time, expressed as Coordinated Universal Time (UTC) (formerly known as Greenwich Mean
Time (GMT)).

The functiongmtime places the converted time in the tm structure pointed to by tmbuf,
and the gmtime gmtime places the converted time in a static structure that is re-used each
time gmtime is called.

The time set on the computer with the QNX date command reflects Coordinated Universal
Time (UTC). The environment variable TZ is used to establish the local time zone. See the
section The TZ Environment Variable for a discussion of how to set the time zone.

Returns: The gmtime functions return a pointer to a structure containing the broken-down time.

See Also: asctime, clock, ctime, difftime, localtime, mktime, strftime, time,
tzset

Library Functions and Macros 305

gmtime Functions

Example: #include <stdio.h>
#include <time.h>

void main()
{timettimeofday;

auto char buf[26];
auto struct tm tmbuf;timeofday=time(NULL);gmtime(&timeofday,&tmbuf);
printf("It is now: %.24s GMT\n",asctime(&tmbuf,buf));

}

produces the following:

It is now: Fri Dec 25 15:58:27 1987 GMT

Classification: gmtime is ANSI, _gmtime is not ANSI

Systems: gmtime - All, Netwaregmtime�All

306 Library Functions and Macros

_grstatus

Synopsis: #include <graph.h>shortFARgrstatus(void);
Description: Thegrstatus function returns the status of the most recently called graphics library

function. The function can be called after any graphics function to determine if any errors or
warnings occurred. The function returns 0 if the previous function was successful. Values
less than 0 indicate an error occurred; values greater than 0 indicate a warning condition.

The following values can be returned:

Constant Value ExplanationGROK

0 no errorGRERROR
-1 graphics errorGRMODENOTSUPPORTED�2videomodenotsupportedGRNOTINPROPERMODE�3functionn/ainthismodeGRINVALIDPARAMETER�4invalidparameter(s)GRINSUFFICIENTMEMORY�5outofmemoryGRFONTFILENOTFOUND�6can’topenfontfileGRINVALIDFONTFILE�7fontfilehasinvalidformatGRNOOUTPUT 1 nothing was doneGRCLIPPED 2 output clipped

Returns: Thegrstatus function returns the status of the most recently called graphics library
function.

Example: #include <conio.h>
#include <graph.h>
#include <stdlib.h>

main()
{

int x, y;setvideomode(VRES16COLOR);while(grstatus()==GROK){
x = rand() % 700;
y = rand() % 500;setpixel(x,y);

}
getch();setvideomode(DEFAULTMODE);

}

Library Functions and Macros 307

_grstatus

Classification: _grstatus is PC Graphics

Systems: DOS, QNX

308 Library Functions and Macros

_grtext Functions

Synopsis: #include <graph.h>shortFARgrtext(shortx,shorty,charFAR*text);shortFARgrtextw(doublex,doubley,charFAR*text);
Description: Thegrtext functions display a character string. Thegrtext function uses the view

coordinate system. Thegrtextw function uses the window coordinate system.

The character string text is displayed at the point (x,y). The string must be terminated by
a null character (’\0’). The text is displayed in the current color using the current text
settings.

The graphics library can display text in three different ways.

1. Theouttext andoutmem functions can be used in any video mode.
However, this variety of text can be displayed in only one size.

2. Thegrtext function displays text as a sequence of line segments, and can be
drawn in different sizes, with different orientations and alignments.

3. Theoutgtext function displays text in the currently selected font. Both
bit-mapped and vector fonts are supported; the size and type of text depends on
the fonts that are available.

Returns: Thegrtext functions return a non-zero value when the text was successfully drawn;
otherwise, zero is returned.

See Also: outtext,outmem,outgtext,setcharsize,settextalign,settextpath,settextorient,setcharspacing
Example: #include <conio.h>

#include <graph.h>

main()
{ setvideomode(VRES16COLOR);grtext(200,100,"WATCOM");grtext(200,200,"Graphics");

getch();setvideomode(DEFAULTMODE);
}

Library Functions and Macros 309

_grtext Functions

produces the following:

Classification: PC Graphics

Systems: grtext�DOS,QNXgrtextw�DOS,QNX

310 Library Functions and Macros

halloc

Synopsis: #include <malloc.h>voidhuge*halloc(longintnumb,sizetsize);
Description: The halloc function allocates space for an array of numb objects of size bytes each and

initializes each object to 0. When the size of the array is greater than 64K bytes, then the
size of an array element must be a power of 2 since an object could straddle a segment
boundary.

Returns: The halloc function returns a far pointer (of type void huge *) to the start of the
allocated memory. The NULL value is returned if there is insufficient memory available.
The NULL value is also returned if the size of the array is greater than 64K bytes and the size
of an array element is not a power of 2.

See Also: calloc Functions,expand Functions, free Functions, hfree, malloc Functions,msize Functions, realloc Functions, sbrk

Example: #include <stdio.h>
#include <malloc.h>

void main()
{longinthuge*bigbuffer;bigbuffer=(longinthuge*)

halloc(1024L, sizeof(long));if(bigbuffer==NULL){
printf("Unable to allocate memory\n");

} else {

/* rest of code goes here */hfree(bigbuffer);/*deallocate*/
}

}

Classification: WATCOM

Systems: DOS/16, Windows, QNX/16, OS/2 1.x(all)

Library Functions and Macros 311

_heapchk Functions

Synopsis: #include <malloc.h>intheapchk(void);intbheapchk(segmentseg);intfheapchk(void);intnheapchk(void);
Description: The
heapchk functions along with
heapset and
heapwalk are provided for

debugging heap related problems in programs.

The
heapchk functions perform a consistency check on the unallocated memory space or

"heap". The consistency check determines whether all the heap entries are valid. Each
function checks a particular heap, as listed below:

Function Heap Checked

_heapchk Depends on data model of the program

_bheapchk Based heap specified by seg value;
NULLSEG

 specifies all based
heaps

_fheapchk Far heap (outside the default data segment)

_nheapchk Near heap (inside the default data segment)

In a small data memory model, the
heapchk function is equivalent to thenheapchk

function; in a large data memory model, the
heapchk function is equivalent to thefheapchk function.

Returns: All four functions return one of the following manifest constants which are defined in
<malloc.h>.

Constant Meaning

_HEAPOK The heap appears to be consistent.

_HEAPEMPTY The heap is empty.

_HEAPBADBEGIN The heap has been damaged.

_HEAPBADNODE The heap contains a bad node, or is damaged.

See Also:
heapenable,heapgrow,heapmin,heapset,heapshrink,heapwalk

312 Library Functions and Macros

_heapchk Functions

Example: #include <stdio.h>
#include <malloc.h>

void main()
{

char *buffer;

buffer = (char *)malloc(80);
malloc(1024);
free(buffer);switch(heapchk()){caseHEAPOK:

printf("OK - heap is good\n");
break;caseHEAPEMPTY:
printf("OK - heap is empty\n");
break;caseHEAPBADBEGIN:
printf("ERROR - heap is damaged\n");
break;caseHEAPBADNODE:
printf("ERROR - bad node in heap\n");
break;

}
}

Classification: WATCOM

Systems:
heapchk�Allfheapchk�DOS/16,Windows,QNX/16,OS/21.x(all)nheapchk�DOS,Windows,Win386,Win32,QNX,OS/21.x,OS/2

1.x(MT), OS/2-32bheapchk�DOS/16,Windows,QNX/16,OS/21.x(all)

Library Functions and Macros 313

_heapenable

Synopsis: #include <malloc.h>intheapenable(intenabled);
Description: The
heapenable function is used to control attempts by the heap allocation manager to

request more memory from the operating system’s memory pool. If enabled is 0 then all
further allocations which would normally go to the operating system for more memory will
instead fail and return NULL. If enabled is 1 then requests for more memory from the
operating system’s memory pool are re-enabled.

This function can be used to impose a limit on the amount of system memory that is allocated
by an application. For example, if an application wishes to allocate no more than 200K bytes
of memory, it could allocate 200K and immediately free it. It can then call

heapenable
to disable any further requests from the system memory pool. After this, the application can
allocate memory from the 200K pool that it has already obtained.

Returns: The return value is the previous state of the system allocation flag.

See Also:
heapchk,heapgrow,heapmin,heapset,heapshrink,heapwalk

Example: #include <stdio.h>
#include <malloc.h>

void main()
{

char *p;

p = malloc(200*1024);
if(p != NULL) free(p);heapenable(0);
/*

allocate memory from a pool that
has been capped at 200K

*/
}

Classification: WATCOM

Systems: All

314 Library Functions and Macros

_heapgrow Functions

Synopsis: #include <malloc.h>voidheapgrow(void);voidnheapgrow(void);voidfheapgrow(void);
Description: Thenheapgrow function attempts to grow the near heap to the maximum size of 64K.

You will want to do this in the small data models if you are using both malloc andfmalloc or halloc. Once a call to
fmalloc or halloc has been made, you may

not be able to allocate any memory with malloc unless space has been reserved for the near
heap using either malloc, sbrk ornheapgrow.
The
fheapgrow function doesn’t do anything to the heap because the far heap will be

extended automatically when needed. If the current far heap cannot be extended, then
another far heap will be started.

In a small data memory model, the
heapgrow function is equivalent to thenheapgrow

function; in a large data memory model, the
heapgrow function is equivalent to thefheapgrow function.

Returns: These functions do not return a value.

See Also:
heapchk,heapenable,heapmin,heapset,heapshrink,heapwalk

Example: #include <stdio.h>
#include <malloc.h>

void main()
{char*p,*fmtstring;fmtstring="Amountofmemoryavailableis%u\n";printf(fmtstring,memavl());nheapgrow();printf(fmtstring,memavl());

p = (char *) malloc(2000);printf(fmtstring,memavl());
}

produces the following:

Amount of memory available is 0
Amount of memory available is 62732
Amount of memory available is 60730

Library Functions and Macros 315

_heapgrow Functions

Classification: WATCOM

Systems:
heapgrow�Allfheapgrow�DOS/16,Windows,QNX/16,OS/21.x(all)nheapgrow�DOS,Windows,Win386,Win32,QNX,OS/21.x,OS/2

1.x(MT), OS/2-32

316 Library Functions and Macros

_heapmin Functions

Synopsis: #include <malloc.h>intheapmin(void);intbheapmin(segmentseg);intfheapmin(void);intnheapmin(void);
Description: The
heapmin functions attempt to shrink the specified heap to its smallest possible size

by returning all free entries at the end of the heap back to the system. This can be used to
free up as much memory as possible before using the system function or one of the spawn
functions.

The various
heapmin functions shrink the following heaps:

Function Heap Minimized

_heapmin Depends on data model of the program

_bheapmin Based heap specified by seg value;
NULLSEG

 specifies all based
heaps

_fheapmin Far heap (outside the default data segment)

_nheapmin Near heap (inside the default data segment)

In a small data memory model, the
heapmin function is equivalent to thenheapmin

function; in a large data memory model, the
heapmin function is equivalent to thefheapmin function. It is identical to the
heapshrink function.

Returns: These functions return zero if successful, and non-zero if some error occurred.

See Also:
heapchk,heapenable,heapgrow,heapset,heapshrink,heapwalk

Example: #include <stdlib.h>
#include <malloc.h>

void main()
{heapmin();

system("cd /home/fred");
}

Classification: WATCOM

Library Functions and Macros 317

_heapmin Functions

Systems:
heapmin�Allbheapmin�DOS/16,Windows,QNX/16,OS/21.x(all)fheapmin�DOS/16,Windows,QNX/16,OS/21.x(all)nheapmin�DOS,Windows,Win386,Win32,QNX,OS/21.x,OS/2

1.x(MT), OS/2-32

318 Library Functions and Macros

_heapset Functions

Synopsis: #include <malloc.h>intheapset(unsignedcharfillchar);intbheapset(segmentseg,unsignedcharfillchar);intfheapset(unsignedcharfillchar);intnheapset(unsignedcharfillchar);
Description: The
heapset functions along with
heapchk and
heapwalk are provided for

debugging heap related problems in programs.

The
heapset functions perform a consistency check on the unallocated memory space or

"heap" just as
heapchk does, and sets the heap’s free entries with the fill_char value.

Each function checks and sets a particular heap, as listed below:

Function Heap Filled

_heapset Depends on data model of the program

_bheapset Based heap specified by seg value;
NULLSEG

 specifies all based
heaps

_fheapset Far heap (outside the default data segment)

_nheapset Near heap (inside the default data segment)

In a small data memory model, the
heapset function is equivalent to thenheapset

function; in a large data memory model, the
heapset function is equivalent to thefheapset function.

Returns: The
heapset functions return one of the following manifest constants which are defined

in <malloc.h>.

Constant Meaning

_HEAPOK The heap appears to be consistent.

_HEAPEMPTY The heap is empty.

_HEAPBADBEGIN The heap has been damaged.

_HEAPBADNODE The heap contains a bad node, or is damaged.

Library Functions and Macros 319

_heapset Functions

See Also:
heapchk,heapenable,heapgrow,heapmin,heapshrink,heapwalk

Example: #include <stdio.h>
#include <malloc.h>

void main()
{intheapstatus;

char *buffer;

buffer = (char *)malloc(80);
malloc(1024);
free(buffer);heapstatus=heapset(0xff);switch(heapstatus){caseHEAPOK:

printf("OK - heap is good\n");
break;caseHEAPEMPTY:
printf("OK - heap is empty\n");
break;caseHEAPBADBEGIN:
printf("ERROR - heap is damaged\n");
break;caseHEAPBADNODE:
printf("ERROR - bad node in heap\n");
break;

}
}

Classification: WATCOM

Systems:
heapset�Allfheapset�DOS/16,Windows,QNX/16,OS/21.x(all)nheapset�DOS,Windows,Win386,Win32,QNX,OS/21.x,OS/2

1.x(MT), OS/2-32bheapset�DOS/16,Windows,QNX/16,OS/21.x(all)
320 Library Functions and Macros

_heapshrink Functions

Synopsis: #include <malloc.h>intheapshrink(void);intbheapshrink(segmentseg);intfheapshrink(void);intnheapshrink(void);
Description: The
heapshrink functions attempt to shrink the heap to its smallest possible size by

returning all free entries at the end of the heap back to the system. This can be used to free
up as much memory as possible before using the system function or one of the spawn
functions.

The various
heapshrink functions shrink the following heaps:

Function Heap Shrinked

_heapshrink Depends on data model of the program

_bheapshrink Based heap specified by seg value;
NULLSEG

 specifies all based
heaps

_fheapshrink Far heap (outside the default data segment)

_nheapshrink Near heap (inside the default data segment)

In a small data memory model, the
heapshrink function is equivalent to thenheapshrink function; in a large data memory model, the
heapshrink function is

equivalent to the
fheapshrink function. It is identical to the

heapmin function.

Returns: These functions return zero if successful, and non-zero if some error occurred.

See Also:
heapchk,heapenable,heapgrow,heapmin,heapset,heapwalk

Example: #include <stdlib.h>
#include <malloc.h>

void main()
{heapshrink();

system("cd /home/fred");
}

Classification: WATCOM

Library Functions and Macros 321

_heapshrink Functions

Systems:
heapshrink�Allbheapshrink�DOS/16,Windows,QNX/16,OS/21.x(all)fheapshrink�DOS/16,Windows,QNX/16,OS/21.x(all)nheapshrink�DOS,Windows,Win386,Win32,QNX,OS/21.x,

OS/2 1.x(MT), OS/2-32

322 Library Functions and Macros

_heapwalk Functions

Synopsis: #include <malloc.h>intheapwalk(structheapinfo*entry);intbheapwalk(segmentseg,structheapinfo*entry);intfheapwalk(structheapinfo*entry);intnheapwalk(structheapinfo*entry);structheapinfo{voidfar*pentry;/*heappointer*/sizetsize;/*heapentrysize*/intuseflag;/*heapentry’in�use’flag*/
};#defineUSEDENTRY0#defineFREEENTRY1

Description: The
heapwalk functions along with
heapchk and
heapset are provided for

debugging heap related problems in programs.

The
heapwalk functions walk through the heap, one entry per call, updating theheapinfo structure with information on the next heap entry. The structure is defined in

<malloc.h>. You must initialize the _pentry field with NULL to start the walk through
the heap.

Each function walks a particular heap, as listed below:

Function Heap Walked

_heapwalk Depends on data model of the program

_bheapwalk Based heap specified by seg value;
NULLSEG

 specifies all based
heaps

_fheapwalk Far heap (outside the default data segment)

_nheapwalk Near heap (inside the default data segment)

In a small data memory model, the
heapwalk function is equivalent to thenheapwalk

function; in a large data memory model, the
heapwalk function is equivalent to thefheapwalk function.

Returns: These functions return one of the following manifest constants which are defined in
<malloc.h>.

Library Functions and Macros 323

_heapwalk Functions

Constant Meaning

_HEAPOK The heap is OK so far, and the
heapinfo structure contains

information about the next entry in the heap.

_HEAPEMPTY The heap is empty.

_HEAPBADPTR Thepentry field of the entry structure does not contain a valid
pointer into the heap.

_HEAPBADBEGIN The header information for the heap was not found or has been
damaged.

_HEAPBADNODE The heap contains a bad node, or is damaged.

_HEAPEND The end of the heap was reached successfully.

See Also:
heapchk,heapenable,heapgrow,heapmin,heapset,heapshrink

Example: #include <stdio.h>
#include <malloc.h>heapdump()

{structheapinfohinfo;intheapstatus;hinfo.pentry=NULL;
for(;;) {heapstatus=heapwalk(&hinfo);if(heapstatus!=HEAPOK)break;

printf(" %s block at %Fp of size %4.4X\n",(hinfo.useflag==USEDENTRY?"USED":"FREE"),hinfo.pentry,hinfo.size);
}

324 Library Functions and Macros

_heapwalk Functionsswitch(heapstatus){caseHEAPEND:
printf("OK - end of heap\n");
break;caseHEAPEMPTY:
printf("OK - heap is empty\n");
break;caseHEAPBADBEGIN:
printf("ERROR - heap is damaged\n");
break;caseHEAPBADPTR:
printf("ERROR - bad pointer to heap\n");
break;caseHEAPBADNODE:
printf("ERROR - bad node in heap\n");

}
}

void main()
{

char *p;heapdump();p=(char*)malloc(80);heapdump();free(p);heapdump();
}

produces the following:

On 16-bit 80x86 systems, the following output is produced:

USED block at 000c:0c06 of size 0008
USED block at 000c:0c0e of size 0022
USED block at 000c:0c30 of size 0402
FREE block at 000c:1032 of size 1BCC

OK - end of heap
USED block at 000c:0c06 of size 0008
USED block at 000c:0c0e of size 0022
USED block at 000c:0c30 of size 0402
USED block at 000c:1032 of size 0052
FREE block at 000c:1084 of size 1B7A

OK - end of heap
USED block at 000c:0c06 of size 0008
USED block at 000c:0c0e of size 0022
USED block at 000c:0c30 of size 0402
FREE block at 000c:1032 of size 1BCC

OK - end of heap

Library Functions and Macros 325

_heapwalk Functions

On 32-bit 80386/486 systems, the following output is produced:

OK - heap is empty
USED block at 0014:00002a7c of size 0204
USED block at 0014:00002c80 of size 0054
FREE block at 0014:00002cd4 of size 1D98

OK - end of heap
USED block at 0014:00002a7c of size 0204
FREE block at 0014:00002c80 of size 1DEC

OK - end of heap

Classification: WATCOM

Systems:
heapwalk�Allbheapwalk�DOS/16,Windows,QNX/16,OS/21.x(all)fheapwalk�DOS/16,Windows,QNX/16,OS/21.x(all)nheapwalk�DOS,Windows,Win386,Win32,QNX,OS/21.x,OS/2

1.x(MT), OS/2-32

326 Library Functions and Macros

hfree

Synopsis: #include <malloc.h>voidhfree(voidhuge*ptr);
Description: The hfree function deallocates a memory block previously allocated by the halloc

function. The argument ptr points to a memory block to be deallocated. After the call, the
freed block is available for allocation.

Returns: The hfree function returns no value.

See Also: calloc Functions,expand Functions, free Functions, halloc, malloc Functions,msize Functions, realloc Functions, sbrk

Example: #include <stdio.h>
#include <malloc.h>

void main()
{longinthuge*bigbuffer;bigbuffer=(longinthuge*)

halloc(1024L, sizeof(long));if(bigbuffer==NULL){
printf("Unable to allocate memory\n");

} else {

/* rest of code goes here */hfree(bigbuffer);/*deallocate*/
}

}

Classification: WATCOM

Systems: DOS/16, Windows, QNX/16, OS/2 1.x(all)

Library Functions and Macros 327

hypot

Synopsis: #include <math.h>
double hypot(double x, double y);

Description: The hypot function computes the length of the hypotenuse of a right triangle whose sides
are x and y adjacent to that right angle. The calculation is equivalent to

sqrt(x*x + y*y)

The computation may cause an overflow, in which case the matherr function will be
invoked.

Returns: The value of the hypotenuse is returned. When an error has occurred, errno contains a
value indicating the type of error that has been detected.

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", hypot(3.0, 4.0));
}

produces the following:

5.000000

Classification: WATCOM

Systems: Math

328 Library Functions and Macros

ignore_handler_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdlib.h>voidignorehandlers(

const char * restrict msg,
void * restrict ptr,errnoterror);

Description: A pointer to the
ignorehandlers function may be passed as an argument to thesetconstrainthandlers function. The
ignorehandlers function simply

returns to its caller.

Returns: The
ignorehandlers function does not returns no value.

See Also:aborthandlers,setconstrainthandlers
Example:
#defineSTDCWANTLIBEXT11
#include <stdlib.h>
#include <stdio.h>

void main(void)
{constrainthandlertoldhandler;oldhandler=setconstrainthandlers(ignorehandlers);if(getenvs(NULL,NULL,0,NULL)){printf("getenvsfailed\n");

}setconstrainthandlers(oldhandler);
}

produces the following:getenvsfailed
Classification: TR 24731

Systems: All, Netware

Library Functions and Macros 329

_imagesize Functions

Synopsis: #include <graph.h>longFARimagesize(shortx1,shorty1,
short x2, short y2);longFARimagesizew(doublex1,doubley1,

double x2, double y2);longFARimagesizewxy(structwxycoordFAR*p1,structwxycoordFAR*p2);
Description: The
imagesize functions compute the number of bytes required to store a screen image.

The
imagesize function uses the view coordinate system. The

imagesizew andimagesizewxy functions use the window coordinate system.

The screen image is the rectangular area defined by the points (x1,y1) and (x2,y2).
The storage area used by thegetimage functions must be at least this large (in bytes).

Returns: The
imagesize functions return the size of a screen image.

See Also: getimage,putimage

330 Library Functions and Macros

_imagesize Functions

Example: #include <conio.h>
#include <graph.h>
#include <malloc.h>

main()
{

char *buf;
int y;setvideomode(VRES16COLOR);ellipse(GFILLINTERIOR,100,100,200,200);
buf = (char*) malloc(imagesize(100,100,201,201));
if(buf != NULL) {getimage(100,100,201,201,buf);putimage(260,200,buf,GPSET);putimage(420,100,buf,GPSET);

for(y = 100; y < 300;) {putimage(420,y,buf,GXOR);
y += 20;putimage(420,y,buf,GXOR);

}
free(buf);

}
getch();setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems:
imagesize�DOS,QNXimagesizew�DOS,QNXimagesizewxy�DOS,QNX

Library Functions and Macros 331

imaxabs

Synopsis: #include <inttypes.h>intmaxtimaxabs(intmaxtj);
Description: The imaxabs function returns the absolute value of its maximum-size integer argument j.

Returns: The imaxabs function returns the absolute value of its argument.

See Also: labs, llabs, abs, fabs

Example: #include <stdio.h>
#include <inttypes.h>

void main(void)
{intmaxtx,y;

x = -500000000000;
y = imaxabs(x);
printf("imaxabs(%jd) = %jd\n", x, y);

}

produces the following:

imaxabs(-500000000000) = 500000000000

Classification: ISO C99

Systems: All, Netware

332 Library Functions and Macros

imaxdiv

Synopsis: #include <stdlib.h>imaxdivtimaxdiv(intmaxtnumer,intmaxtdenom);
typedef struct {intmaxtquot;/*quotient*/intmaxtrem;/*remainder*/}imaxdivt;

Description: The imaxdiv function calculates the quotient and remainder of the division of the
numerator numer by the denominator denom.

Returns: The imaxdiv function returns a structure of type
imaxdivt that contains the fields

quot and rem, which are both of type
intmaxt.

See Also: div, ldiv, lldiv

Example: #include <stdio.h>
#include <inttypes.h>voidprinttime(intmaxtticks)
{imaxdivtsecticks;imaxdivtminsec;secticks=imaxdiv(ticks,1000000);minsec=imaxdiv(secticks.quot,60);

printf("It took %jd minutes and %jd seconds\n",minsec.quot,minsec.rem);
}

void main(void)
{printtime(9876543210);
}

produces the following:

It took 164 minutes and 36 seconds

Classification: ISO C99

Systems: All, Netware

Library Functions and Macros 333

inp

Synopsis: #include <conio.h>
unsigned int inp(int port);

Description: The inp function reads one byte from the 80x86 hardware port whose number is given by
port.

A hardware port is used to communicate with a device. One or two bytes can be read and/or
written from each port, depending upon the hardware. Consult the technical documentation
for your computer to determine the port numbers for a device and the expected usage of each
port for a device.

When you use the inp function, your program must be linked for privity level 1 and the
process must be run by the superuser. See the Watcom C/C++ User’s Guide discussion of
privity levels and the documentation of the Watcom Linker PRIVILEGE option.

Returns: The value returned is the byte that was read.

See Also: inpd, inpw, outp, outpd, outpw

Example: #include <conio.h>

void main()
{

/* turn off speaker */
outp(0x61, inp(0x61) & 0xFC);

}

Classification: Intel

Systems: All, Netware

334 Library Functions and Macros

inpd

Synopsis: #include <conio.h>
unsigned long inpd(int port);

Description: The inpd function reads a double-word (four bytes) from the 80x86 hardware port whose
number is given by port.

A hardware port is used to communicate with a device. One or two bytes can be read and/or
written from each port, depending upon the hardware. Consult the technical documentation
for your computer to determine the port numbers for a device and the expected usage of each
port for a device.

When you use the inpd function, your program must be linked for privity level 1 and the
process must be run by the superuser. See the Watcom C/C++ User’s Guide discussion of
privity levels and the documentation of the Watcom Linker PRIVILEGE option.

Returns: The value returned is the double-word that was read.

See Also: inp, inpw, outp, outpd, outpw

Example: #include <conio.h>
#define DEVICE 34

void main()
{

unsigned long transmitted;

transmitted = inpd(DEVICE);
}

Classification: Intel

Systems: DOS/32, Win386, Win32, QNX/32, OS/2-32, Netware

Library Functions and Macros 335

inpw

Synopsis: #include <conio.h>
unsigned int inpw(int port);

Description: The inpw function reads a word (two bytes) from the 80x86 hardware port whose number is
given by port.

A hardware port is used to communicate with a device. One or two bytes can be read and/or
written from each port, depending upon the hardware. Consult the technical documentation
for your computer to determine the port numbers for a device and the expected usage of each
port for a device.

When you use the inpw function, your program must be linked for privity level 1 and the
process must be run by the superuser. See the Watcom C/C++ User’s Guide discussion of
privity levels and the documentation of the Watcom Linker PRIVILEGE option.

Returns: The value returned is the word that was read.

See Also: inp, inpd, outp, outpd, outpw

Example: #include <conio.h>
#define DEVICE 34

void main()
{

unsigned int transmitted;

transmitted = inpw(DEVICE);
}

Classification: Intel

Systems: All, Netware

336 Library Functions and Macros

int386

Synopsis: #include <i86.h>intint386(intinterno,constunionREGS*inregs,unionREGS*outregs);
Description: The int386 function causes the computer’s central processor (CPU) to be interrupted with

an interrupt whose number is given by inter_no. This function is present in the 386 C
libraries and may be executed on 80386/486 systems. Before the interrupt, the CPU registers
are loaded from the structure located by in_regs. Following the interrupt, the structure
located by out_regs is filled with the contents of the CPU registers. These structures may be
located at the same location in memory.

You should consult the technical documentation for the computer that you are using to
determine the expected register contents before and after the interrupt in question.

Returns: The int386 function returns the value of the CPU EAX register after the interrupt.

See Also: int386x, int86, int86x, intr, segread

Example: /*
* This example clears the screen on DOS
*/

#include <i86.h>

void main()
{

union REGS regs;

regs.w.cx = 0;
regs.w.dx = 0x1850;
regs.h.bh = 7;
regs.w.ax = 0x0600;#ifdefined(386)&&defined(DOS)
int386(0x10, ®s, ®s);

#else
int86(0x10, ®s, ®s);

#endif
}

Classification: Intel

Systems: DOS/32, QNX/32, Netware

Library Functions and Macros 337

int386x

Synopsis: #include <i86.h>intint386x(intinterno,constunionREGS*inregs,unionREGS*outregs,structSREGS*segregs);
Description: The int386x function causes the computer’s central processor (CPU) to be interrupted

with an interrupt whose number is given by inter_no. This function is present in the 32-bit C
libraries and may be executed on Intel 386 compatible systems. Before the interrupt, the
CPU registers are loaded from the structure located by in_regs and the DS, ES, FS and GS
segment registers are loaded from the structure located by seg_regs. All of the segment
registers must contain valid values. Failure to do so will cause a segment violation when
running in protect mode. If you don’t care about a particular segment register, then it can be
set to 0 which will not cause a segment violation. The function segread can be used to
initialize seg_regs to their current values.

Following the interrupt, the structure located by out_regs is filled with the contents of the
CPU registers. The in_regs and out_regs structures may be located at the same location in
memory. The original values of the DS, ES, FS and GS registers are restored. The structure
seg_regs is updated with the values of the segment registers following the interrupt.

You should consult the technical documentation for the computer that you are using to
determine the expected register contents before and after the interrupt in question.

Returns: The int386x function returns the value of the CPU EAX register after the interrupt.

See Also: int386, int86, int86x, intr, segread

Example: #include <stdio.h>
#include <i86.h>

/* get current mouse interrupt handler address */

void main()
{

union REGS r;
struct SREGS s;s.ds=s.es=s.fs=s.gs=FPSEG(&s);

338 Library Functions and Macros

int386x#ifdefined(PHARLAP)
r.w.ax = 0x2503; /* get real-mode vector */
r.h.cl = 0x33; /* interrupt vector 0x33 */
int386(0x21, &r, &r);
printf("mouse handler real-mode address="

"%lx\n", r.x.ebx);
r.w.ax = 0x2502; /* get protected-mode vector */
r.h.cl = 0x33; /* interrupt vector 0x33 */
int386x(0x21, &r, &r, &s);
printf("mouse handler protected-mode address="

"%x:%lx\n", s.es, r.x.ebx);

#else
r.h.ah = 0x35; /* get vector */
r.h.al = 0x33; /* vector 0x33 */
int386x(0x21, &r, &r, &s);
printf("mouse handler protected-mode address="

"%x:%lx\n", s.es, r.x.ebx);
#endif

}

Classification: Intel

Systems: DOS/32, QNX/32, Netware

Library Functions and Macros 339

int86

Synopsis: #include <i86.h>intint86(intinterno,constunionREGS*inregs,unionREGS*outregs);
Description: The int86 function causes the computer’s central processor (CPU) to be interrupted with

an interrupt whose number is given by inter_no. Before the interrupt, the CPU registers are
loaded from the structure located by in_regs. Following the interrupt, the structure located
by out_regs is filled with the contents of the CPU registers. These structures may be located
at the same location in memory.

You should consult the technical documentation for the computer that you are using to
determine the expected register contents before and after the interrupt in question.

Returns: The int86 function returns the value of the CPU AX register after the interrupt.

See Also: int386, int386x, int86x, intr, segread

Example: /*
* This example clears the screen on DOS
*/

#include <i86.h>

void main()
{

union REGS regs;

regs.w.cx = 0;
regs.w.dx = 0x1850;
regs.h.bh = 7;
regs.w.ax = 0x0600;#ifdefined(386)&&defined(DOS)
int386(0x10, ®s, ®s);

#else
int86(0x10, ®s, ®s);

#endif
}

Classification: Intel

Systems: DOS/16, Windows, Win386, QNX/16, DOS/PM

340 Library Functions and Macros

int86x

Synopsis: #include <i86.h>intint86x(intinterno,constunionREGS*inregs,unionREGS*outregs,structSREGS*segregs);
Description: The int86x function causes the computer’s central processor (CPU) to be interrupted with

an interrupt whose number is given by inter_no. Before the interrupt, the CPU registers are
loaded from the structure located by in_regs and the DS and ES segment registers are loaded
from the structure located by seg_regs. All of the segment registers must contain valid
values. Failure to do so will cause a segment violation when running in protect mode. If you
don’t care about a particular segment register, then it can be set to 0 which will not cause a
segment violation. The function segread can be used to initialize seg_regs to their current
values.

Following the interrupt, the structure located by out_regs is filled with the contents of the
CPU registers. The in_regs and out_regs structures may be located at the same location in
memory. The original values of the DS and ES registers are restored. The structure seg_regs
is updated with the values of the segment registers following the interrupt.

You should consult the technical documentation for the computer that you are using to
determine the expected register contents before and after the interrupt in question.

Returns: The function returns the value of the CPU AX register after the interrupt.

See Also: int386, int386x, int86, intr, segread

Example: #include <stdio.h>
#include <i86.h>

/* get current mouse interrupt handler address */

void main()
{

union REGS r;
struct SREGS s;

r.h.ah = 0x35; /* DOS get vector */
r.h.al = 0x33; /* interrupt vector 0x33 */
int86x(0x21, &r, &r, &s);
printf("mouse handler address=%4.4x:%4.4x\n",

s.es, r.w.bx);
}

Library Functions and Macros 341

int86x

Classification: Intel

Systems: DOS/16, Windows, Win386, QNX/16, DOS/PM

342 Library Functions and Macros

intr

Synopsis: #include <i86.h>voidintr(intinterno,unionREGPACK*regs);
Description: The intr function causes the computer’s central processor (CPU) to be interrupted with an

interrupt whose number is given by inter_no. Before the interrupt, the CPU registers are
loaded from the structure located by regs. All of the segment registers must contain valid
values. Failure to do so will cause a segment violation when running in protect mode. If you
don’t care about a particular segment register, then it can be set to 0 which will not cause a
segment violation. Following the interrupt, the structure located by regs is filled with the
contents of the CPU registers.

This function is similar to the int86x function, except that only one structure is used for
the register values and that the BP (EBP in 386 library) register is included in the set of
registers that are passed and saved.

You should consult the technical documentation for the computer that you are using to
determine the expected register contents before and after the interrupt in question.

Returns: The intr function does not return a value.

See Also: int386, int386x, int86, int86x, segread

Classification: Intel

Systems: DOS, Windows, Win386, QNX, DOS/PM, Netware

Library Functions and Macros 343

isalnum, iswalnum

Synopsis: #include <ctype.h>
int isalnum(int c);
#include <wctype.h>intiswalnum(winttc);

Description: The isalnum function tests if the argument c is an alphanumeric character (’a’ to ’z’, ’A’
to ’Z’, or ’0’ to ’9’). An alphanumeric character is any character for which isalpha or
isdigit is true.

The iswalnum function is similar to isalnum except that it accepts a wide-character
argument.

Returns: The isalnum function returns zero if the argument is neither an alphabetic character (A-Z
or a-z) nor a digit (0-9). Otherwise, a non-zero value is returned. The iswalnum function
returns a non-zero value if either iswalpha or iswdigit is true for c.

See Also: isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct,
isspace, isupper, iswctype, isxdigit, tolower, toupper, towctrans

Example: #include <stdio.h>
#include <ctype.h>

void main()
{

if(isalnum(getchar())) {
printf("is alpha-numeric\n");

}
}

Classification: isalnum is ANSI, iswalnum is ANSI

Systems: isalnum - All, Netware
iswalnum - All, Netware

344 Library Functions and Macros

isalpha, iswalpha

Synopsis: #include <ctype.h>
int isalpha(int c);
#include <wctype.h>intiswalpha(winttc);

Description: The isalpha function tests if the argument c is an alphabetic character (’a’ to ’z’ and ’A’
to ’Z’). An alphabetic character is any character for which isupper or islower is true.

The iswalpha function is similar to isalpha except that it accepts a wide-character
argument.

Returns: The isalpha function returns zero if the argument is not an alphabetic character (A-Z or
a-z); otherwise, a non-zero value is returned. The iswalpha function returns a non-zero
value only for wide characters for which iswupper or iswlower is true, or any
wide character that is one of an implementation-defined set for which none
of iswcntrl, iswdigit, iswpunct, or iswspace is true.

See Also: isalnum, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct,
isspace, isupper, iswctype, isxdigit, tolower, toupper, towctrans

Example: #include <stdio.h>
#include <ctype.h>

void main()
{

if(isalpha(getchar())) {
printf("is alphabetic\n");

}
}

Classification: isalpha is ANSI, iswalpha is ANSI

Systems: isalpha - All, Netware
iswalpha - All, Netware

Library Functions and Macros 345

isascii, __isascii, iswascii

Synopsis: #include <ctype.h>
int isascii(int c);intisascii(intc);
#include <wctype.h>intiswascii(winttc);

Description: The isascii function tests for a character in the range from 0 to 127.

The __ isascii function is identical to isascii. Use __ isascii for ANSI/ISO
naming conventions.

The iswascii function is similar to isascii except that it accepts a wide-character
argument.

Returns: The isascii function returns a non-zero value when the character is in the range 0 to 127;
otherwise, zero is returned. The iswascii function returns a non-zero value when c is a
wide-character representation of an ASCII character.

See Also: isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, iswctype, isxdigit, tolower, toupper,
towctrans

Example: #include <stdio.h>
#include <ctype.h>

char chars[] = {
’A’,
0x80,
’Z’

};

#define SIZE sizeof(chars) / sizeof(char)

void main()
{

int i;

for(i = 0; i < SIZE; i++) {
printf("Char %c is %san ASCII character\n",

chars[i],
(isascii(chars[i])) ? "" : "not ");

}
}

346 Library Functions and Macros

isascii, __isascii, iswascii

produces the following:

Char A is an ASCII character
Char is not an ASCII character
Char Z is an ASCII character

Classification: WATCOM

__ isascii conforms to ANSI/ISO naming conventions

Systems: isascii - All, Netwareisascii�All,Netware
iswascii - All, Netware

Library Functions and Macros 347

isblank, iswblank

Synopsis: #include <ctype.h>
int isblank(int c);
#include <wctype.h>intiswblank(winttc);

Description: The isblank function tests for the following blank characters:

Constant Character

’ ’ space
’\t’ horizontal tab

The iswblank function is similar to isblank except that it accepts a wide-character
argument.

Returns: The isblank function returns a non-zero character when the argument is one of the
indicated blank characters. The iswblank function returns a non-zero value when the
argument is a wide character that corresponds to a standard blank character or is one of an
implementation-defined set of wide characters for which iswalnum is false. Otherwise,
zero is returned.

See Also: isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct,
isspace, isupper, iswctype, isxdigit, tolower, toupper, towctrans

Example: #include <stdio.h>
#include <ctype.h>

char chars[] = {
’A’,
0x09,
’ ’,
0x7d

};

#define SIZE sizeof(chars) / sizeof(char)

void main()
{

int i;

348 Library Functions and Macros

isblank, iswblank

for(i = 0; i < SIZE; i++) {
printf("Char %c is %sa blank character\n",

chars[i],
(isblank(chars[i])) ? "" : "not ");

}
}

produces the following:

Char A is not a blank character
Char is a blank character
Char is a blank character
Char } is not a blank character

Classification: isblank is ANSI, iswblank is ANSI

Systems: isblank - All, Netware
iswblank - All, Netware

Library Functions and Macros 349

iscntrl, iswcntrl

Synopsis: #include <ctype.h>
int iscntrl(int c);
#include <wchar.h>intiswcntrl(winttc);

Description: The iscntrl function tests for any control character. A control character is any character
whose value is from 0 through 31.

The iswcntrl function is similar to iscntrl except that it accepts a wide-character
argument.

Returns: The iscntrl function returns a non-zero value when the argument is a control character.
The iswcntrl function returns a non-zero value when the argument is a control wide
character. Otherwise, zero is returned.

See Also: isalnum, isalpha, isblank, isdigit, isgraph, islower, isprint, ispunct,
isspace, isupper, iswctype, isxdigit, tolower, toupper, towctrans

Example: #include <stdio.h>
#include <ctype.h>

char chars[] = {
’A’,
0x09,
’Z’

};

#define SIZE sizeof(chars) / sizeof(char)

void main()
{

int i;

for(i = 0; i < SIZE; i++) {
printf("Char %c is %sa Control character\n",

chars[i],
(iscntrl(chars[i])) ? "" : "not ");

}
}

produces the following:

350 Library Functions and Macros

iscntrl, iswcntrl

Char A is not a Control character
Char is a Control character
Char Z is not a Control character

Classification: iscntrl is ANSI, iswcntrl is ANSI

Systems: iscntrl - All, Netware
iswcntrl - All, Netware

Library Functions and Macros 351

__iscsym

Synopsis: #include <ctype.h>intiscsym(intc);
Description: The
iscsym function tests for a letter, underscore or digit.

Returns: A non-zero value is returned when the character is a letter, underscore or digit; otherwise,
zero is returned.

See Also: isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, iswctype, isxdigit, tolower, toupper,
towctrans

Example: #include <stdio.h>
#include <ctype.h>

char chars[] = {
’A’,
0x80,’’,
’9’,
’+’

};

#define SIZE sizeof(chars) / sizeof(char)

void main()
{

int i;

for(i = 0; i < SIZE; i++) {
printf("Char %c is %sa C symbol character\n",

chars[i],(iscsym(chars[i]))?"":"not");
}

}

produces the following:

Char A is a C symbol character
Char is not a C symbol characterCharisaCsymbolcharacter
Char 9 is a C symbol character
Char + is not a C symbol character

352 Library Functions and Macros

__iscsym

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 353

__iscsymf

Synopsis: #include <ctype.h>intiscsymf(intc);
Description: The
iscsymf function tests for a letter or underscore.

Returns: A non-zero value is returned when the character is a letter or underscore; otherwise, zero is
returned.

See Also: isalpha, isalnum, iscntrl, isdigit, isgraph, islower, isprint, ispunct,
isspace, isupper, isxdigit, tolower, toupper

Example: #include <stdio.h>
#include <ctype.h>

char chars[] = {
’A’,
0x80,’’,
’9’,
’+’

};

#define SIZE sizeof(chars) / sizeof(char)

void main()
{

int i;

for(i = 0; i < SIZE; i++) {
printf("Char %c is %sa csymf character\n",

chars[i],(iscsymf(chars[i]))?"":"not");
}

}

produces the following:

Char A is a csymf character
Char is not a csymf characterCharisacsymfcharacter
Char 9 is not a csymf character
Char + is not a csymf character

Classification: WATCOM

354 Library Functions and Macros

__iscsymf

Systems: All, Netware

Library Functions and Macros 355

isdigit, iswdigit

Synopsis: #include <ctype.h>
int isdigit(int c);
#include <wctype.h>intiswdigit(winttc);

Description: The isdigit function tests for any decimal-digit character ’0’ through ’9’.

The iswdigit function is similar to isdigit except that it accepts a wide-character
argument.

Returns: The isdigit function returns a non-zero value when the argument is a decimal-digit
character. The iswdigit function returns a non-zero value when the argument is a wide
character corresponding to a decimal-digit character. Otherwise, zero is returned.

See Also: isalnum, isalpha, isblank, iscntrl, isgraph, islower, isprint, ispunct,
isspace, isupper, iswctype, isxdigit, tolower, toupper, towctrans

Example: #include <stdio.h>
#include <ctype.h>

char chars[] = {
’A’,
’5’,
’$’

};

#define SIZE sizeof(chars) / sizeof(char)

void main()
{

int i;

for(i = 0; i < SIZE; i++) {
printf("Char %c is %sa digit character\n",

chars[i],
(isdigit(chars[i])) ? "" : "not ");

}
}

produces the following:

Char A is not a digit character
Char 5 is a digit character
Char $ is not a digit character

356 Library Functions and Macros

isdigit, iswdigit

Classification: isdigit is ANSI, iswdigit is ANSI

Systems: isdigit - All, Netware
iswdigit - All, Netware

Library Functions and Macros 357

isfinite

Synopsis: #include <math.h>
int isfinite(x);

Description: The isfinite macro determines whether its argument x has a finite value (zero,
subnormal, or normal, and not infinite or NaN). First, an argument represented in a format
wider than its semantic type is converted to its semantic type. Then determination is based
on the type of the argument.

The argument x must be an expression of real floating type.

Returns: The isfinite macro returns a nonzero value if and only if its argument has a finite value.

See Also: fpclassify, isinf, isnan, isnormal, signbit

Example: #include <math.h>
#include <stdio.h>

void main(void)
{

printf("zero %s a finite number\n",
isfinite(0.0) ? "is" : "is not");

}

produces the following:

zero is a finite number

Classification: ANSI

Systems: MACRO

358 Library Functions and Macros

isgraph, iswgraph

Synopsis: #include <ctype.h>
int isgraph(int c);
#include <wctype.h>intiswgraph(winttc);

Description: The isgraph function tests for any printable character except space (’ ’). The isprint
function is similar, except that the space character is also included in the character set being
tested.

The iswgraph function is similar to isgraph except that it accepts a wide-character
argument.

Returns: The isgraph function returns non-zero when the argument is a printable character (except
a space). The iswgraph function returns a non-zero value when the argument is a
printable wide character (except a wide-character space). Otherwise, zero is returned.

See Also: isalnum, isalpha, isblank, iscntrl, isdigit, islower, isprint, ispunct,
isspace, isupper, iswctype, isxdigit, tolower, toupper, towctrans

Example: #include <stdio.h>
#include <ctype.h>

char chars[] = {
’A’,
0x09,
’ ’,
0x7d

};

#define SIZE sizeof(chars) / sizeof(char)

void main()
{

int i;

for(i = 0; i < SIZE; i++) {
printf("Char %c is %sa printable character\n",

chars[i],
(isgraph(chars[i])) ? "" : "not ");

}
}

produces the following:

Library Functions and Macros 359

isgraph, iswgraph

Char A is a printable character
Char is not a printable character
Char is not a printable character
Char } is a printable character

Classification: isgraph is ANSI, iswgraph is ANSI

Systems: isgraph - All, Netware
iswgraph - All, Netware

360 Library Functions and Macros

isinf

Synopsis: #include <math.h>
int isinf(x);

Description: The isinf macro determines whether its argument value is an infinity (positive or
negative). First, an argument represented in a format wider than its semantic type is
converted to its semantic type. Then determination is based on the type of the argument.

The argument x must be an expression of real floating type.

Returns: The isinf macro returns a nonzero value if and only if its argument has an infinite value.

See Also: fpclassify, isfinite, isnan, isnormal, signbit

Example: #include <math.h>
#include <stdio.h>

void main(void)
{

printf("zero %s an infinite number\n",
isinf(0.0) ? "is" : "is not");

}

produces the following:

zero is not an infinite number

Classification: ANSI

Systems: MACRO

Library Functions and Macros 361

islower, iswlower

Synopsis: #include <ctype.h>
int islower(int c);
#include <wctype.h>intiswlower(winttc);

Description: The islower function tests for any lowercase letter ’a’ through ’z’.

The iswlower function is similar to islower except that it accepts a wide-character
argument.

Returns: The islower function returns a non-zero value when argument is a lowercase letter. The
iswlower function returns a non-zero value when the argument is a wide character that
corresponds to a lowercase letter, or if it is one of an implementation-defined set of wide
characters for which none of iswcntrl, iswdigit, iswpunct, or iswspace is
true. Otherwise, zero is returned.

See Also: isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, isprint, ispunct,
isspace, isupper, iswctype, isxdigit, tolower, toupper, towctrans

Example: #include <stdio.h>
#include <ctype.h>

char chars[] = {
’A’,
’a’,
’z’,
’Z’

};

#define SIZE sizeof(chars) / sizeof(char)

void main()
{

int i;

for(i = 0; i < SIZE; i++) {
printf("Char %c is %sa lowercase character\n",

chars[i],
(islower(chars[i])) ? "" : "not ");

}
}

produces the following:

362 Library Functions and Macros

islower, iswlower

Char A is not a lowercase character
Char a is a lowercase character
Char z is a lowercase character
Char Z is not a lowercase character

Classification: islower is ANSI, iswlower is ANSI

Systems: islower - All, Netware
iswlower - All, Netware

Library Functions and Macros 363

isnan

Synopsis: #include <math.h>
int isnan(x);

Description: The isnan macro determines whether its argument x is a NaN. First, an argument
represented in a format wider than its semantic type is converted to its semantic type. Then
determination is based on the type of the argument.

The argument x must be an expression of real floating type.

Returns: The isnan macro returns a nonzero value if and only if its argument has a NaN value.

See Also: fpclassify, isfinite, isinf, isnormal, signbit

Example: #include <math.h>
#include <stdio.h>

void main(void)
{

printf("NAN %s a NaN\n",
isnan(NAN) ? "is" : "is not");

}

produces the following:

NAN is a NaN

Classification: ANSI

Systems: MACRO

364 Library Functions and Macros

isnormal

Synopsis: #include <math.h>
int isnormal(x);

Description: The isnormal macro determines whether its argument value is normal (neither zero,
subnormal, infinite, nor NaN). First, an argument represented in a format wider than its
semantic type is converted to its semantic type. Then determination is based on the type of
the argument.

The argument x must be an expression of real floating type.

Returns: The isnormal macro returns a nonzero value if and only if its argument has a normal
value.

See Also: fpclassify, isfinite, isinf, isnan, signbit

Example: #include <math.h>
#include <stdio.h>

void main(void)
{

printf("zero %s a normal number\n",
isnormal(0.0) ? "is" : "is not");

}

produces the following:

zero is not a normal number

Classification: ANSI

Systems: MACRO

Library Functions and Macros 365

isprint, iswprint

Synopsis: #include <ctype.h>
int isprint(int c);
#include <wctype.h>intiswprint(winttc);

Description: The isprint function tests for any printable character including space (’ ’). The
isgraph function is similar, except that the space character is excluded from the character
set being tested.

The iswprint function is similar to isprint except that it accepts a wide-character
argument.

Returns: The isprint function returns a non-zero value when the argument is a printable character.
The iswprint function returns a non-zero value when the argument is a printable wide
character. Otherwise, zero is returned.

See Also: isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, ispunct,
isspace, isupper, iswctype, isxdigit, tolower, toupper, towctrans

Example: #include <stdio.h>
#include <ctype.h>

char chars[] = {
’A’,
0x09,
’ ’,
0x7d

};

#define SIZE sizeof(chars) / sizeof(char)

void main()
{

int i;

for(i = 0; i < SIZE; i++) {
printf("Char %c is %sa printable character\n",

chars[i],
(isprint(chars[i])) ? "" : "not ");

}
}

produces the following:

366 Library Functions and Macros

isprint, iswprint

Char A is a printable character
Char is not a printable character
Char is a printable character
Char } is a printable character

Classification: isprint is ANSI, iswprint is ANSI

Systems: isprint - All, Netware
iswprint - All, Netware

Library Functions and Macros 367

ispunct, iswpunct

Synopsis: #include <ctype.h>
int ispunct(int c);
#include <wctype.h>intiswpunct(winttc);

Description: The ispunct function tests for any punctuation character such as a comma (,) or a period
(.).

The iswpunct function is similar to ispunct except that it accepts a wide-character
argument.

Returns: The ispunct function returns a non-zero value when the argument is a punctuation
character. The iswpunct function returns a non-zero value when the argument is a
printable wide character that is neither the space wide character nor a wide character for
which iswalnum is true. Otherwise, zero is returned.

See Also: isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
isspace, isupper, iswctype, isxdigit, tolower, toupper, towctrans

Example: #include <stdio.h>
#include <ctype.h>

char chars[] = {
’A’,
’!’,
’.’,
’,’,
’:’,
’;’

};

#define SIZE sizeof(chars) / sizeof(char)

void main()
{

int i;

for(i = 0; i < SIZE; i++) {
printf("Char %c is %sa punctuation character\n",

chars[i],
(ispunct(chars[i])) ? "" : "not ");

}
}

368 Library Functions and Macros

ispunct, iswpunct

produces the following:

Char A is not a punctuation character
Char ! is a punctuation character
Char . is a punctuation character
Char , is a punctuation character
Char : is a punctuation character
Char ; is a punctuation character

Classification: ispunct is ANSI, iswpunct is ANSI

Systems: ispunct - All, Netware
iswpunct - All, Netware

Library Functions and Macros 369

isspace, iswspace

Synopsis: #include <ctype.h>
int isspace(int c);
#include <wctype.h>intiswspace(winttc);

Description: The isspace function tests for the following white-space characters:

Constant Character

’ ’ space
’\f’ form feed
’\n’ new-line or linefeed
’\r’ carriage return
’\t’ horizontal tab
’\v’ vertical tab

The iswspace function is similar to isspace except that it accepts a wide-character
argument.

Returns: The isspace function returns a non-zero character when the argument is one of the
indicated white-space characters. The iswspace function returns a non-zero value when
the argument is a wide character that corresponds to a standard white-space character or is
one of an implementation-defined set of wide characters for which iswalnum is false.
Otherwise, zero is returned.

See Also: isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isupper, iswctype, isxdigit, tolower, toupper, towctrans

Example: #include <stdio.h>
#include <ctype.h>

char chars[] = {
’A’,
0x09,
’ ’,
0x7d

};

#define SIZE sizeof(chars) / sizeof(char)

void main()
{

int i;

370 Library Functions and Macros

isspace, iswspace

for(i = 0; i < SIZE; i++) {
printf("Char %c is %sa space character\n",

chars[i],
(isspace(chars[i])) ? "" : "not ");

}
}

produces the following:

Char A is not a space character
Char is a space character
Char is a space character
Char } is not a space character

Classification: isspace is ANSI, iswspace is ANSI

Systems: isspace - All, Netware
iswspace - All, Netware

Library Functions and Macros 371

isupper, iswupper

Synopsis: #include <ctype.h>
int isupper(int c);
#include <wctype.h>intiswupper(winttc);

Description: The isupper function tests for any uppercase letter ’A’ through ’Z’.

The iswupper function is similar to isupper except that it accepts a wide-character
argument.

Returns: The isupper function returns a non-zero value when the argument is an uppercase letter.
The iswupper function returns a non-zero value when the argument is a wide character
that corresponds to an uppercase letter, or if it is one of an implementation-defined set of
wide characters for which none of iswcntrl, iswdigit, iswpunct, or iswspace
is true. Otherwise, zero is returned.

See Also: isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, iswctype, isxdigit, tolower, toupper, towctrans

Example: #include <stdio.h>
#include <ctype.h>

char chars[] = {
’A’,
’a’,
’z’,
’Z’

};

#define SIZE sizeof(chars) / sizeof(char)

void main()
{

int i;

for(i = 0; i < SIZE; i++) {
printf("Char %c is %san uppercase character\n",

chars[i],
(isupper(chars[i])) ? "" : "not ");

}
}

produces the following:

372 Library Functions and Macros

isupper, iswupper

Char A is an uppercase character
Char a is not an uppercase character
Char z is not an uppercase character
Char Z is an uppercase character

Classification: isupper is ANSI, iswupper is ANSI

Systems: isupper - All, Netware
iswupper - All, Netware

Library Functions and Macros 373

iswctype

Synopsis: #include <wctype.h>intiswctype(winttwc,wctypetdesc);
Description: The iswctype function determines whether the wide character wc has the property

described by desc. Valid values of desc are defined by the use of the wctype function.

The eleven expressions listed below have a truth-value equivalent to a call to the wide
character testing function shown.

Expression Equivalent

iswctype(wc, wctype("alnum")) iswalnum(wc)

iswctype(wc, wctype("alpha")) iswalpha(wc)

iswctype(wc, wctype("cntrl")) iswcntrl(wc)

iswctype(wc, wctype("digit")) iswdigit(wc)

iswctype(wc, wctype("graph")) iswgraph(wc)

iswctype(wc, wctype("lower")) iswlower(wc)

iswctype(wc, wctype("print")) iswprint(wc)

iswctype(wc, wctype("punct")) iswpunct(wc)

iswctype(wc, wctype("space")) iswspace(wc)

iswctype(wc, wctype("upper")) iswupper(wc)

iswctype(wc, wctype("xdigit")) iswxdigit(wc)

Returns: The iswctype function returns non-zero (true) if and only if the value of the wide
character wc has the property described by desc.

See Also: isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, isxdigit, tolower, toupper, towctrans

374 Library Functions and Macros

iswctype

Example: #include <stdio.h>
#include <wctype.h>

char *types[11] = {
"alnum",
"alpha",
"cntrl",
"digit",
"graph",
"lower",
"print",
"punct",
"space",
"upper",
"xdigit"

};

void main(void)
{

int i;winttwc=’A’;
for(i = 0; i < 11; i++)

if(iswctype(wc, wctype(types[i])))
printf("%s\n", types[i]);

}

produces the following:

alnum
alpha
graph
print
upper
xdigit

Classification: ANSI

Systems: All

Library Functions and Macros 375

isxdigit, iswxdigit

Synopsis: #include <ctype.h>
int isxdigit(int c);
#include <wchar.h>intiswxdigit(winttc);

Description: The isxdigit function tests for any hexadecimal-digit character. These characters are the
digits (’0’ through ’9’) and the letters (’a’ through ’f’) and (’A’ through ’F’).

The iswxdigit function is similar to isxdigit except that it accepts a wide-character
argument.

Returns: The isxdigit function returns a non-zero value when the argument is a hexadecimal-digit
character. The iswxdigit function returns a non-zero value when the argument is a wide
character that corresponds to a hexadecimal-digit character. Otherwise, zero is returned.

See Also: isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, iswctype, tolower, toupper, towctrans

Example: #include <stdio.h>
#include <ctype.h>

char chars[] = {
’A’,
’5’,
’$’

};
.exmp break

#define SIZE sizeof(chars) / sizeof(char)

void main()
{

int i;

for(i = 0; i < SIZE; i++) {
printf("Char %c is %sa hexadecimal digit"

" character\n", chars[i],
(isxdigit(chars[i])) ? "" : "not ");

}
}

produces the following:

376 Library Functions and Macros

isxdigit, iswxdigit

Char A is a hexadecimal digit character
Char 5 is a hexadecimal digit character
Char $ is not a hexadecimal digit character

Classification: isxdigit is ANSI, iswxdigit is ANSI

Systems: isxdigit - All, Netware
iswxdigit - All, Netware

Library Functions and Macros 377

itoa, _itoa, _itow

Synopsis: #include <stdlib.h>
char *itoa(int value, char *buffer, int radix);char*itoa(intvalue,char*buffer,intradix);wchart*itow(intvalue,wchart*buffer,

int radix);

Description: The itoa function converts the binary integer value into the equivalent string in base radix
notation storing the result in the character array pointed to by buffer. A null character is
appended to the result. The size of buffer must be at least (8 * sizeof(int) + 1) bytes when
converting values in base 2. That makes the size 17 bytes on 16-bit machines, and 33 bytes
on 32-bit machines. The value of radix must satisfy the condition:

2 <= radix <= 36

If radix is 10 and value is negative, then a minus sign is prepended to the result.

The
itoa function is identical to itoa. Use

itoa for ANSI/ISO naming conventions.

The
itow function is identical to itoa except that it produces a wide-character string

(which is twice as long).

Returns: The itoa function returns the pointer to the result.

See Also: atoi, atol, atoll, ltoa, lltoa, sscanf, strtol, strtoll, strtoul,
strtoull, strtoimax, strtoumax, ultoa, ulltoa, utoa

Example: #include <stdio.h>
#include <stdlib.h>

void main()
{

char buffer[20];
int base;

for(base = 2; base <= 16; base = base + 2)
printf("%2d %s\n", base,

itoa(12765, buffer, base));
}

produces the following:

378 Library Functions and Macros

itoa, _itoa, _itow

2 11000111011101
4 3013131
6 135033
8 30735

10 12765
12 7479
14 491b
16 31dd

Classification: WATCOM

_itoa conforms to ANSI/ISO naming conventions

Systems: itoa - All, Netwareitoa�All,Netwareitow�All

Library Functions and Macros 379

kbhit

Synopsis: #include <conio.h>
int kbhit(void);

Description: The kbhit function tests whether or not a keystroke is currently available. When one is
available, the function getch or getche may be used to obtain the keystroke in question.

With a stand-alone program, the kbhit function may be called continuously until a
keystroke is available. Note that loops involving the kbhit function are not recommended
in multitasking systems.

Returns: The kbhit function returns zero when no keystroke is available; otherwise, a non-zero
value is returned.

See Also: getch, getche, putch, ungetch

Example: /*
* This program loops until a key is pressed
* or a count is exceeded.
*/

#include <stdio.h>
#include <conio.h>

void main()
{

unsigned long i;

printf("Program looping. Press any key.\n");
for(i = 0; i < 10000; i++) {

if(kbhit()) {
getch();
break;

}
}

}

Classification: WATCOM

Systems: All, Netware

380 Library Functions and Macros

labs

Synopsis: #include <stdlib.h>
long int labs(long int j);

Description: The labs function returns the absolute value of its long-integer argument j.

Returns: The labs function returns the absolute value of its argument.

See Also: abs, llabs, imaxabs, fabs

Example: #include <stdio.h>
#include <stdlib.h>

void main(void)
{

long x, y;

x = -50000L;
y = labs(x);
printf("labs(%ld) = %ld\n", x, y);

}

produces the following:

labs(-50000) = 50000

Classification: ISO C90

Systems: All, Netware

Library Functions and Macros 381

ldexp

Synopsis: #include <math.h>
double ldexp(double x, int exp);

Description: The ldexp function multiplies a floating-point number by an integral power of 2. A range
error may occur.

Returns: The ldexp function returns the value of x times 2 raised to the power exp.

See Also: frexp, modf

Example: #include <stdio.h>
#include <math.h>

void main()
{

double value;

value = ldexp(4.7072345, 5);
printf("%f\n", value);

}

produces the following:

150.631504

Classification: ANSI

Systems: Math

382 Library Functions and Macros

ldiv

Synopsis: #include <stdlib.h>ldivtldiv(longintnumer,longintdenom);
typedef struct {

long int quot; /* quotient */
long int rem; /* remainder */}ldivt;

Description: The ldiv function calculates the quotient and remainder of the division of the numerator
numer by the denominator denom.

Returns: The ldiv function returns a structure of type
ldivt that contains the fields quot and

rem, which are both of type long int.

See Also: div, lldiv, imaxdiv

Example: #include <stdio.h>
#include <stdlib.h>voidprinttime(longintticks)
{ldivtsecticks;ldivtminsec;secticks=ldiv(ticks,100L);minsec=ldiv(secticks.quot,60L);

printf("It took %ld minutes and %ld seconds\n",minsec.quot,minsec.rem);
}

void main(void)
{printtime(86712L);
}

produces the following:

It took 14 minutes and 27 seconds

Classification: ISO C90

Systems: All, Netware

Library Functions and Macros 383

lfind

Synopsis: #include <search.h>
void *lfind(const void *key, /* object to search for */

const void *base,/* base of search data */
unsigned *num, /* number of elements */
unsigned width, /* width of each element */
int (*compare)(const void *element1,

const void *element2));

Description: The lfind function performs a linear search for the value key in the array of num elements
pointed to by base. Each element of the array is width bytes in size. The argument compare
is a pointer to a user-supplied routine that will be called by lfind to determine the
relationship of an array element with the key. One of the arguments to the compare function
will be an array element, and the other will be key.

The compare function should return 0 if element1 is identical to element2 and non-zero if the
elements are not identical.

Returns: The lfind function returns a pointer to the array element in base that matches key if it is
found, otherwise NULL is returned indicating that the key was not found.

See Also: bsearch, lsearch

Example: #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <search.h>

static const char *keywords[] = {
"auto",
"break",
"case",
"char",
/* . */
/* . */
/* . */
"while"

};

384 Library Functions and Macros

lfind

void main(int argc, const char *argv[])
{

unsigned num = 5;
extern int compare(const void *, const void *);if(argc<=1)exit(EXITFAILURE);
if(lfind(&argv[1], keywords, &num, sizeof(char **),

compare) == NULL) {
printf("’%s’ is not a C keyword\n", argv[1]);exit(EXITFAILURE);

} else {
printf("’%s’ is a C keyword\n", argv[1]);exit(EXITSUCCESS);

}
}

int compare(const void *op1, const void *op2)
{

const char **p1 = (const char **) op1;
const char **p2 = (const char **) op2;
return(strcmp(*p1, *p2));

}

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 385

_lineto Functions

Synopsis: #include <graph.h>shortFARlineto(shortx,shorty);shortFARlinetow(doublex,doubley);
Description: The
lineto functions draw straight lines. The

lineto function uses the view
coordinate system. The
linetow function uses the window coordinate system.

The line is drawn from the current position to the point at the coordinates (x,y). The
point (x,y) becomes the new current position. The line is drawn with the current plotting
action using the current line style and the current color.

Returns: The
lineto functions return a non-zero value when the line was successfully drawn;

otherwise, zero is returned.

See Also: moveto,setcolor,setlinestyle,setplotaction
Example: #include <conio.h>

#include <graph.h>

main()
{ setvideomode(VRES16COLOR);moveto(100,100);lineto(540,100);lineto(320,380);lineto(100,100);

getch();setvideomode(DEFAULTMODE);
}

produces the following:

386 Library Functions and Macros

_lineto Functions

Classification: PC Graphics

Systems:
lineto�DOS,QNXlinetow�DOS,QNX

Library Functions and Macros 387

llabs

Synopsis: #include <stdlib.h>
long long int llabs(long long int j);

Description: The llabs function returns the absolute value of its long long integer argument j.

Returns: The llabs function returns the absolute value of its argument.

See Also: abs, imaxabs, fabs

Example: #include <stdio.h>
#include <stdlib.h>

void main(void)
{

long long x, y;

x = -5000000000;
y = llabs(x);
printf("llabs(%lld) = %lld\n", x, y);

}

produces the following:

llabs(-5000000000) = 5000000000

Classification: ISO C99

388 Library Functions and Macros

lldiv

Synopsis: #include <stdlib.h>lldivtlldiv(longlongintnumer,
long long int denom);

typedef struct {
long long int quot; /* quotient */
long long int rem; /* remainder */}lldivt;

Description: The lldiv function calculates the quotient and remainder of the division of the numerator
numer by the denominator denom.

Returns: The lldiv function returns a structure of type
lldivt that contains the fields quot and

rem, which are both of type long long int.

See Also: div, imaxdiv

Example: #include <stdio.h>
#include <stdlib.h>voidprinttime(longlongintticks)
{lldivtsecticks;lldivtminsec;secticks=lldiv(ticks,100);minsec=lldiv(secticks.quot,60);

printf("It took %lld minutes and %lld seconds\n",minsec.quot,minsec.rem);
}

void main(void)
{printtime(73495132);
}

produces the following:

It took 12249 minutes and 11 seconds

Classification: ISO C99

Library Functions and Macros 389

localeconv

Synopsis: #include <locale.h>
struct lconv *localeconv(void);

Description: The localeconv function sets the components of an object of type struct lconv with
values appropriate for the formatting of numeric quantities according to the current locale.
The components of the struct lconv and their meanings are as follows:

Component Meaning

char *decimal_point The decimal-point character used to format non-monetary quantities.

char *thousands_sep The character used to separate groups of digits to the left of the
decimal-point character in formatted non-monetary quantities.

char *int_curr_symbol The international currency symbol applicable to the current locale.
The first three characters contain the alphabetic international currency
symbol in accordance with those specified in ISO 4217 Codes for the
Representation of Currency and Funds. The fourth character
(immediately preceding the null character) is the character used to
separate the international currency symbol from the monetary quantity.

char *currency_symbol The local currency symbol applicable to the current locale.

char *mon_decimal_point The decimal-point character used to format monetary quantities.

char *mon_thousands_sep The character used to separate groups of digits to the left of the
decimal-point character in formatted monetary quantities.

char *mon_grouping A string whose elements indicate the size of each group of digits in
formatted monetary quantities.

char *grouping A string whose elements indicate the size of each group of digits in
formatted non-monetary quantities.

char *positive_sign The string used to indicate a nonnegative-valued monetary quantity.

char *negative_sign The string used to indicate a negative-valued monetary quantity.

char int_frac_digits The number of fractional digits (those to the right of the decimal-point)
to be displayed in an internationally formatted monetary quantity.

char frac_digits The number of fractional digits (those to the right of the decimal-point)
to be displayed in a formatted monetary quantity.

390 Library Functions and Macros

localeconv

char p_cs_precedes Set to 1 or 0 if thecurrencysymbol respectively precedes or
follows the value for a nonnegative formatted monetary quantity.

char p_sep_by_space Set to 1 or 0 if thecurrencysymbol respectively is or is not
separated by a space from the value for a nonnegative formatted
monetary quantity.

char n_cs_precedes Set to 1 or 0 if thecurrencysymbol respectively precedes or
follows the value for a negative formatted monetary quantity.

char n_sep_by_space Set to 1 or 0 if thecurrencysymbol respectively is or is not
separated by a space from the value for a negative formatted monetary
quantity.

char p_sign_posn The position of thepositivesign for a nonnegative formatted
monetary quantity.

char n_sign_posn The position of thepositivesign for a negative formatted
monetary quantity.

The elements of grouping andmongrouping are interpreted according to the
following:

Value Meaning

CHAR_MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the
digits.

other The value is the number of digits that comprise the current group. The
next element is examined to determine the size of the next group of
digits to the left of the current group.

The value ofpsignposn andnsignposn is interpreted as follows:

Value Meaning

0 Parentheses surround the quantity andcurrencysymbol.
1 The sign string precedes the quantity andcurrencysymbol.
2 The sign string follows the quantity andcurrencysymbol.

Library Functions and Macros 391

localeconv

3 The sign string immediately precedes the quantity andcurrencysymbol.
4 The sign string immediately follows the quantity andcurrencysymbol.

Returns: The localeconv function returns a pointer to the filled-in object.

See Also: setlocale

Example: #include <stdio.h>
#include <locale.h>

void main()
{

struct lconv *lc;

lc = localeconv();printf("*decimalpoint(%s)\n",lc�>decimalpoint);printf("*thousandssep(%s)\n",lc�>thousandssep);printf("*intcurrsymbol(%s)\n",lc�>intcurrsymbol);printf("*currencysymbol(%s)\n",lc�>currencysymbol);printf("*mondecimalpoint(%s)\n",lc�>mondecimalpoint);printf("*monthousandssep(%s)\n",lc�>monthousandssep);printf("*mongrouping(%s)\n",lc�>mongrouping);
printf("*grouping (%s)\n",

lc->grouping);printf("*positivesign(%s)\n",lc�>positivesign);printf("*negativesign(%s)\n",lc�>negativesign);
392 Library Functions and Macros

localeconvprintf("intfracdigits(%d)\n",lc�>intfracdigits);printf("fracdigits(%d)\n",lc�>fracdigits);printf("pcsprecedes(%d)\n",lc�>pcsprecedes);printf("psepbyspace(%d)\n",lc�>psepbyspace);printf("ncsprecedes(%d)\n",lc�>ncsprecedes);printf("nsepbyspace(%d)\n",lc�>nsepbyspace);printf("psignposn(%d)\n",lc�>psignposn);printf("nsignposn(%d)\n",lc�>nsignposn);
}

Classification: ANSI

Systems: All, Netware

Library Functions and Macros 393

localtime Functions

Synopsis: #include <time.h>structtm*localtime(consttimet*timer);structtm*localtime(consttimet*timer,
struct tm *tmbuf);

struct tm {inttmsec;/*secondsaftertheminute��[0,61]*/inttmmin;/*minutesafterthehour��[0,59]*/inttmhour;/*hoursaftermidnight��[0,23]*/inttmmday;/*dayofthemonth��[1,31]*/inttmmon;/*monthssinceJanuary��[0,11]*/inttmyear;/*yearssince1900 */inttmwday;/*dayssinceSunday��[0,6]*/inttmyday;/*dayssinceJanuary1��[0,365]*/inttmisdst;/*DaylightSavingsTimeflag*/
};

Safer C: The Safer C Library extension provides the function which is a safer alternative to
localtime. This newer
localtimes function is recommended to be used instead of

the traditional "unsafe" localtime function.

Description: The localtime functions convert the calendar time pointed to by timer into a structure of
type tm, of time information, expressed as local time. Whenever localtime is called, the
tzset function is also called.

The calendar time is usually obtained by using the time function. That time is Coordinated
Universal Time (UTC) (formerly known as Greenwich Mean Time (GMT)).

The
localtime function places the converted time in the tm structure pointed to by

tmbuf, and the localtime function places the converted time in a static structure that is
re-used each time localtime is called.

The time set on the computer with the QNX date command reflects Coordinated Universal
Time (UTC). The environment variable TZ is used to establish the local time zone. See the
section The TZ Environment Variable for a discussion of how to set the time zone.

Returns: The localtime functions return a pointer to a tm structure containing the time
information.

See Also: asctime, clock, ctime, difftime, gmtime, mktime, strftime, time, tzset

394 Library Functions and Macros

localtime Functions

Example: #include <stdio.h>
#include <time.h>

void main()
{timettimeofday;

auto char buf[26];
auto struct tm tmbuf;timeofday=time(NULL);localtime(&timeofday,&tmbuf);printf("Itisnow:%s",asctime(&tmbuf,buf));

}

produces the following:

It is now: Sat Mar 21 15:58:27 1987

Classification: localtime is ANSI, _localtime is not ANSI

Systems: localtime - All, Netwarelocaltime�All

Library Functions and Macros 395

lock

Synopsis: #include <unistd.h>
int lock(int fildes,

unsigned long offset,
unsigned long nbytes);

Description: The lock function locks nbytes amount of data in the file designated by fildes starting at
byte offset in the file. The file must be opened with write access to lock it.

Locking is a protocol designed for updating a file shared among concurrently running
applications. Locks are only advisory, that is, they do not prevent an errant or
poorly-designed application from overwriting a locked region of a shared file. An
application should use locks to indicate regions of a file that are to be updated by the
application and it should respect the locks of other applications.

Multiple regions of a file can be locked, but no overlapping regions are allowed. You cannot
unlock multiple regions in the same call, even if the regions are contiguous. All locked
regions of a file should be unlocked before closing a file or exiting the program.

Returns: The lock function returns zero if successful, and -1 when an error occurs. When an error
has occurred, errno contains a value indicating the type of error that has been detected.

See Also: locking, open, sopen, unlock

Example: #include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

void main()
{

int fildes;
char buffer[20];

396 Library Functions and Macros

lockfildes=open("file",ORDWR);
if(fildes != -1) {

if(lock(fildes, 0L, 20L)) {
printf("Lock failed\n");

} else {
read(fildes, buffer, 20);
/* update the buffer here */lseek(fildes,0L,SEEKSET);
write(fildes, buffer, 20);
unlock(fildes, 0L, 20L);

}
close(fildes);

}
}

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 397

locking, _locking

Synopsis: #include <sys/locking.h>
int locking(int fildes, int mode, long nbyte);intlocking(intfildes,intmode,longnbyte);

Description: The locking function locks or unlocks nbyte bytes of the file specified by fildes. The file
must be opened with write access to lock it.

Locking is a protocol designed for updating a file shared among concurrently running
applications. Locks are only advisory, that is, they do not prevent an errant or
poorly-designed application from overwriting a locked region of a shared file. An
application should use locks to indicate regions of a file that are to be updated by the
application and it should respect the locks of other applications. The locking and unlocking
takes place at the current file position. The argument mode specifies the action to be
performed. The possible values for mode are:

Mode Meaning

_LK_LOCK, LK_LOCK Locks the specified region. The function will retry to lock the
region after 1 second intervals until successful or until 10 attempts have
been made.

_LK_RLCK, LK_RLCK Same action as
LKLOCK.

_LK_NBLCK, LK_NBLCK Non-blocking lock: makes only 1 attempt to lock the specified
region.

_LK_NBRLCK, LK_NBRLCK Same action as
LKNBLCK.

_LK_UNLCK, LK_UNLCK Unlocks the specified region. The region must have been
previously locked.

Multiple regions of a file can be locked, but no overlapping regions are allowed. You cannot
unlock multiple regions in the same call, even if the regions are contiguous. All locked
regions of a file should be unlocked before closing a file or exiting the program.

The
locking function is identical to locking. Use

locking for ANSI/ISO naming
conventions.

Returns: The locking function returns zero if successful. Otherwise, it returns -1 and errno is set
to indicate the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

398 Library Functions and Macros

locking, _locking

Constant Meaning

EACCES Indicates a locking violation (file already locked or unlocked).

EBADF Indicates an invalid file descriptor.

EDEADLOCK Indicates a locking violation. This error is returned when mode isLKLOCK
 or
LKRLCK

 and the file cannot be locked after 10 attempts.

EINVAL Indicates that an invalid argument was given to the function.

See Also: creat, lock, open, sopen, unlock

Example: #include <stdio.h>
#include <sys/locking.h>
#include <share.h>
#include <fcntl.h>
#include <unistd.h>

void main()
{

int fildes;
unsigned nbytes;
unsigned long offset;
auto char buffer[512];

nbytes = 512;
offset = 1024;fildes=sopen("db.fil",ORDWR,SHDENYNO);
if(fildes != -1) {lseek(fildes,offset,SEEKSET);locking(fildes,LKLOCK,nbytes);

read(fildes, buffer, nbytes);
/* update data in the buffer */lseek(fildes,offset,SEEKSET);
write(fildes, buffer, nbytes);lseek(fildes,offset,SEEKSET);locking(fildes,LKUNLCK,nbytes);
close(fildes);

}
}

Classification: WATCOM

_locking conforms to ANSI/ISO naming conventions

Library Functions and Macros 399

locking, _locking

Systems: locking - Alllocking�All

400 Library Functions and Macros

log

Synopsis: #include <math.h>
double log(double x);

Description: The log function computes the natural logarithm (base e) of x. A domain error occurs if the
argument is negative. A range error occurs if the argument is zero.

Returns: The log function returns the natural logarithm of the argument. When the argument is
outside the permissible range, the matherr function is called. Unless the default matherr
function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN
error" diagnostic message using the stderr stream.

See Also: exp, log10, log2, pow, matherr

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", log(.5));
}

produces the following:

-0.693147

Classification: ANSI

Systems: Math

Library Functions and Macros 401

log10

Synopsis: #include <math.h>
double log10(double x);

Description: The log10 function computes the logarithm (base 10) of x. A domain error occurs if the
argument is negative. A range error occurs if the argument is zero.

Returns: The log10 function returns the logarithm (base 10) of the argument. When the argument is
outside the permissible range, the matherr function is called. Unless the default matherr
function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN
error" diagnostic message using the stderr stream.

See Also: exp, log, log2, pow, matherr

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", log10(.5));
}

produces the following:

-0.301030

Classification: ANSI

Systems: Math

402 Library Functions and Macros

log2

Synopsis: #include <math.h>
double log2(double x);

Description: The log2 function computes the logarithm (base 2) of x. A domain error occurs if the
argument is negative. A range error occurs if the argument is zero.

Returns: The log2 function returns the logarithm (base 2) of the argument. When the argument is
outside the permissible range, the matherr function is called. Unless the default matherr
function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN
error" diagnostic message using the stderr stream.

See Also: exp, log, log10, pow, matherr

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", log2(.25));
}

produces the following:

-2.000000

Classification: WATCOM

Systems: Math

Library Functions and Macros 403

longjmp

Synopsis: #include <setjmp.h>voidlongjmp(jmpbufenv,intreturnvalue);
Description: The longjmp function restores the environment saved by the most recent call to the

setjmp function with the corresponding
jmpbuf argument.

It is generally a bad idea to use longjmp to jump out of an interrupt function or a signal
handler (unless the signal was generated by the raise function).

Returns: After the longjmp function restores the environment, program execution continues as if the
corresponding call to setjmp had just returned the value specified by return_value. If the
value of return_value is 0, the value returned is 1.

See Also: setjmp

Example: #include <stdio.h>
#include <setjmp.h>jmpbufenv;
rtn()

{
printf("about to longjmp\n");
longjmp(env, 14);

}

void main()
{intretval=293;if(0==(retval=setjmp(env))){printf("aftersetjmp%d\n",retval);

rtn();printf("backfromrtn%d\n",retval);
} else {printf("backfromlongjmp%d\n",retval);
}

}

produces the following:

after setjmp 0
about to longjmp
back from longjmp 14

404 Library Functions and Macros

longjmp

Classification: ANSI

Systems: All, Netware

Library Functions and Macros 405

_lrotl

Synopsis: #include <stdlib.h>unsignedlonglrotl(unsignedlongvalue,
unsigned int shift);

Description: The
lrotl function rotates the unsigned long integer, determined by value, to the left by

the number of bits specified in shift.

Returns: The rotated value is returned.

See Also:
lrotr,rotl,rotr

Example: #include <stdio.h>
#include <stdlib.h>

unsigned long mask = 0x12345678;

void main()
{mask=lrotl(mask,4);

printf("%08lX\n", mask);
}

produces the following:

23456781

Classification: WATCOM

Systems: All, Netware

406 Library Functions and Macros

_lrotr

Synopsis: #include <stdlib.h>unsignedlonglrotr(unsignedlongvalue,
unsigned int shift);

Description: The
lrotr function rotates the unsigned long integer, determined by value, to the right by

the number of bits specified in shift.

Returns: The rotated value is returned.

See Also:
lrotl,rotl,rotr

Example: #include <stdio.h>
#include <stdlib.h>

unsigned long mask = 0x12345678;

void main()
{mask=lrotr(mask,4);

printf("%08lX\n", mask);
}

produces the following:

81234567

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 407

lsearch

Synopsis: #include <search.h>
void *lsearch(const void *key, /* object to search for */

void *base, /* base of search data */
unsigned *num, /* number of elements */
unsigned width, /* width of each element*/
int (*compare)(const void *element1,

const void *element2));

Description: The lsearch function performs a linear search for the value key in the array of num
elements pointed to by base. Each element of the array is width bytes in size. The argument
compare is a pointer to a user-supplied routine that will be called by lsearch to determine
the relationship of an array element with the key. One of the arguments to the compare
function will be an array element, and the other will be key.

The compare function should return 0 if element1 is identical to element2 and non-zero if the
elements are not identical.

Returns: If the key value is not found in the array, then it is added to the end of the array and the
number of elements is incremented. The lsearch function returns a pointer to the array
element in base that matches key if it is found, or the newly added key if it was not found.

See Also: bsearch, lfind

Example: #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <search.h>

void main(int argc, const char *argv[])
{

int i;
unsigned num = 0;
char **array = (char **)calloc(argc, sizeof(char **));
extern int compare(const void *, const void *);

for(i = 1; i < argc; ++i) {
lsearch(&argv[i], array, &num, sizeof(char **),

compare);
}
for(i = 0; i < num; ++i) {

printf("%s\n", array[i]);
}

}

408 Library Functions and Macros

lsearch

int compare(const void *op1, const void *op2)
{

const char **p1 = (const char **) op1;
const char **p2 = (const char **) op2;
return(strcmp(*p1, *p2));

}

/* With input: one two one three four */

produces the following:

one
two
three
four

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 409

lseek

Synopsis: #include <sys/types.h>
#include <unistd.h>offtlseek(intfildes,offtoffset,intorigin);

Description: The lseek function sets the current file position at the operating system level. The file is
referenced using the file descriptor fildes returned by a successful execution of one of the
creat, dup, dup2, fcntl, open or sopen functions. The value of offset is used as a
relative offset from a file position determined by the value of the argument origin.

The new file position is determined in a manner dependent upon the value of origin which
may have one of three possible values (defined in the <stdio.h> or <unistd.h> header
file):

Origin Definition

SEEK_SET The new file position is computed relative to the start of the file. The
value of offset must not be negative.

SEEK_CUR The new file position is computed relative to the current file position.
The value of offset may be positive, negative or zero.

SEEK_END The new file position is computed relative to the end of the file.

An error will occur if the requested file position is before the start of the file.

The requested file position may be beyond the end of the file. On POSIX-conforming
systems, if data is later written at this point, subsequent reads of data in the gap will return
bytes whose value is equal to zero until data is actually written in the gap. On systems such
DOS and OS/2 that are not POSIX-conforming, data that are read in the gap have arbitrary
values.

Some versions of MS-DOS allow seeking to a negative offset, but it is not recommended
since it is not supported by other platforms and may not be supported in future versions of
MS-DOS.

The lseek function does not, in itself, extend the size of a file (see the description of the
chsize function).

The _lseeki64 function is identical to lseek except that it accepts a 64-bit value for the
offset argument.

410 Library Functions and Macros

lseek

The lseek function can be used to obtain the current file position (the tell function is
implemented in terms of lseek). This value can then be used with the lseek function to
reset the file position to that point in the file:

 offtfileposn;
int fildes;

/* get current file position */fileposn=lseek(fildes,0L,SEEKCUR);
/* or */fileposn=tell(fildes);

/* return to previous file position */fileposn=lseek(fildes,fileposn,SEEKSET);
If all records in the file are the same size, the position of the n’th record can be calculated
and read, as illustrated in the example included below. The function in this example assumes
records are numbered starting with zero and that rec_size contains the size of a record in the
file (including the record-separator character).

Returns: If successful, the current file position is returned in a system-dependent manner. A value of
0 indicates the start of the file.

If an error occurs in lseek, (-1L) is returned.

If an error occurs in _ lseeki64, (-1I64) is returned.

When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

EBADF The fildes argument is not a valid file descriptor.

EINVAL The origin argument is not a proper value, or the resulting file offset
would be invalid.

ESPIPE The fildes argument is associated with a pipe or FIFO.

See Also: chsize, close, creat, dup, dup2, eof, exec Functions, fdopen, filelength,
fileno, fstat, open, read, setmode, sopen, stat, tell, write, umask

Library Functions and Macros 411

lseek

Example: #include <stdio.h>
#include <fcntl.h>
#include <unistd.h>intreadrecord(intfildes,longrecnumb,intrecsize,

char *buffer)
{if(lseek(fildes,recnumb*recsize,SEEKSET)

== -1L) {
return(-1);

}return(read(fildes,buffer,recsize));
}

void main()
{

int fildes;intsizeread;
char buffer[80];

/* open a file for input */fildes=open("file",ORDONLY);
if(fildes != -1) {

/* read a piece of the text */sizeread=readrecord(fildes,1,80,buffer);
/* test for error */if(sizeread==�1){

printf("Error reading file\n");
} else {

printf("%.80s\n", buffer);
}

/* close the file */
close(fildes);

}
}

Classification: POSIX 1003.1

Systems: All, Netware

412 Library Functions and Macros

lltoa, _lltoa, _lltow

Synopsis: #include <stdlib.h>
char *lltoa(long long int value,

char *buffer,
int radix);char*lltoa(longlongintvalue,
char *buffer,
int radix);wchart*lltow(longlongintvalue,wchart*buffer,

int radix);

Description: The lltoa function converts the binary integer value into the equivalent string in base
radix notation storing the result in the character array pointed to by buffer. A null character
is appended to the result. The size of buffer must be at least 65 bytes when converting values
in base 2. The value of radix must satisfy the condition:

2 <= radix <= 36

If radix is 10 and value is negative, then a minus sign is prepended to the result.

The
lltoa function is identical to lltoa. Use

lltoa for ANSI/ISO naming
conventions.

The
lltow function is identical to lltoa except that it produces a wide-character string

(which is twice as long).

Returns: The lltoa function returns a pointer to the result.

See Also: atoi, atol, atoll, itoa, ltoa, sscanf, strtol, strtoll, strtoul,
strtoull, strtoimax, strtoumax, ultoa, ulltoa, utoa

Example:

Library Functions and Macros 413

lltoa, _lltoa, _lltow

#include <stdio.h>
#include <stdlib.h>voidprintvalue(longvalue)
{

int base;
char buffer[65];

for(base = 2; base <= 16; base = base + 2)
printf("%2d %s\n", base,

lltoa(value, buffer, base));
}

void main()
{printvalue(1234098765LL);
}

produces the following:

2 1001001100011101101101001001101
4 1021203231221031
6 322243004113
8 11143555115

10 1234098765
12 2a5369639
14 b9c8863b
16 498eda4d

Classification: WATCOM

_lltoa conforms to ANSI/ISO naming conventions

Systems: lltoa - All, Netware

414 Library Functions and Macros

ltoa, _ltoa, _ltow

Synopsis: #include <stdlib.h>
char *ltoa(long int value,

char *buffer,
int radix);char*ltoa(longintvalue,
char *buffer,
int radix);wchart*ltow(longintvalue,wchart*buffer,

int radix);

Description: The ltoa function converts the binary integer value into the equivalent string in base radix
notation storing the result in the character array pointed to by buffer. A null character is
appended to the result. The size of buffer must be at least 33 bytes when converting values in
base 2. The value of radix must satisfy the condition:

2 <= radix <= 36

If radix is 10 and value is negative, then a minus sign is prepended to the result.

The
ltoa function is identical to ltoa. Use

ltoa for ANSI/ISO naming conventions.

The
ltow function is identical to ltoa except that it produces a wide-character string

(which is twice as long).

Returns: The ltoa function returns a pointer to the result.

See Also: atoi, atol, atoll, itoa, lltoa, sscanf, strtol, strtoll, strtoul,
strtoull, strtoimax, strtoumax, ultoa, ulltoa, utoa

Example:

Library Functions and Macros 415

ltoa, _ltoa, _ltow

#include <stdio.h>
#include <stdlib.h>voidprintvalue(longvalue)
{

int base;
char buffer[33];

for(base = 2; base <= 16; base = base + 2)
printf("%2d %s\n", base,

ltoa(value, buffer, base));
}

void main()
{printvalue(12765L);
}

produces the following:

2 11000111011101
4 3013131
6 135033
8 30735

10 12765
12 7479
14 491b
16 31dd

Classification: WATCOM

_ltoa conforms to ANSI/ISO naming conventions

Systems: ltoa - All, Netwareltoa�All,Netwareltow�All

416 Library Functions and Macros

main, wmain

Synopsis: int main(void);
int main(int argc, const char *argv[]);
int main(int argc, const char *argv[], char *envp[]);
int wmain(void);intwmain(intargc,wchart*argv[]);

Description: main is a user-supplied function where program execution begins. The command line to the
program is broken into a sequence of tokens separated by blanks and are passed to main as
an array of pointers to character strings in the parameter argv. The number of arguments
found is passed in the parameter argc. The first element of argv will be a pointer to a
character string containing the program name. The last element of the array pointed to by
argv will be a NULL pointer (i.e. argv[argc] will be NULL). Arguments that contain blanks
can be passed to main by enclosing them within double quote characters (which are
removed from that element in the argv vector. A literal double quote character can be passed
by preceding it with a backslash. A literal backslash followed by an enclosing double quote
character can be passed as a pair of backslash characters and a double quote character.

Example: echo "he\"l\lo world\\"
passes the single argument he"l\lo world\

The command line arguments can also be obtained in its original format by using the getcmd
function.

The envp argument points at an array of pointers to character strings which are the
environment strings for the current process. This value is identical to the environ variable
which is defined in the <stdlib.h> header file.

Alternatively, the main function can be declared to return void (i.e., no return value). In
this case, you will not be able to return an exit code from main using a return statement
but must use the exit function to do so.

The wmain function is a user-defined wide-character version of main that operates with
wide-character strings. If this function is present in the application, then it will be called by
the run-time system startup code (and the main function, if present, will not be called).

As with main, the wmain function can be declared to return void and the same
considerations will apply.

Thegetargv function analyses a "command line" into a sequence of tokens separated by
blanks and passed to the caller as an array of pointers to character strings.wgetargv is the
wide character version ofgetargv. Each has the following parameters: historical selects
between historical and modern methods of handling double quote characters in command lines

Library Functions and Macros 417

main, wmain

and should be passed with a value of zero; exe is the name of the "executable"; cmd is the
"command line" to be analysed after removal of the name of the "executable"; pargc is set on
output to the number of arguments found; pargv is set on output to point at an array of
arguments.

Returns: The main and wmain functions return an exit code to the calling program (usually the
operating system).

Thegetargv andwgetargv functions return a pointer to memory allocated by those
functions or NULL on an allocation failure. That memory may be passed to free when
access to the output argument array is no longer needed.

See Also: abort, atexit,
bgetcmd, close, exec Functions, exit,

Exit,exit, getcmd,
getenv, onexit, putenv, signal, spawn Functions, system, wait

Example: #include <stdio.h>

int main(int argc, char *argv[])
{

int i;
for(i = 0; i < argc; ++i) {

printf("argv[%d] = %s\n", i, argv[i]);
}
return(0);

}#ifdefWIDEintwmain(intwargc,wchart*wargv[])
{

int i;
for(i = 0; i < wargc; ++i) {

wprintf(L"wargv[%d] = %s\n", i, wargv[i]);
}
return(0);

}
#endif

produces the following:

argv[0] = mypgm
argv[1] = hhhhh
argv[2] = another arg

when the program mypgm is executed with the command

mypgm hhhhh "another arg"

418 Library Functions and Macros

main, wmain

A sample usage of _getargv follows:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>void*getargv(inthistorical,char*exe,char*cmd,

int *pargc, char ***pargv);

void extraparams(const char *envname)
{

char const * const evaluero = getenv(envname);
if(evaluero) {

char * const cmd = strdup(evaluero);
char exe[] = "dummy";
int c;
char **v;void*constopaque=getargv(0,exe,cmd,

&c, &v);
if(opaque) {

int i;
for(i = 0; i < c; ++i) {

printf("argv[%d] = %s\n", i, v[i]);
}
free(opaque);

}
}

}

void main(int argc, char **argv)
{

if(argc >= 2) {
extraparams(argv[1]);

}
}

produces the following:

argv[0] = dummy
argv[1] = a
argv[2] = b

when mypgm is executed with the command

mypgm name

is run while the environment variable name has the value a b

Library Functions and Macros 419

main, wmain

Classification: main is ANSI, _wgetargv is not ANSI, WinMain is not ANSI, wWinMain is not ANSI

Systems: main - All, Netware
wmain - Win32, OS/2-32

420 Library Functions and Macros

_makepath, _wmakepath

Synopsis: #include <stdlib.h>voidmakepath(char*path,
const char *node,
const char *dir,
const char *fname,
const char *ext);voidwmakepath(wchart*path,constwchart*node,constwchart*dir,constwchart*fname,constwchart*ext);

Description: Themakepath function constructs a full pathname from the components consisting of a
node specification (e.g., //2), directory path (e.g., /home/fred), file name (e.g., myfile) and
file name extension or suffix (e.g., dat). The full pathname (e.g., //2/home/fred/myfile.dat) is
placed in the buffer pointed to by the argument path.

Thewmakepath function is a wide-character version ofmakepath that operates with
wide-character strings.

The maximum size required for each buffer is specified by the manifest constantsMAXPATH,MAXNODE,MAXDIR,MAXFNAME, and
MAXEXT

 which are
defined in <stdlib.h>.

node The node argument points to a buffer containing the node specification (e.g.,
//0, //1, etc.) followed by an optional "/". Themakepath function will
automatically insert a "/" following the node number in the full pathname if it
is missing. If node is a NULL pointer or points to an empty string, no node
specification will be placed in the full pathname.

dir The dir argument points to a buffer containing just the pathname. The trailing
slash is optional. Themakepath function will automatically insert a
trailing slash in the full pathname if it is missing. If dir is a NULL pointer or
points to an empty string, no slash will be placed in the full pathname.

fname The fname argument points to a buffer containing the base name of the file
without any extension (suffix).

ext The ext argument points to a buffer containing the filename extension or
suffix. A leading period (.) is optional. Themakepath routine will
automatically insert a period in the full pathname if it is missing. If ext is a
NULL pointer or points to an empty string, no period will be placed in the full
pathname.

Library Functions and Macros 421

_makepath, _wmakepath

Returns: Themakepath function returns no value.

See Also:
fullpath,splitpath

Example: #include <stdio.h>
#include <stdlib.h>

void main()
{charfullpath[MAXPATH];charnode[MAXNODE];chardir[MAXDIR];charfname[MAXFNAME];charext[MAXEXT];makepath(fullpath,"//0","/home/fred/h","stdio","h");printf("Fullpathis:%s\n\n",fullpath);splitpath(fullpath,node,dir,fname,ext);printf("Componentsaftersplitpath\n");

printf("node: %s\n", node);
printf("dir: %s\n", dir);
printf("fname: %s\n", fname);
printf("ext: %s\n", ext);

}

produces the following:

Full path is: //0/home/fred/h/stdio.hComponentsaftersplitpath
node: //0
dir: /home/fred/h/
fname: stdio
ext: .h

Classification: WATCOM

Systems: makepath�All,Netwarewmakepath�All
422 Library Functions and Macros

malloc Functions

Synopsis: #include <stdlib.h> For ANSI compatibility (malloc only)
#include <malloc.h> Required for other function prototypesvoid*malloc(sizetsize);voidbased(void)*bmalloc(segmentseg,sizetsize);voidfar*fmalloc(sizetsize);voidnear*nmalloc(sizetsize);

Description: The malloc functions allocate space for an object of size bytes. Nothing is allocated when
the size argument has a value of zero.

Each function allocates memory from a particular heap, as listed below:

Function Heap

malloc Depends on data model of the program

_bmalloc Based heap specified by seg value

_fmalloc Far heap (outside the default data segment)

_nmalloc Near heap (inside the default data segment)

In a small data memory model, the malloc function is equivalent to thenmalloc
function; in a large data memory model, the malloc function is equivalent to thefmalloc function.

Returns: The malloc functions return a pointer to the start of the allocated memory. The malloc,fmalloc andnmalloc functions return NULL if there is insufficient memory available
or if the requested size is zero. The

bmalloc function returns
NULLOFF if there is

insufficient memory available or if the requested size is zero.

See Also: calloc Functions,expand Functions, free Functions, halloc, hfree,msize
Functions, realloc Functions, sbrk

Example: #include <stdlib.h>

void main()
{

char *buffer;

Library Functions and Macros 423

malloc Functions

buffer = (char *)malloc(80);
if(buffer != NULL) {

/* body of program */

free(buffer);
}

}

Classification: malloc is ANSI, _fmalloc is not ANSI, _bmalloc is not ANSI, _nmalloc is not ANSI

Systems: malloc - All, Netwarebmalloc�DOS/16,Windows,QNX/16,OS/21.x(all)fmalloc�DOS/16,Windows,QNX/16,OS/21.x(all)nmalloc�DOS,Windows,Win386,Win32,QNX,OS/21.x,OS/2
1.x(MT), OS/2-32

424 Library Functions and Macros

matherr

Synopsis: #include <math.h>intmatherr(structexception*errinfo);
Description: The matherr function is invoked each time an error is detected by functions in the math

library. The default matherr function supplied in the library returns zero which causes an
error message to be displayed upon stderr and errno to be set with an appropriate error
value. An alternative version of this function can be provided, instead of the library version,
in order that the error handling for mathematical errors can be handled by an application.

A program may contain a user-written version of matherr to take any appropriate action
when an error is detected. When zero is returned, an error message will be printed upon
stderr and errno will be set as was the case with the default function. When a non-zero
value is returned, no message is printed and errno is not changed. The valueerrinfo�>retval is used as the return value for the function in which the error was
detected.

The matherr function is passed a pointer to a structure of typestructexception
which contains information about the error that has been detected:

 structexception
{ int type; /* TYPE OF ERROR */

char *name; /* NAME OF FUNCTION */
double arg1; /* FIRST ARGUMENT TO FUNCTION */
double arg2; /* SECOND ARGUMENT TO FUNCTION */
double retval; /* DEFAULT RETURN VALUE */

};

The type field will contain one of the following values:

Value Meaning

DOMAIN A domain error has occurred, such as sqrt(-1e0).

SING A singularity will result, such as pow(0e0,-2).

OVERFLOW An overflow will result, such as pow(10e0,100).

UNDERFLOW An underflow will result, such as pow(10e0,-100).

TLOSS Total loss of significance will result, such as exp(1000).

PLOSS Partial loss of significance will result, such as sin(10e70).

Library Functions and Macros 425

matherr

The name field points to a string containing the name of the function which detected the
error. The fields arg1 and arg2 (if required) give the values which caused the error. The
field retval contains the value which will be returned by the function. This value may be
changed by a user-supplied version of the matherr function.

Returns: The matherr function returns zero when an error message is to be printed and a non-zero
value otherwise.

Example: #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

/* Demonstrate error routine in which negative */
/* arguments to "sqrt" are treated as positive */

void main()
{

printf("%e\n", sqrt(-5e0));
exit(0);

}intmatherr(structexception*err)
{

if(strcmp(err->name, "sqrt") == 0) {
if(err->type == DOMAIN) {

err->retval = sqrt(-(err->arg1));
return(1);

} else
return(0);

} else
return(0);

}

Classification: WATCOM

Systems: Math

426 Library Functions and Macros

max

Synopsis: #include <stdlib.h>
#define max(a,b) (((a) > (b)) ? (a) : (b))

Description: The max macro will evaluate to be the greater of two values. It is implemented as follows.

#define max(a,b) (((a) > (b)) ? (a) : (b))

Returns: The max macro will evaluate to the larger of the two values passed.

See Also: min

Example: #include <stdio.h>
#include <stdlib.h>

void main()
{

int a;

/*
* The following line will set the variable "a" to 10
* since 10 is greater than 1.
*/

a = max(1, 10);
printf("The value is: %d\n", a);

}

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 427

_mbcjistojms

Synopsis: #include <mbstring.h>unsignedintmbcjistojms(unsignedintch);
Description: Thembcjistojms converts a JIS character set code to a shift-JIS character set code. If

the argument is out of range,mbcjistojms returns 0. Valid JIS double-byte characters
are those in which the first and second byte fall in the range 0x21 through 0x7E. This is
summarized in the following diagram.

[1st byte] [2nd byte]
0x21-0x7E 0x21-0x7E

Note: The JIS character set code is a double-byte character set defined by JIS, the Japan
Industrial Standard Institutes. Shift-JIS is another double-byte character set. It is defined by
Microsoft for personal computers and is based on the JIS code. The first byte and the second
byte of JIS codes can have values less than 0x80. Microsoft has designed shift-JIS code so
that it can be mixed in strings with single-byte alphanumeric codes. Thus the double-byte
shift-JIS codes are greater than or equal to 0x8140.

Note: This function was called jistojms in earlier versions.

Returns: Thembcjistojms function returns zero if the argument is not in the range otherwise, the
corresponding shift-JIS code is returned.

See Also: mbcjmstojis,mbcjmstojis
Example: #include <stdio.h>

#include <mbctype.h>
#include <mbstring.h>

void main()
{

unsigned short c;setmbcp(932);c=mbcjistojms(0x2152);
printf("%#6.4x\n", c);

}

produces the following:

0x8171

Classification: WATCOM

428 Library Functions and Macros

_mbcjistojms

Systems: All

Library Functions and Macros 429

_mbcjmstojis

Synopsis: #include <mbstring.h>unsignedintmbcjmstojis(unsignedintch);
Description: Thembcjmstojis converts a shift-JIS character set code to a JIS character set code. If

the argument is out of range,mbcjmstojis returns 0. Valid shift-JIS double-byte
characters are those in which the first byte falls in the range 0x81 through 0x9F or 0xE0
through 0xFC and whose second byte falls in the range 0x40 through 0x7E or 0x80 through
0xFC. This is summarized in the following diagram.

[1st byte] [2nd byte]
0x81-0x9F 0x40-0xFC

or except 0x7F
0xE0-0xFC

Note: The JIS character set code is a double-byte character set defined by JIS, the Japan
Industrial Standard Institutes. Shift-JIS is another double-byte character set. It is defined by
Microsoft for personal computers and is based on the JIS code. The first byte and the second
byte of JIS codes can have values less than 0x80. Microsoft has designed shift-JIS code so
that it can be mixed in strings with single-byte alphanumeric codes. Thus the double-byte
shift-JIS codes are greater than or equal to 0x8140.

Note: This function was called jmstojis in earlier versions.

Returns: Thembcjmstojis function returns zero if the argument is not in the range otherwise, the
corresponding shift-JIS code is returned.

See Also: mbcjistojms,mbcjistojms
Example: #include <stdio.h>

#include <mbctype.h>
#include <mbstring.h>

void main()
{

unsigned short c;setmbcp(932);c=mbcjmstojis(0x8171);
printf("%#6.4x\n", c);

}

produces the following:

430 Library Functions and Macros

_mbcjmstojis

0x2152

Classification: WATCOM

Systems: All

Library Functions and Macros 431

_mbctohira

Synopsis: #include <mbstring.h>unsignedintmbctohira(unsignedintch);
Description: Thembctohira converts a double-byte Katakana character to a Hiragana character. A

double-byte Katakana character is any character for which the following expression is true:

0x8340 <= ch <= 0x8396 && ch != 0x837F

Any Katakana character whose value is less than 0x8393 is converted to Hiragana (there are
3 extra Katakana characters that have no equivalent).

Note: The Japanese double-byte character set includes Kanji, Hiragana, and Katakana
characters - both alphabetic and numeric. Kanji is the ideogram character set of the Japanese
character set. Hiragana and Katakana are two types of phonetic character sets of the
Japanese character set. The Hiragana code set includes 83 characters and the Katakana code
set includes 86 characters.

Note: This function was called jtohira in earlier versions.

Returns: Thembctohira function returns the argument value if the argument is not a double-byte
Katakana character; otherwise, the equivalent Hiragana character is returned.

See Also: mbcjistojms,mbcjmstojis,mbctokata, mblen, mbstowcs,mbstowcss,
mbtowc, wcstombs,wcstombss, wctomb,wctombs

Example: #include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>

unsigned int chars[] = {
0x8340,
0x8364,
0x8396

};

432 Library Functions and Macros

_mbctohira

#define SIZE sizeof(chars) / sizeof(unsigned int)

void main()
{

int i;setmbcp(932);
for(i = 0; i < SIZE; i++) {

printf("%#6.4x - %#6.4x\n",
chars[i],mbctohira(chars[i]));

}
}

produces the following:

0x8340 - 0x829f
0x8364 - 0x82c3
0x8396 - 0x8396

Classification: WATCOM

Systems: All

Library Functions and Macros 433

_mbctokata

Synopsis: #include <mbstring.h>unsignedintmbctokata(unsignedintch);
Description: Thembctokata converts a double-byte Hiragana character to a Katakana character. A

double-byte Hiragana character is any character for which the following expression is true:

0x829F <= c <= 0x82F1

Note: The Japanese double-byte character set includes Kanji, Hiragana, and Katakana
characters - both alphabetic and numeric. Kanji is the ideogram character set of the Japanese
character set. Hiragana and Katakana are two types of phonetic character sets of the
Japanese character set. The Hiragana code set includes 83 characters and the Katakana code
set includes 86 characters.

Note: This function was called jtokata in earlier versions.

Returns: Thembctokata function returns the argument value if the argument is not a double-byte
Hiragana character; otherwise, the equivalent Katakana character is returned.

See Also: mbcjistojms,mbcjmstojis,mbctohira, mblen, mbstowcs,mbstowcss,
mbtowc, wcstombs,wcstombss, wctomb,wctombs

Example: #include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>

unsigned int chars[] = {
0x829F,
0x82B0,
0x82F1

};

434 Library Functions and Macros

_mbctokata

#define SIZE sizeof(chars) / sizeof(unsigned int)

void main()
{

int i;setmbcp(932);
for(i = 0; i < SIZE; i++) {

printf("%#6.4x - %#6.4x\n",
chars[i],mbctokata(chars[i]));

}
}

produces the following:

0x829f - 0x8340
0x82b0 - 0x8351
0x82f1 - 0x8393

Classification: WATCOM

Systems: All

Library Functions and Macros 435

mblen

Synopsis: #include <stdlib.h>
or

#include <mbstring.h>intmblen(constchar*s,sizetn);intfmblen(constcharfar*s,sizetn);
Description: The mblen function determines the number of bytes comprising the multibyte character

pointed to by s. At most n bytes of the array pointed to by s will be examined.

The function is a data model independent form of the mblen function. It accepts far pointer
arguments and returns a far pointer. It is most useful in mixed memory model applications.

Returns: If s is a NULL pointer, the mblen function returns zero if multibyte character encodings are
not state dependent, and non-zero otherwise. If s is not a NULL pointer, the mblen function
returns:

Value Meaning

0 if s points to the null character

len the number of bytes that comprise the multibyte character (if the next n or fewer
bytes form a valid multibyte character)

-1 if the next n bytes do not form a valid multibyte character

See Also: mbcjistojms,mbcjmstojis,mbctohira,mbctokata, mbstowcs,mbstowcss, mbtowc, wcstombs,wcstombss, wctomb,wctombs
Example:

436 Library Functions and Macros

mblen

#include <stdio.h>
#include <mbstring.h>

const char chars[] = {
’ ’,
’.’,
’1’,
’A’,
0x81,0x40, /* double-byte space */
0x82,0x60, /* double-byte A */
0x82,0xA6, /* double-byte Hiragana */
0x83,0x42, /* double-byte Katakana */
0xA1, /* single-byte Katakana punctuation */
0xA6, /* single-byte Katakana alphabetic */
0xDF, /* single-byte Katakana alphabetic */
0xE0,0xA1, /* double-byte Kanji */
0x00

};

void main()
{

int i, j, k;setmbcp(932);
printf("Character encodings are %sstate dependent\n",(mblen(NULL,MBCURMAX))?"":"not");
j = 1;
for(i = 0; j > 0; i += j) {j=mblen(&chars[i],MBCURMAX);

printf("%d bytes in character ", j);
if(j == 0) {

k = 0;
} else if (j == 1) {

k = chars[i];
} else if(j == 2) {

k = chars[i]<<8 | chars[i+1];
}
printf("(%#6.4x)\n", k);

}
}

produces the following:

Library Functions and Macros 437

mblen

Character encodings are not state dependent
1 bytes in character (0x0020)
1 bytes in character (0x002e)
1 bytes in character (0x0031)
1 bytes in character (0x0041)
2 bytes in character (0x8140)
2 bytes in character (0x8260)
2 bytes in character (0x82a6)
2 bytes in character (0x8342)
1 bytes in character (0x00a1)
1 bytes in character (0x00a6)
1 bytes in character (0x00df)
2 bytes in character (0xe0a1)
0 bytes in character (0000)

Classification: ANSI

Systems: All, Netware

438 Library Functions and Macros

_strncnt, _wcsncnt

Synopsis: #include <mbstring.h>sizetmbsnbcnt(constunsignedchar*string,sizetn);sizetfmbsnbcnt(constunsignedcharfar*string,sizetn);
#include <tchar.h>sizetstrncnt(constchar*string,sizetn);sizetwcsncnt(constwchart*string,sizetn){

Description: The function counts the number of bytes in the first n multibyte characters of the string
string.

Note: This function was called mtob in earlier versions.

The function is a data model independent form of thestrncnt function that accepts far
pointer arguments. It is most useful in mixed memory model applications.

The header file <tchar.h> defines the generic-text routine
tcsnbcnt. This macro

maps to if
MBCS

 has been defined, or to thewcsncnt macro if
UNICODE

 has been
defined. Otherwise
tcsnbcnt maps tostrncnt.strncnt andwcsncnt are

single-byte character string and wide-character string versions of . Thestrncnt andwcsncnt macros are provided only for this mapping and should not be used otherwise.

Thestrncnt function returns the number of characters (i.e., n) in the first n bytes of the
single-byte string string. Thewcsncnt function returns the number of bytes (i.e., 2 * n) in
the first n wide characters of the wide-character string string.

Returns: Thestrncnt functions return the number of bytes in the string up to the specified number
of characters or until a null character is encountered. The null character is not included in the
count. If the character preceding the null character was a lead byte, the lead byte is not
included in the count.

See Also:

Example:

Library Functions and Macros 439

_strncnt, _wcsncnt

#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>

const unsigned char chars[] = {
’ ’,
’.’,
’1’,
’A’,
0x81,0x40, /* double-byte space */
0x82,0x60, /* double-byte A */
0x82,0xA6, /* double-byte Hiragana */
0x83,0x42, /* double-byte Katakana */
0xA1, /* single-byte Katakana punctuation */
0xA6, /* single-byte Katakana alphabetic */
0xDF, /* single-byte Katakana alphabetic */
0xE0,0xA1, /* double-byte Kanji */
0x00

};

void main()
{setmbcp(932);

printf("%d bytes found\n",mbsnbcnt(chars,10));
}

produces the following:

14 bytes found

Classification: WATCOM

Systems: strncnt�MACROwcsncnt�MACRO

440 Library Functions and Macros

_strncnt, _wcsncnt

Synopsis: #include <mbstring.h>sizetmbsnccnt(constunsignedchar*string,sizetn);sizetfmbsnccnt(constunsignedcharfar*string,sizetn);
#include <tchar.h>sizetstrncnt(constchar*string,sizetn);sizetwcsncnt(constwchart*string,sizetn){

Description: The function counts the number of multibyte characters in the first n bytes of the string
string. If finds a null byte as the second byte of a double-byte character, the first (lead) byte
is not included in the count.

Note: This function was called btom in earlier versions.

The function is a data model independent form of thestrncnt function that accepts far
pointer arguments. It is most useful in mixed memory model applications.

The header file <tchar.h> defines the generic-text routine
tcsnccnt. This macro

maps to if
MBCS

 has been defined, or to thewcsncnt macro if
UNICODE

 has been
defined. Otherwise
tcsnccnt maps tostrncnt.strncnt andwcsncnt are

single-byte character string and wide-character string versions of . Thestrncnt andwcsncnt macros are provided only for this mapping and should not be used otherwise.

Thestrncnt function returns the number of characters (i.e., n) in the first n bytes of the
single-byte string string. Thewcsncnt function returns the number of bytes (i.e., 2 * n) in
the first n wide characters of the wide-character string string.

Returns: strncnt returns the number of characters from the beginning of the string to byte n.wcsncnt returns the number of wide characters from the beginning of the string to byte n.
returns the number of multibyte characters from the beginning of the string to byte n. If
these functions find a null character before byte n, they return the number of characters
before the null character. If the string consists of fewer than n characters, these functions
return the number of characters in the string.

See Also:

Example:

Library Functions and Macros 441

_strncnt, _wcsncnt

#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>

const unsigned char chars[] = {
’ ’,
’.’,
’1’,
’A’,
0x81,0x40, /* double-byte space */
0x82,0x60, /* double-byte A */
0x82,0xA6, /* double-byte Hiragana */
0x83,0x42, /* double-byte Katakana */
0xA1, /* single-byte Katakana punctuation */
0xA6, /* single-byte Katakana alphabetic */
0xDF, /* single-byte Katakana alphabetic */
0xE0,0xA1, /* double-byte Kanji */
0x00

};

void main()
{setmbcp(932);

printf("%d characters found\n",mbsnccnt(chars,10));
}

produces the following:

7 characters found

Classification: WATCOM

Systems: strncnt�MACROwcsncnt�MACRO

442 Library Functions and Macros

_strnextc, _wcsnextc

Synopsis: #include <mbstring.h>unsignedintmbsnextc(constunsignedchar*string);unsignedintfmbsnextc(constunsignedcharfar*string);
#include <tchar.h>unsignedintstrnextc(constchar*string);unsignedintwcsnextc(constwchart*string){

Description: The function returns the integer value of the next multibyte-character in string, without
advancing the string pointer. recognizes multibyte character sequences according to the
multibyte code page currently in use.

The header file <tchar.h> defines the generic-text routine
tcsnextc. This macro

maps to if
MBCS

 has been defined, or towcsnextc ifUNICODE has been defined.
Otherwise
tcsnextc maps tostrnextc.strnextc andwcsnextc are

single-byte character string and wide-character string versions of .strnextc andwcsnextc are provided only for this mapping and should not be used otherwise.strnextc returns the integer value of the next single-byte character in the string.wcsnextc returns the integer value of the next wide character in the string.

Returns: These functions return the integer value of the next character (single-byte, wide, or
multibyte) pointed to by string.

See Also: strdec,strinc,strninc
Example:

Library Functions and Macros 443

_strnextc, _wcsnextc

#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>

const unsigned char chars[] = {
’ ’,
’.’,
’1’,
’A’,
0x81,0x40, /* double-byte space */
0x82,0x60, /* double-byte A */
0x82,0xA6, /* double-byte Hiragana */
0x83,0x42, /* double-byte Katakana */
0xA1, /* single-byte Katakana punctuation */
0xA6, /* single-byte Katakana alphabetic */
0xDF, /* single-byte Katakana alphabetic */
0xE0,0xA1, /* double-byte Kanji */
0x00

};

void main()
{setmbcp(932);printf("%#6.4x\n",mbsnextc(&chars[2]));printf("%#6.4x\n",mbsnextc(&chars[4]));printf("%#6.4x\n",mbsnextc(&chars[12]));
}

produces the following:

0x0031
0x8140
0x00a1

Classification: WATCOM

Systems: strnextc�MACROwcsnextc�MACRO
444 Library Functions and Macros

mbstowcs

Synopsis: #include <stdlib.h>sizetmbstowcs(wchart*pwcs,constchar*s,sizetn);
#include <mbstring.h>sizetfmbstowcs(constwchartfar*pwcs,charfar*s,sizetn);

Safer C: The Safer C Library extension provides thembstowcss function which is a safer
alternative to mbstowcs. This newermbstowcss function is recommended to be used
instead of the traditional "unsafe" mbstowcs function.

Description: The mbstowcs function converts a sequence of multibyte characters pointed to by s into
their corresponding wide character codes and stores not more than n codes into the array
pointed to by pwcs. The mbstowcs function does not convert any multibyte characters
beyond the null character. At most n elements of the array pointed to by pwcs will be
modified.

The function is a data model independent form of the mbstowcs function that accepts far
pointer arguments. It is most useful in mixed memory model applications.

Returns: If an invalid multibyte character is encountered, the mbstowcs function returns(sizet)�1. Otherwise, the mbstowcs function returns the number of array elements
modified, not including the terminating zero code if present.

See Also:mbstowcss, mblen, mbtowc, wctomb,wctombs, wcstombs,wcstombss
Example: #include <stdio.h>

#include <stdlib.h>

void main()
{

char *wc = "string";wchartwbuffer[50];
int i, len;

len = mbstowcs(wbuffer, wc, 50);
if(len != -1) {

wbuffer[len] = ’\0’;
printf("%s(%d)\n", wc, len);
for(i = 0; i < len; i++)

printf("/%4.4x", wbuffer[i]);
printf("\n");

}
}

Library Functions and Macros 445

mbstowcs

produces the following:

string(6)
/0073/0074/0072/0069/006e/0067

Classification: ANSI

Systems: All, Netware

446 Library Functions and Macros

mbstowcs_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdlib.h>errnotmbstowcss(sizet*restrictretval,wchart*restrictdst,rsizetdstmax,constchar*restrictsrc,rsizetlen);errnotfmbstowcss(sizetfar*restrictretval,wchartfar*restrictdst,rsizetdstmax,constcharfar*restrictsrc,rsizetl
en);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked andmbstowcss will return a non-zero value
to indicate an error, or the runtime-constraint handler aborts the program.

Neither retval nor src shall be a null pointer. If dst is not a null pointer, then neither len nor
dstmax shall be greater than
RSIZEMAX. If dst is a null pointer, then dstmax shall equal

zero. If dst is not a null pointer, then dstmax shall not equal zero. If dst is not a null pointer
and len is not less than dstmax, then a null character shall occur within the first dstmax
multibyte characters of the array pointed to by src.

If there is a runtime-constraint violation, thenmbstowcss does the following. If retval is
not a null pointer, thenmbstowcss sets *retval to (size_t)(-1). If dst is not a null pointer
and dstmax is greater than zero and less than

RSIZEMAX, thenmbstowcss sets dst[0]
to the null wide character.

Description: Thembstowcss function converts a sequence of multibyte characters that begins in the
initial shift state from the array pointed to by src into a sequence of corresponding wide
characters. If dst is not a null pointer, the converted characters are stored into the array
pointed to by dst.

Conversion continues up to and including a terminating null character, which is also stored.
Conversion stops earlier in two cases: when a sequence of bytes is encountered that does not
form a valid multibyte character, or (if dst is not a null pointer) when len wide characters
have been stored into the array pointed to by dst. If dst is not a null pointer and no null wide
character was stored into the array pointed to by dst, then dst[len] is set to the null wide
character. Each conversion takes place as if by a call to the mbrtowc function.

Regardless of whether dst is or is not a null pointer, if the input conversion encounters a
sequence of bytes that do not form a valid multibyte character, an encoding error occurs: thembstowcss function stores the value (size_t)(-1) into *retval. Otherwise, thembstowcss function stores into *retval the number of multibyte characters successfully
converted, not including the terminating null character (if any).

Library Functions and Macros 447

mbstowcs_s

All elements following the terminating null wide character (if any) written bymbstowcss
in the array of dstmax wide characters pointed to by dst take unspecified values whenmbstowcss returns.

If copying takes place between objects that overlap, the objects take on unspecified values.

The
fmbstowcss function is a data model independent form of the mbstowcs_s

function that accepts far pointer arguments. It is most useful in mixed memory model
applications.

Returns: Thembstowcss function returns zero if there was no runtime-constraint violation.
Otherwise, a non-zero value is returned.

See Also: mbstowcs, mblen, mbtowc, wctomb,wctombs, wcstombs,wcstombss
Example:
#defineSTDCWANTLIBEXT11
#include <stdio.h>
#include <stdlib.h>

int main()
{

char *wc = "string";wchartwbuffer[50];
int i;errnotrc;sizetretval;rc=mbstowcss(&retval,wbuffer,50,wc,10);
if(rc == 0) {

wbuffer[retval] = L’\0’;
printf("%s(%d)\n", wc, retval);
for(i = 0; i < retval; i++)

printf("/%4.4x", wbuffer[i]);
printf("\n");

}
return(0);

}

produces the following:

string(6)
/0073/0074/0072/0069/006e/0067

Classification: mbstowcs_s is TR 24731

448 Library Functions and Macros

mbstowcs_s

Systems: All, Netware

Library Functions and Macros 449

mbtowc

Synopsis: #include <stdlib.h>intmbtowc(wchart*pwc,constchar*s,sizetn);
#include <mbstring.h>intfmbtowc(wchartfar*pwc,constcharfar*s,sizetn);

Description: The mbtowc function converts a single multibyte character pointed to by s into the wide
character code that corresponds to that multibyte character. The code for the null character is
zero. If the multibyte character is valid and pwc is not a NULL pointer, the code is stored in
the object pointed to by pwc. At most n bytes of the array pointed to by s will be examined.

The mbtowc function does not examine more than
MBCURMAX

 bytes.

The function is a data model independent form of the mbtowc function that accepts far
pointer arguments. It is most useful in mixed memory model applications.

Returns: If s is a NULL pointer, the mbtowc function returns zero if multibyte character encodings
are not state dependent, and non-zero otherwise. If s is not a NULL pointer, the mbtowc
function returns:

Value Meaning

0 if s points to the null character

len the number of bytes that comprise the multibyte character (if the next n or fewer
bytes form a valid multibyte character)

-1 if the next n bytes do not form a valid multibyte character

See Also: mblen, wctomb, mbstowcs, wcstombs

Example: #include <stdio.h>
#include <stdlib.h>
#include <mbctype.h>

void main()
{

char *wc = "string";wchartwbuffer[10];
int i, len;

450 Library Functions and Macros

mbtowcsetmbcp(932);
printf("Character encodings are %sstate dependent\n",

(mbtowc(wbuffer, NULL, 0))
? "" : "not ");len=mbtowc(wbuffer,wc,MBCURMAX);

wbuffer[len] = ’\0’;
printf("%s(%d)\n", wc, len);
for(i = 0; i < len; i++)

printf("/%4.4x", wbuffer[i]);
printf("\n");

}

produces the following:

Character encodings are not state dependent
string(1)
/0073

Classification: ANSI

Systems: All, Netware

Library Functions and Macros 451

_memavl

Synopsis: #include <malloc.h>sizetmemavl(void);
Description: Thememavl function returns the number of bytes of memory available for dynamic

memory allocation in the near heap (the default data segment). In the tiny, small and
medium memory models, the default data segment is only extended as needed to satisfy
requests for memory allocation. Therefore, you will need to callnheapgrow in these
memory models before callingmemavl in order to get a meaningful result.

The number returned bymemavl may not represent a single contiguous block of memory.
Use thememmax function to find the largest contiguous block of memory that can be
allocated.

Returns: Thememavl function returns the number of bytes of memory available for dynamic
memory allocation in the near heap (the default data segment).

See Also: calloc Functions,
freect,memmax,heapgrow Functions, malloc Functions,

realloc Functions

Example: #include <stdio.h>
#include <malloc.h>

void main()
{

char *p;
char *fmt = "Memory available = %u\n";printf(fmt,memavl());nheapgrow();printf(fmt,memavl());
p = (char *) malloc(2000);printf(fmt,memavl());

}

produces the following:

Memory available = 0
Memory available = 62732
Memory available = 60730

Classification: WATCOM

Systems: All

452 Library Functions and Macros

memccpy, _fmemccpy

Synopsis: #include <string.h>
void *memccpy(void *dest, const void *src,intc,sizetcnt);voidfar*fmemccpy(voidfar*dest,constvoidfar*src,intc,sizetcnt);

Description: The memccpy function copies bytes from src to dest up to and including the first occurrence
of the character c or until cnt bytes have been copied, whichever comes first.

The
fmemccpy function is a data model independent form of the memccpy function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

Returns: The memccpy function returns a pointer to the byte in dest following the character c if one
is found and copied, otherwise it returns NULL.

See Also: memcpy, memmove, memset

Example: #include <stdio.h>
#include <string.h>

char *msg = "This is the string: not copied";

void main()
{

auto char buffer[80];

memset(buffer, ’\0’, 80);
memccpy(buffer, msg, ’:’, 80);
printf("%s\n", buffer);

}

produces the following:

This is the string:

Classification: WATCOM

Systems: memccpy - All, Netwarefmemccpy�All
Library Functions and Macros 453

memchr, _fmemchr, wmemchr

Synopsis: #include <string.h>void*memchr(constvoid*buf,intch,sizetlength);voidfar*fmemchr(constvoidfar*buf,
int ch,sizetlength);

#include <wchar.h>wchart*wmemchr(constwchart*buf,wchartch,sizetlengt
h);

Description: The memchr function locates the first occurrence of ch (converted to an unsigned char) in
the first length characters of the object pointed to by buf.

The
fmemchr function is a data model independent form of the memchr function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

The wmemchr wide-character function is identical to memchr except that it operates on
characters ofwchart type. The argument length is interpreted to mean the number of
wide characters.

Returns: The memchr function returns a pointer to the located character, or NULL if the character
does not occur in the object.

See Also: memcmp, memcpy, memicmp, memset

Example: #include <stdio.h>
#include <string.h>

void main(void)
{

char buffer[80];
char *where;

454 Library Functions and Macros

memchr, _fmemchr, wmemchr

strcpy(buffer, "video x-rays");
where = (char *)memchr(buffer, ’x’, 6);
if(where == NULL)

printf("’x’ not found\n");
else

printf("%s\n", where);
where = (char *)memchr(buffer, ’r’, 9);
if(where == NULL)

printf("’r’ not found\n");
else

printf("%s\n", where);
}

Classification: memchr is ANSI, _fmemchr is not ANSI, wmemchr is ANSI

Systems: memchr - All, Netwarefmemchr�All
wmemchr - All

Library Functions and Macros 455

memcmp, _fmemcmp, wmemcmp

Synopsis: #include <string.h>
int memcmp(const void *s1,

const void *s2,sizetlength);intfmemcmp(constvoidfar*s1,constvoidfar*s2,sizetlength);
#include <wchar.h>intwmemcmp(constwchart*s1,constwchart*s2,sizetlength);

Description: The memcmp function compares the first length characters of the object pointed to by s1 to
the object pointed to by s2.

The
fmemcmp function is a data model independent form of the memcmp function that

accepts far pointer arguments. It is most useful in mixed memory model applications.

The wmemcmp wide-character function is identical to memcmp except that it operates on
characters ofwchart type. The argument length is interpreted to mean the number of
wide characters.

Returns: The memcmp function returns an integer less than, equal to, or greater than zero, indicating
that the object pointed to by s1 is less than, equal to, or greater than the object pointed to by
s2.

See Also: memchr, memcpy, memicmp, memset

Example: #include <stdio.h>
#include <string.h>

void main(void)
{

auto char buffer[80];

strcpy(buffer, "world");
if(memcmp(buffer, "Hello ", 6) < 0) {

printf("Less than\n");
}

}

Classification: memcmp is ANSI, _fmemcmp is not ANSI, wmemcmp is ANSI

Systems: memcmp - All, Netware

456 Library Functions and Macros

memcmp, _fmemcmp, wmemcmpfmemcmp�All
wmemcmp - All

Library Functions and Macros 457

memcpy, _fmemcpy, wmemcpy

Synopsis: #include <string.h>
void *memcpy(void *dst,

const void *src,sizetlength);voidfar*fmemcpy(voidfar*dst,constvoidfar*src,sizetlength);
#include <wchar.h>wchart*wmemcpy(wchart*dst,constwchart*src,sizetlength);

Safer C: The Safer C Library extension provides the function which is a safer alternative to memcpy.
This newermemcpys function is recommended to be used instead of the traditional
"unsafe" memcpy function.

Description: The memcpy function copies length characters from the buffer pointed to by src into the
buffer pointed to by dst. Copying of overlapping objects is not guaranteed to work properly.
See the memmove function if you wish to copy objects that overlap.

The
fmemcpy function is a data model independent form of the memcpy function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

The wmemcpy wide-character function is identical to memcpy except that it operates on
characters ofwchart type. The argument length is interpreted to mean the number of
wide characters.

Returns: The original value of dst is returned.

See Also: memchr, memcmp, memicmp, memmove, memset

Example: #include <stdio.h>
#include <string.h>

void main(void)
{

auto char buffer[80];

memcpy(buffer, "Hello", 5);
buffer[5] = ’\0’;
printf("%s\n", buffer);

}

458 Library Functions and Macros

memcpy, _fmemcpy, wmemcpy

Classification: memcpy is ANSI, _fmemcpy is not ANSI, wmemcpy is ANSI

Systems: memcpy - All, Netwarefmemcpy�All
wmemcpy - All

Library Functions and Macros 459

memicmp, _fmemicmp

Synopsis: #include <string.h>
int memicmp(const void *s1,

const void *s2,sizetlength);intfmemicmp(constvoidfar*s1,constvoidfar*s2,sizetlength);
Description: The memicmp function compares, with case insensitivity (upper- and lowercase characters

are equivalent), the first length characters of the object pointed to by s1 to the object pointed
to by s2.

The
fmemicmp function is a data model independent form of the memicmp function that

accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns: The memicmp function returns an integer less than, equal to, or greater than zero, indicating
that the object pointed to by s1 is less than, equal to, or greater than the object pointed to by
s2.

See Also: memchr, memcmp, memcpy, memset

Example: #include <stdio.h>
#include <string.h>

void main()
{

char buffer[80];

if(memicmp(buffer, "Hello", 5) < 0) {
printf("Less than\n");

}
}

Classification: WATCOM

Systems: memicmp - All, Netwarefmemicmp�All
460 Library Functions and Macros

_memmax

Synopsis: #include <malloc.h>sizetmemmax(void);
Description: Thememmax function returns the size of the largest contiguous block of memory available

for dynamic memory allocation in the near heap (the default data segment). In the tiny, small
and medium memory models, the default data segment is only extended as needed to satisfy
requests for memory allocation. Therefore, you will need to callnheapgrow in these
memory models before callingmemmax in order to get a meaningful result.

Returns: Thememmax function returns the size of the largest contiguous block of memory available
for dynamic memory allocation in the near heap. If 0 is returned, then there is no more
memory available in the near heap.

See Also: calloc,
freect,memavl,heapgrow, malloc

Example: #include <stdio.h>
#include <malloc.h>

void main()
{

char *p;sizetsize;size=memmax();
printf("Maximum memory available is %u\n", size);nheapgrow();size=memmax();
printf("Maximum memory available is %u\n", size);p=(char*)nmalloc(size);size=memmax();
printf("Maximum memory available is %u\n", size);

}

produces the following:

Maximum memory available is 0
Maximum memory available is 62700
Maximum memory available is 0

Classification: WATCOM

Systems: All

Library Functions and Macros 461

memmove, _fmemmove, wmemmove

Synopsis: #include <string.h>
void *memmove(void *dst,

const void *src,sizetlength);voidfar*fmemmove(voidfar*dst,constvoidfar*src,sizetlength);
#include <wchar.h>wchart*wmemmove(wchart*dst,constwchart*src,sizetlength);

Safer C: The Safer C Library extension provides the function which is a safer alternative to
memmove. This newermemmoves function is recommended to be used instead of the
traditional "unsafe" memmove function.

Description: The memmove function copies length characters from the buffer pointed to by src to the
buffer pointed to by dst. Copying of overlapping objects will take place properly. See the
memcpy function to copy objects that do not overlap.

The
fmemmove function is a data model independent form of the memmove function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

The wmemmove wide-character function is identical to memmove except that it operates on
characters ofwchart type. The argument length is interpreted to mean the number of
wide characters.

Returns: The memmove function returns dst.

See Also: memchr, memcmp, memcpy, memicmp, memset

Example: #include <string.h>

void main(void)
{

char buffer[80];

memmove(buffer + 1, buffer, 79);
buffer[0] = ’*’;

}

Classification: memmove is ANSI, _fmemmove is not ANSI, wmemmove is ANSI

462 Library Functions and Macros

memmove, _fmemmove, wmemmove

Systems: memmove - All, Netwarefmemmove�All
wmemmove - All

Library Functions and Macros 463

memset, _fmemset, wmemset

Synopsis: #include <string.h>void*memset(void*dst,intc,sizetlength);voidfar*fmemset(voidfar*dst,intc,sizetlength);wchart*wmemset(wchart*dst,wchartc,sizetlength);
Description: The memset function fills the first length characters of the object pointed to by dst with the

value c.

The
fmemset function is a data model independent form of the memset function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

The wmemset wide-character function is identical to memset except that it operates on
characters ofwchart type. The argument length is interpreted to mean the number of
wide characters.

Returns: The memset function returns the pointer dst.

See Also: memchr, memcmp, memcpy, memicmp, memmove

Example: #include <string.h>

void main(void)
{

char buffer[80];

memset(buffer, ’=’, 80);
}

Classification: memset is ANSI, _fmemset is not ANSI, wmemset is ANSI

Systems: memset - All, Netwarefmemset�All
wmemset - All

464 Library Functions and Macros

min

Synopsis: #include <stdlib.h>
#define min(a,b) (((a) < (b)) ? (a) : (b))

Description: The min macro will evaluate to be the lesser of two values. It is implemented as follows.

#define min(a,b) (((a) < (b)) ? (a) : (b))

Returns: The min macro will evaluate to the smaller of the two values passed.

See Also: max

Example: #include <stdio.h>
#include <stdlib.h>

void main()
{

int a;

/*
* The following line will set the variable "a" to 1
* since 10 is greater than 1.
*/

a = min(1, 10);
printf("The value is: %d\n", a);

}

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 465

mkdir

Synopsis: #include <sys/types.h>
#include <sys/stat.h>intmkdir(constchar*path,modetmode);

Description: The mkdir function creates a new subdirectory with name path. The path can be either
relative to the current working directory or it can be an absolute path name.

The file permission bits of the new directory are initialized from mode. The file permission
bits of the mode argument are modified by the process’s file creation mask (see umask).
The access permissions for the file or directory are specified as a combination of bits
(defined in the <sys/stat.h> header file).

The following bits define permissions for the owner.

Permission Meaning

S_IRWXU Read, write, execute/search
S_IRUSR Read permission
S_IWUSR Write permission
S_IXUSR Execute/search permission

The following bits define permissions for the group.

Permission Meaning

S_IRWXG Read, write, execute/search
S_IRGRP Read permission
S_IWGRP Write permission
S_IXGRP Execute/search permission

The following bits define permissions for others.

Permission Meaning

S_IRWXO Read, write, execute/search
S_IROTH Read permission
S_IWOTH Write permission
S_IXOTH Execute/search permission

The following bits define miscellaneous permissions used by other implementations.

466 Library Functions and Macros

mkdir

Permission Meaning

S_IREAD is equivalent to S_IRUSR (read permission)
S_IWRITE is equivalent to S_IWUSR (write permission)
S_IEXEC is equivalent to S_IXUSR (execute/search permission)

The directory’s owner ID is set to the process’s effective user ID. The directory’s group ID
is set to the group ID of the directory in which the directory is being created or to the
process’s effective group ID.

The newly created directory will be empty.

Upon successful completion, the mkdir function will mark for update the st_atime,
st_ctime, and st_mtime fields of the directory. Also, the st_ctime and st_mtime fields of the
directory that contains the new entry are marked for update.

Returns: The mkdir function returns zero if successful, and a non-zero value otherwise.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

EACCES Search permission is denied for a component of path or write
permission is denied on the parent directory of the directory to be
created.

EEXIST The named file exists.

EMLINK The link count of the parent directory would exceed {LINK_MAX}.

ENAMETOOLONG The argument path exceeds {PATH_MAX} in length, or a pathname
component is longer than {NAME_MAX}.

ENOENT The specified path does not exist or path is an empty string.

ENOSPC The file system does not contain enough space to hold the contents of
the new directory or to extend the parent directory of the new directory.

ENOSYS This function is not supported for this path.

ENOTDIR A component of path is not a directory.

Library Functions and Macros 467

mkdir

EROFS The parent directory of the directory being created resides on a
read-only file system.

See Also: chdir, getcwd, rmdir, stat, umask

Example: To make a new directory called /watcom on node 2

#include <sys/types.h>
#include <sys/stat.h>

void main(void)
{

mkdir("//2/hd/watcom",SIRWXU|SIRGRP|SIXGRP|SIROTH|SIXOTH);
}

Classification: POSIX 1003.1

Systems: All, Netware

468 Library Functions and Macros

MK_FP

Synopsis: #include <i86.h>voidfar*MKFP(unsignedintsegment,
unsigned int offset);

Description: The
MKFP macro can be used to obtain the far pointer value given by the segment segment

value and the offset offset value. These values may be obtained by using theFPSEG andFPOFF macros.

Returns: The macro returns a far pointer.

See Also:FPOFF,FPSEG, segread
Example: #include <i86.h>

#include <stdio.h>

void main()
{unsignedshortfar*biosprtrport1;biosprtrport1=(unsignedshortfar*)MKFP(0x40,0x8);printf("Portaddressis%x\n",*biosprtrport1);
}

Classification: Intel

Systems: MACRO

Library Functions and Macros 469

mkstemp

Synopsis: #include <stdlib.h>
int mkstemp(char *template);

Description: The mkstemp function creates a file with unique name by modifying the template
argument, and returns its file handle open for reading and writing in binary mode. The use of
mkstemp prevents any possible race condition between testing whether the file exists and
opening it for use.

The string template has the form baseXXXXXX where base is the fixed part of the
generated filename and XXXXXX is the variable part of the generated filename. Each of the 6
X’s is a placeholder for a character supplied by mkstemp. Each placeholder character in
template must be an uppercase "X". mkstemp preserves base and replaces the first of the
6 trailing X’s with a unique sequence of alphanumeric characters. The string template
therefore must be writable.

mkstemp checks to see if a file with the generated name already exists and if so selects
another name, until it finds a file that doesn’t exist. If it is unsuccessful at finding a name for
a file that does not already exist or is unable to create a file, mkstemp returns -1.

Returns: The mkstemp function returns a file handle. When an error occurs while creating the file,
-1 is returned.

See Also: fopen, freopen, tmpfile, tmpnam

Example: #include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>#defineTEMPLATE"tXXXXXX"#defineMAXTEMPS5
void main(void)
{

char name[sizeof(TEMPLATE)];
int i;inthandles[MAXTEMPS];

470 Library Functions and Macros

mkstempfor(i=0;i<MAXTEMPS;i++){
strcpy(name, TEMPLATE);
handles[i] = mkstemp(name);
if(handles[i] == -1) {

printf("Failed to create temporary file\n");
} else {

printf("Created temporary file ’%s’\n", name);
}

}for(i=0;i<MAXTEMPS;i++){
if(handles[i] != -1) {

close(handles[i]);
}

}
}

Classification: POSIX

Systems: All, Netware

Library Functions and Macros 471

mktime

Synopsis: #include <time.h>timetmktime(structtm*timeptr);
struct tm {inttmsec;/*secondsaftertheminute��[0,61]*/inttmmin;/*minutesafterthehour��[0,59]*/inttmhour;/*hoursaftermidnight��[0,23]*/inttmmday;/*dayofthemonth��[1,31]*/inttmmon;/*monthssinceJanuary��[0,11]*/inttmyear;/*yearssince1900 */inttmwday;/*dayssinceSunday��[0,6]*/inttmyday;/*dayssinceJanuary1��[0,365]*/inttmisdst;/*DaylightSavingsTimeflag*/
};

Description: The mktime function converts the local time information in the structure pointed to by
timeptr into a calendar time (Coordinated Universal Time) with the same encoding used by
the time function. The original values of the fields

tmsec,tmmin,tmhour,tmmday, and
tmmon are not restricted to ranges described for struct tm. If these

fields are not in their proper ranges, they are adjusted so that they are in the proper ranges.
Values for the fields
tmwday and
tmyday are computed after all the other fields have

been adjusted.

If the original value of
tmisdst is negative, this field is computed also. Otherwise, a

value of 0 is treated as "daylight savings time is not in effect" and a positive value is treated
as "daylight savings time is in effect".

Whenever mktime is called, the tzset function is also called.

Returns: The mktime function returns the converted calendar time.

See Also: asctime, clock, ctime, difftime, gmtime, localtime, strftime, time,
tzset

Example: #include <stdio.h>
#include <time.h>staticconstchar*weekday[]={

"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

};

472 Library Functions and Macros

mktime

void main()
{structtmnewyear;newyear.tmyear=2001�1900;newyear.tmmon=0;newyear.tmmday=1;newyear.tmhour=0;newyear.tmmin=0;newyear.tmsec=0;newyear.tmisdst=0;mktime(&newyear);

printf("The 21st century began on a %s\n",weekday[newyear.tmwday]);
}

produces the following:

The 21st century began on a Monday

Classification: ANSI

Systems: All, Netware

Library Functions and Macros 473

modf

Synopsis: #include <math.h>
double modf(double value, double *iptr);

Description: The modf function breaks the argument value into integral and fractional parts, each of
which has the same sign as the argument. It stores the integral part as a double in the
object pointed to by iptr.

Returns: The modf function returns the signed fractional part of value.

See Also: frexp, ldexp

Example: #include <stdio.h>
#include <math.h>

void main()
{doubleintegralvalue,fractionalpart;fractionalpart=modf(4.5,&integralvalue);printf("%f%f\n",fractionalpart,integralvalue);fractionalpart=modf(�4.5,&integralvalue);printf("%f%f\n",fractionalpart,integralvalue);
}

produces the following:

0.500000 4.000000
-0.500000 -4.000000

Classification: ANSI

Systems: Math

474 Library Functions and Macros

movedata

Synopsis: #include <string.h>voidmovedata(unsignedintsrcsegment,unsignedintsrcoffset,unsignedinttgtsegment,unsignedinttgtoffset,sizetlength);
Description: The movedata function copies length bytes from the far pointer calculated as(srcsegment:srcoffset) to a target location determined as a far pointer(tgtsegment:tgtoffset).

Overlapping data may not be correctly copied. When the source and target areas may
overlap, copy the areas one character at a time.

The function is useful to move data when the near address(es) of the source and/or target
areas are not known.

Returns: No value is returned.

See Also:FPSEG,FPOFF, memcpy, segread

Example: #include <stdio.h>
#include <string.h>
#include <i86.h>

void main()
{

char buffer[14] = {
’*’, 0x17, ’H’, 0x17, ’e’, 0x17, ’l’, 0x17,
’l’, 0x17, ’o’, 0x17, ’*’, 0x17 };movedata(FPSEG(buffer),FPOFF(buffer),

0xB800,
0x0720,
14);

}

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 475

_moveto Functions

Synopsis: #include <graph.h>structxycoordFARmoveto(shortx,shorty);structwxycoordFARmovetow(doublex,doubley);
Description: Themoveto functions set the current output position for graphics. Themoveto

function uses the view coordinate system. Themovetow function uses the window
coordinate system.

The current output position is set to be the point at the coordinates (x,y). Nothing is
drawn by the function. The
lineto function uses the current output position as the

starting point when a line is drawn.

Note that the output position for graphics output differs from that for text output. The output
position for text output can be set by use of thesettextposition function.

Returns: Themoveto functions return the previous value of the output position for graphics.

See Also: getcurrentposition,lineto,settextposition
Example: #include <conio.h>

#include <graph.h>

main()
{ setvideomode(VRES16COLOR);moveto(100,100);lineto(540,100);lineto(320,380);lineto(100,100);

getch();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: moveto�DOS,QNXmovetow�DOS,QNX
476 Library Functions and Macros

_m_packssdw

Synopsis: #include <mmintrin.h>m64mpackssdw(m64*m1,m64*m2);
Description: Convert signed packed double-words into signed packed words by packing (with signed

saturation) the low-order words of the signed double-word elements from m1 and m2 into the
respective signed words of the result. If the signed values in the word elements of m1 and
m2 are smaller than 0x8000, the result elements are clamped to 0x8000. If the signed values
in the word elements of m1 and m2 are larger than 0x7fff, the result elements are clamped to
0x7fff.

m2 m1

--------------------- ---------------------
| w3 : w2 | w1 : w0 | | w3 : w2 | w1 : w0 |
--------------------- ---------------------

| | | |
‘--------.‘---. .---’.--------’

| | | |
V V V V

| w3 | w2 | w1 | w0 |

result

Returns: The result of packing, with signed saturation, 32-bit signed double-words into 16-bit signed
words is returned.

See Also: mpacksswb,mpackuswb
Example: #include <stdio.h>

#include <mmintrin.h>#defineASBYTES"%2.2x%2.2x%2.2x%2.2x"\
"%2.2x %2.2x %2.2x %2.2x"#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"#defineASDWORDS"%8.8lx%8.8lx"m64a;m64b={0x0000567800001234};m64c={0xfffffffe00010101};

Library Functions and Macros 477

_m_packssdw

void main()
{a=mpackssdw(b,c);printf("m2="ASDWORDS"""m1="ASDWORDS"\n""mm="ASWORDS"\n",c.32[1],c.32[0],b.32[1],b.32[0],a.16[3],a.16[2],a.16[1],a.16[0]);
}

produces the following:

m2=fffffffe 00010101 m1=00005678 00001234
mm=fffe 7fff 5678 1234

Classification: Intel

Systems: MACRO

478 Library Functions and Macros

_m_packsswb

Synopsis: #include <mmintrin.h>m64mpacksswb(m64*m1,m64*m2);
Description: Convert signed packed words into signed packed bytes by packing (with signed saturation)

the low-order bytes of the signed word elements from m1 and m2 into the respective signed
bytes of the result. If the signed values in the word elements of m1 and m2 are smaller than
0x80, the result elements are clamped to 0x80. If the signed values in the word elements of
m1 and m2 are larger than 0x7f, the result elements are clamped to 0x7f.

m2 m1

------------------------- -------------------------
|b7 b6|b5 b4|b3 b2|b1 b0| |b7 b6|b5 b4|b3 b2|b1 b0|
------------------------- -------------------------

		‘--. .--’				
	‘-----.		.-----’			
‘--------.				.--------’		
‘-----------. | | | | | | .-----------’

| | | | | | | |
V V V V V V V V

|b7|b6|b5|b4|b3|b2|b1|b0|

result

Returns: The result of packing, with signed saturation, 16-bit signed words into 8-bit signed bytes is
returned.

See Also: mpackssdw,mpackuswb
Example: #include <stdio.h>

#include <mmintrin.h>#defineASBYTES"%2.2x%2.2x%2.2x%2.2x"\
"%2.2x %2.2x %2.2x %2.2x"#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"#defineASDWORDS"%8.8lx%8.8lx"m64a;m64b={0x0004000300020001};m64c={0xff7fff800080007f};

Library Functions and Macros 479

_m_packsswb

void main()
{a=mpacksswb(b,c);printf("m2="ASWORDS"""m1="ASWORDS"\n""mm="ASBYTES"\n",c.16[3],c.16[2],c.16[1],c.16[0],b.16[3],b.16[2],b.16[1],b.16[0],a.8[7],a.8[6],a.8[5],a.8[4],a.8[3],a.8[2],a.8[1],a.8[0]);
}

produces the following:

m2=ff7f ff80 0080 007f m1=0004 0003 0002 0001
mm=80 80 7f 7f 04 03 02 01

Classification: Intel

Systems: MACRO

480 Library Functions and Macros

_m_packuswb

Synopsis: #include <mmintrin.h>m64mpackuswb(m64*m1,m64*m2);
Description: Convert signed packed words into unsigned packed bytes by packing (with unsigned

saturation) the low-order bytes of the signed word elements from m1 and m2 into the
respective unsigned bytes of the result. If the signed values in the word elements of m1 and
m2 are too large to be represented in an unsigned byte, the result elements are clamped to
0xff.

m2 m1

------------------------- -------------------------
|b7 b6|b5 b4|b3 b2|b1 b0| |b7 b6|b5 b4|b3 b2|b1 b0|
------------------------- -------------------------

		‘--. .--’				
	‘-----.		.-----’			
‘--------.				.--------’		
‘-----------. | | | | | | .-----------’

| | | | | | | |
V V V V V V V V

|b7|b6|b5|b4|b3|b2|b1|b0|

result

Returns: The result of packing, with unsigned saturation, 16-bit signed words into 8-bit unsigned
bytes is returned.

See Also: mpackssdw,mpacksswb
Example: #include <stdio.h>

#include <mmintrin.h>#defineASBYTES"%2.2x%2.2x%2.2x%2.2x"\
"%2.2x %2.2x %2.2x %2.2x"#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"#defineASDWORDS"%8.8lx%8.8lx"m64a;m64b={0x0004000300020001};m64c={0xff7fff800080007f};

Library Functions and Macros 481

_m_packuswb

void main()
{a=mpackuswb(b,c);printf("m2="ASWORDS"""m1="ASWORDS"\n""mm="ASBYTES"\n",c.16[3],c.16[2],c.16[1],c.16[0],b.16[3],b.16[2],b.16[1],b.16[0],a.8[7],a.8[6],a.8[5],a.8[4],a.8[3],a.8[2],a.8[1],a.8[0]);
}

produces the following:

m2=ff7f ff80 0080 007f m1=0004 0003 0002 0001
mm=00 00 80 7f 04 03 02 01

Classification: Intel

Systems: MACRO

482 Library Functions and Macros

_m_paddb

Synopsis: #include <mmintrin.h>m64mpaddb(m64*m1,m64*m2);
Description: The signed or unsigned 8-bit bytes of m2 are added to the respective signed or unsigned 8-bit

bytes of m1 and the result is stored in memory. If any result element does not fit into 8 bits
(overflow), the lower 8 bits of the result elements are stored (i.e., truncation takes place).

Returns: The result of adding the packed bytes of two 64-bit multimedia values is returned.

See Also: mpaddd,mpaddsb,mpaddsw,mpaddusb,mpaddusw,mpaddw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASBYTES"%2.2x%2.2x%2.2x%2.2x"\
"%2.2x %2.2x %2.2x %2.2x"m64a;m64b={0x0123456789abcdef};m64c={0xfedcba9876543210};

void main()
{a=mpaddb(b,c);printf("m1="ASBYTES"\n""m2="ASBYTES"\n""mm="ASBYTES"\n",b.8[7],b.8[6],b.8[5],b.8[4],b.8[3],b.8[2],b.8[1],b.8[0],c.8[7],c.8[6],c.8[5],c.8[4],c.8[3],c.8[2],c.8[1],c.8[0],a.8[7],a.8[6],a.8[5],a.8[4],a.8[3],a.8[2],a.8[1],a.8[0]);
}

produces the following:

m1=01 23 45 67 89 ab cd ef
m2=fe dc ba 98 76 54 32 10
mm=ff ff ff ff ff ff ff ff

Classification: Intel

Systems: MACRO

Library Functions and Macros 483

_m_paddd

Synopsis: #include <mmintrin.h>m64mpaddd(m64*m1,m64*m2);
Description: The signed or unsigned 32-bit double-words of m2 are added to the respective signed or

unsigned 32-bit double-words of m1 and the result is stored in memory. If any result element
does not fit into 32 bits (overflow), the lower 32-bits of the result elements are stored (i.e.,
truncation takes place).

Returns: The result of adding the packed double-words of two 64-bit multimedia values is returned.

See Also: mpaddb,mpaddsb,mpaddsw,mpaddusb,mpaddusw,mpaddw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASDWORDS"%8.8lx%8.8lx"m64a;m64b={0x0123456789abcdef};m64c={0xfedcba9876543210};
void main()

{a=mpaddd(b,c);printf("m1="ASDWORDS"\n""m2="ASDWORDS"\n""mm="ASDWORDS"\n",b.32[1],b.32[0],c.32[1],c.32[0],a.32[1],a.32[0]);
}

produces the following:

m1=01234567 89abcdef
m2=fedcba98 76543210
mm=ffffffff ffffffff

Classification: Intel

Systems: MACRO

484 Library Functions and Macros

_m_paddsb

Synopsis: #include <mmintrin.h>m64mpaddsb(m64*m1,m64*m2);
Description: The signed 8-bit bytes of m2 are added to the respective signed 8-bit bytes of m1 and the

result is stored in memory. Saturation occurs when a result exceeds the range of a signed
byte. In the case where a result is a byte larger than 0x7f (overflow), it is clamped to 0x7f.
In the case where a result is a byte smaller than 0x80 (underflow), it is clamped to 0x80.

Returns: The result of adding the packed signed bytes, with saturation, of two 64-bit multimedia
values is returned.

See Also: mpaddb,mpaddd,mpaddsw,mpaddusb,mpaddusw,mpaddw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASBYTES"%2.2x%2.2x%2.2x%2.2x"\
"%2.2x %2.2x %2.2x %2.2x"m64a;m64b={0x8aacceef02244668};m64c={0x76543211fedcba98};

void main()
{a=mpaddsb(b,c);printf("m1="ASBYTES"\n""m2="ASBYTES"\n""mm="ASBYTES"\n",b.8[7],b.8[6],b.8[5],b.8[4],b.8[3],b.8[2],b.8[1],b.8[0],c.8[7],c.8[6],c.8[5],c.8[4],c.8[3],c.8[2],c.8[1],c.8[0],a.8[7],a.8[6],a.8[5],a.8[4],a.8[3],a.8[2],a.8[1],a.8[0]);
}

produces the following:

m1=8a ac ce ef 02 24 46 68
m2=76 54 32 11 fe dc ba 98
mm=00 00 00 00 00 00 00 00

Classification: Intel

Library Functions and Macros 485

_m_paddsb

Systems: MACRO

486 Library Functions and Macros

_m_paddsw

Synopsis: #include <mmintrin.h>m64mpaddsw(m64*m1,m64*m2);
Description: The signed 16-bit words of m2 are added to the respective signed 16-bit words of m1 and the

result is stored in memory. Saturation occurs when a result exceeds the range of a signed
word. In the case where a result is a word larger than 0x7fff (overflow), it is clamped to
0x7fff. In the case where a result is a word smaller than 0x8000 (underflow), it is clamped to
0x8000.

Returns: The result of adding the packed signed words, with saturation, of two 64-bit multimedia
values is returned.

See Also: mpaddb,mpaddd,mpaddsb,mpaddusb,mpaddusw,mpaddw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"m64a;m64b={0x8aacceef02244668};m64c={0x76543211fedcba98};
void main()

{a=mpaddsw(b,c);printf("m1="ASWORDS"\n""m2="ASWORDS"\n""mm="ASWORDS"\n",b.16[3],b.16[2],b.16[1],b.16[0],c.16[3],c.16[2],c.16[1],c.16[0],a.16[3],a.16[2],a.16[1],a.16[0]);
}

produces the following:

m1=8aac ceef 0224 4668
m2=7654 3211 fedc ba98
mm=0100 0100 0100 0100

Classification: Intel

Systems: MACRO

Library Functions and Macros 487

_m_paddusb

Synopsis: #include <mmintrin.h>m64mpaddusb(m64*m1,m64*m2);
Description: The unsigned 8-bit bytes of m2 are added to the respective unsigned 8-bit bytes of m1 and

the result is stored in memory. Saturation occurs when a result exceeds the range of an
unsigned byte. In the case where a result is a byte larger than 0xff (overflow), it is clamped
to 0xff.

Returns: The result of adding the packed unsigned bytes, with saturation, of two 64-bit multimedia
values is returned.

See Also: mpaddb,mpaddd,mpaddsb,mpaddsw,mpaddusw,mpaddw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASBYTES"%2.2x%2.2x%2.2x%2.2x"\
"%2.2x %2.2x %2.2x %2.2x"m64a;m64b={0x8aacceef02244668};m64c={0x76543211fedcba98};

void main()
{a=mpaddusb(b,c);printf("m1="ASBYTES"\n""m2="ASBYTES"\n""mm="ASBYTES"\n",b.8[7],b.8[6],b.8[5],b.8[4],b.8[3],b.8[2],b.8[1],b.8[0],c.8[7],c.8[6],c.8[5],c.8[4],c.8[3],c.8[2],c.8[1],c.8[0],a.8[7],a.8[6],a.8[5],a.8[4],a.8[3],a.8[2],a.8[1],a.8[0]);
}

produces the following:

m1=8a ac ce ef 02 24 46 68
m2=76 54 32 11 fe dc ba 98
mm=ff ff ff ff ff ff ff ff

Classification: Intel

488 Library Functions and Macros

_m_paddusb

Systems: MACRO

Library Functions and Macros 489

_m_paddusw

Synopsis: #include <mmintrin.h>m64mpaddusw(m64*m1,m64*m2);
Description: The unsigned 16-bit words of m2 are added to the respective unsigned 16-bit words of m1

and the result is stored in memory. Saturation occurs when a result exceeds the range of an
unsigned word. In the case where a result is a word larger than 0xffff (overflow), it is
clamped to 0xffff.

Returns: The result of adding the packed unsigned words, with saturation, of two 64-bit multimedia
values is returned.

See Also: mpaddb,mpaddd,mpaddsb,mpaddsw,mpaddusb,mpaddw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"m64a;m64b={0x8aacceef02244668};m64c={0x76543211fedcba98};
void main()

{a=mpaddusw(b,c);printf("m1="ASWORDS"\n""m2="ASWORDS"\n""mm="ASWORDS"\n",b.16[3],b.16[2],b.16[1],b.16[0],c.16[3],c.16[2],c.16[1],c.16[0],a.16[3],a.16[2],a.16[1],a.16[0]);
}

produces the following:

m1=8aac ceef 0224 4668
m2=7654 3211 fedc ba98
mm=ffff ffff ffff ffff

Classification: Intel

Systems: MACRO

490 Library Functions and Macros

_m_paddw

Synopsis: #include <mmintrin.h>m64mpaddw(m64*m1,m64*m2);
Description: The signed or unsigned 16-bit words of m2 are added to the respective signed or unsigned

16-bit words of m1 and the result is stored in memory. If any result element does not fit into
16 bits (overflow), the lower 16 bits of the result elements are stored (i.e., truncation takes
place).

Returns: The result of adding the packed words of two 64-bit multimedia values is returned.

See Also: mpaddb,mpaddd,mpaddsb,mpaddsw,mpaddusb,mpaddusw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"m64a;m64b={0x0123456789abcdef};m64c={0xfedcba9876543210};
void main()

{a=mpaddw(b,c);printf("m1="ASWORDS"\n""m2="ASWORDS"\n""mm="ASWORDS"\n",b.16[3],b.16[2],b.16[1],b.16[0],c.16[3],c.16[2],c.16[1],c.16[0],a.16[3],a.16[2],a.16[1],a.16[0]);
}

produces the following:

m1=0123 4567 89ab cdef
m2=fedc ba98 7654 3210
mm=ffff ffff ffff ffff

Classification: Intel

Systems: MACRO

Library Functions and Macros 491

_m_pand

Synopsis: #include <mmintrin.h>m64mpand(m64*m1,m64*m2);
Description: A bit-wise logical AND is performed between 64-bit multimedia operands m1 and m2 and

the result is stored in memory.

Returns: The bit-wise logical AND of two 64-bit values is returned.

See Also: mpandn,mpor,mpxor
Example: #include <stdio.h>

#include <mmintrin.h>#defineASQWORD"%16.16Lx"m64a;m64b={0x0123456789abcdef};m64c={0xfedcba9876543210};
void main()

{a=mpand(b,c);printf("m1="ASQWORD"\n""m2="ASQWORD"\n""mm="ASQWORD"\n",
b, c, a);

}

produces the following:

m1=0123456789abcdef
m2=fedcba9876543210
mm=0000000000000000

Classification: Intel

Systems: MACRO

492 Library Functions and Macros

_m_pandn

Synopsis: #include <mmintrin.h>m64mpandn(m64*m1,m64*m2);
Description: A bit-wise logical AND is performed on the logical inversion of 64-bit multimedia operand

m1 and 64-bit multimedia operand m2 and the result is stored in memory.

Returns: The bit-wise logical AND of an inverted 64-bit value and a non-inverted value is returned.

See Also: mpand,mpor,mpxor
Example: #include <stdio.h>

#include <mmintrin.h>#defineASQWORD"%16.16Lx"m64a;m64b={0x0123456789abcdef};m64c={0xfedcba9876543210};
void main()

{a=mpandn(b,c);printf("m1="ASQWORD"\n""m2="ASQWORD"\n""mm="ASQWORD"\n",
b, c, a);

}

produces the following:

m1=0123456789abcdef
m2=fedcba9876543210
mm=fedcba9876543210

Classification: Intel

Systems: MACRO

Library Functions and Macros 493

_m_pcmpeqb

Synopsis: #include <mmintrin.h>m64mpcmpeqb(m64*m1,m64*m2);
Description: If the respective bytes of m1 are equal to the respective bytes of m2, the respective bytes of

the result are set to all ones, otherwise they are set to all zeros.

Returns: The result of comparing the packed bytes of two 64-bit multimedia values is returned as a
sequence of bytes (0xff for equal, 0x00 for not equal).

See Also: mpcmpeqd,mpcmpeqw,mpcmpgtb,mpcmpgtd,mpcmpgtw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASBYTES"%2.2x%2.2x%2.2x%2.2x"\
"%2.2x %2.2x %2.2x %2.2x"m64a;m64b={0x0004000300020001};m64c={0xff7fff800080007f};

void main()
{a=mpcmpeqb(b,c);printf("m1="ASBYTES"\n""m2="ASBYTES"\n""mm="ASBYTES"\n",b.8[7],b.8[6],b.8[5],b.8[4],b.8[3],b.8[2],b.8[1],b.8[0],c.8[7],c.8[6],c.8[5],c.8[4],c.8[3],c.8[2],c.8[1],c.8[0],a.8[7],a.8[6],a.8[5],a.8[4],a.8[3],a.8[2],a.8[1],a.8[0]);
}

produces the following:

m1=00 04 00 03 00 02 00 01
m2=ff 7f ff 80 00 80 00 7f
mm=00 00 00 00 ff 00 ff 00

Classification: Intel

Systems: MACRO

494 Library Functions and Macros

_m_pcmpeqd

Synopsis: #include <mmintrin.h>m64mpcmpeqd(m64*m1,m64*m2);
Description: If the respective double-words of m1 are equal to the respective double-words of m2, the

respective double-words of the result are set to all ones, otherwise they are set to all zeros.

Returns: The result of comparing the 32-bit packed double-words of two 64-bit multimedia values is
returned as a sequence of double-words (0xffffffff for equal, 0x00000000 for not equal).

See Also: mpcmpeqb,mpcmpeqw,mpcmpgtb,mpcmpgtd,mpcmpgtw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASDWORDS"%8.8lx%8.8lx"m64a;m64b={0x0004000300020001};m64c={0x000400030002007f};
void main()

{a=mpcmpeqd(b,c);printf("m1="ASDWORDS"\n""m2="ASDWORDS"\n""mm="ASDWORDS"\n",b.32[1],b.32[0],c.32[1],c.32[0],a.32[1],a.32[0]);
}

produces the following:

m1=00040003 00020001
m2=00040003 0002007f
mm=ffffffff 00000000

Classification: Intel

Systems: MACRO

Library Functions and Macros 495

_m_pcmpeqw

Synopsis: #include <mmintrin.h>m64mpcmpeqw(m64*m1,m64*m2);
Description: If the respective words of m1 are equal to the respective words of m2, the respective words

of the result are set to all ones, otherwise they are set to all zeros.

Returns: The result of comparing the packed words of two 64-bit multimedia values is returned as a
sequence of words (0xffff for equal, 0x0000 for not equal).

See Also: mpcmpeqb,mpcmpeqd,mpcmpgtb,mpcmpgtd,mpcmpgtw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"m64a;m64b={0x0004000300020001};m64c={0x0004ff8000800001};
void main()

{a=mpcmpeqw(b,c);printf("m1="ASWORDS"\n""m2="ASWORDS"\n""mm="ASWORDS"\n",b.16[3],b.16[2],b.16[1],b.16[0],c.16[3],c.16[2],c.16[1],c.16[0],a.16[3],a.16[2],a.16[1],a.16[0]);
}

produces the following:

m1=0004 0003 0002 0001
m2=0004 ff80 0080 0001
mm=ffff 0000 0000 ffff

Classification: Intel

Systems: MACRO

496 Library Functions and Macros

_m_pcmpgtb

Synopsis: #include <mmintrin.h>m64mpcmpgtb(m64*m1,m64*m2);
Description: If the respective signed bytes of m1 are greater than the respective signed bytes of m2, the

respective bytes of the result are set to all ones, otherwise they are set to all zeros.

Returns: The result of comparing the packed signed bytes of two 64-bit multimedia values is returned
as a sequence of bytes (0xff for greater than, 0x00 for not greater than).

See Also: mpcmpeqb,mpcmpeqd,mpcmpeqw,mpcmpgtd,mpcmpgtw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASBYTES"%2.2x%2.2x%2.2x%2.2x"\
"%2.2x %2.2x %2.2x %2.2x"m64a;m64b={0x0004000300020001};m64c={0xff7fff800080007f};

void main()
{a=mpcmpgtb(b,c);printf("m1="ASBYTES"\n""m2="ASBYTES"\n""mm="ASBYTES"\n",b.8[7],b.8[6],b.8[5],b.8[4],b.8[3],b.8[2],b.8[1],b.8[0],c.8[7],c.8[6],c.8[5],c.8[4],c.8[3],c.8[2],c.8[1],c.8[0],a.8[7],a.8[6],a.8[5],a.8[4],a.8[3],a.8[2],a.8[1],a.8[0]);
}

produces the following:

m1=00 04 00 03 00 02 00 01
m2=ff 7f ff 80 00 80 00 7f
mm=ff 00 ff ff 00 ff 00 00

Classification: Intel

Systems: MACRO

Library Functions and Macros 497

_m_pcmpgtd

Synopsis: #include <mmintrin.h>m64mpcmpgtd(m64*m1,m64*m2);
Description: If the respective signed double-words of m1 are greater than the respective signed

double-words of m2, the respective double-words of the result are set to all ones, otherwise
they are set to all zeros.

Returns: The result of comparing the 32-bit packed signed double-words of two 64-bit multimedia
values is returned as a sequence of double-words (0xffffffff for greater than, 0x00000000 for
not greater than).

See Also: mpcmpeqb,mpcmpeqd,mpcmpeqw,mpcmpgtb,mpcmpgtw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASDWORDS"%8.8lx%8.8lx"m64a;m64b={0x0004000400020001};m64c={0x000400030080007f};
void main()

{a=mpcmpgtd(b,c);printf("m1="ASDWORDS"\n""m2="ASDWORDS"\n""mm="ASDWORDS"\n",b.32[1],b.32[0],c.32[1],c.32[0],a.32[1],a.32[0]);
}

produces the following:

m1=00040004 00020001
m2=00040003 0080007f
mm=ffffffff 00000000

Classification: Intel

Systems: MACRO

498 Library Functions and Macros

_m_pcmpgtw

Synopsis: #include <mmintrin.h>m64mpcmpgtw(m64*m1,m64*m2);
Description: If the respective signed words of m1 are greater than the respective signed words of m2, the

respective words of the result are set to all ones, otherwise they are set to all zeros.

Returns: The result of comparing the 16-bit packed signed words of two 64-bit multimedia values is
returned as a sequence of words (0xffff for greater than, 0x0000 for not greater than).

See Also: mpcmpeqb,mpcmpeqd,mpcmpeqw,mpcmpgtb,mpcmpgtd
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"m64a;m64b={0x0005000300020001};m64c={0x0004ff8000800001};
void main()

{a=mpcmpgtw(b,c);printf("m1="ASWORDS"\n""m2="ASWORDS"\n""mm="ASWORDS"\n",b.16[3],b.16[2],b.16[1],b.16[0],c.16[3],c.16[2],c.16[1],c.16[0],a.16[3],a.16[2],a.16[1],a.16[0]);
}

produces the following:

m1=0005 0003 0002 0001
m2=0004 ff80 0080 0001
mm=ffff ffff 0000 0000

Classification: Intel

Systems: MACRO

Library Functions and Macros 499

_m_pmaddwd

Synopsis: #include <mmintrin.h>m64mpmaddwd(m64*m1,m64*m2);
Description: The signed 16-bit words of m1 are multiplied with the respective signed 16-bit words of m2.

The 32-bit intermediate results are summed by pairs producing two 32-bit integers.

MM[63-32] = M1[63-48] x M2[63-48]

+ M1[47-32] x M2[47-32]
MM[31-0] = M1[31-16] x M2[31-16]

+ M1[15-0] x M2[15-0]

In cases which overflow, the results are truncated. These two integers are packed into their
respective elements of the result.

Returns: The result of multiplying the packed signed 16-bit words of two 64-bit multimedia values
and adding the 32-bit results pairwise is returned as packed double-words.

See Also: mpmulhw,mpmullw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"#defineASDWORDS"%8.8lx%8.8lx"m64a;m64b={0x0000006000123456};m64c={0x0000000200010020};
void main()

{a=mpmaddwd(b,c);printf("m1="ASWORDS"\n""m2="ASWORDS"\n""mm="ASDWORDS"\n",b.16[3],b.16[2],b.16[1],b.16[0],c.16[3],c.16[2],c.16[1],c.16[0],a.32[1],a.32[0]);
}

produces the following:

500 Library Functions and Macros

_m_pmaddwd

m1=0000 0060 0012 3456
m2=0000 0002 0001 0020
mm=000000c0 00068ad2

Classification: Intel

Systems: MACRO

Library Functions and Macros 501

_m_pmulhw

Synopsis: #include <mmintrin.h>m64mpmulhw(m64*m1,m64*m2);
Description: The signed 16-bit words of m1 are multiplied with the respective signed 16-bit words of m2.

The high-order 16-bits of each result are placed in the respective elements of the result.

Returns: The packed 16-bit words in m1 are multiplied with the packed 16-bit words in m2 and the
high-order 16-bits of the results are returned.

See Also: mpmaddwd,mpmullw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"m64a;m64b={0x4000006000123456};m64c={0x0008000210000020};
void main()

{a=mpmulhw(b,c);printf("m1="ASWORDS"\n""m2="ASWORDS"\n""mm="ASWORDS"\n",b.16[3],b.16[2],b.16[1],b.16[0],c.16[3],c.16[2],c.16[1],c.16[0],a.16[3],a.16[2],a.16[1],a.16[0]);
}

produces the following:

m1=4000 0060 0012 3456
m2=0008 0002 1000 0020
mm=0002 0000 0001 0006

Classification: Intel

Systems: MACRO

502 Library Functions and Macros

_m_pmullw

Synopsis: #include <mmintrin.h>m64mpmullw(m64*m1,m64*m2);
Description: The signed or unsigned 16-bit words of m1 are multiplied with the respective signed or

unsigned 16-bit words of m2. The low-order 16-bits of each result are placed in the
respective elements of the result.

Returns: The packed 16-bit words in m1 are multiplied with the packed 16-bit words in m2 and the
low-order 16-bits of the results are returned.

See Also: mpmaddwd,mpmulhw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"m64a;m64b={0x4000006000123456};m64c={0x0008000210000020};
void main()

{a=mpmullw(b,c);printf("m1="ASWORDS"\n""m2="ASWORDS"\n""mm="ASWORDS"\n",b.16[3],b.16[2],b.16[1],b.16[0],c.16[3],c.16[2],c.16[1],c.16[0],a.16[3],a.16[2],a.16[1],a.16[0]);
}

produces the following:

m1=4000 0060 0012 3456
m2=0008 0002 1000 0020
mm=0000 00c0 2000 8ac0

Classification: Intel

Systems: MACRO

Library Functions and Macros 503

_m_por

Synopsis: #include <mmintrin.h>m64mpor(m64*m1,m64*m2);
Description: A bit-wise logical OR is performed between 64-bit multimedia operands m1 and m2 and the

result is stored in memory.

Returns: The bit-wise logical OR of two 64-bit values is returned.

See Also: mpand,mpandn,mpxor
Example: #include <stdio.h>

#include <mmintrin.h>#defineASQWORD"%16.16Lx"m64a;m64b={0x0123456789abcdef};m64c={0xfedcba9876543210};
void main()

{a=mpor(b,c);printf("m1="ASQWORD"\n""m2="ASQWORD"\n""mm="ASQWORD"\n",
b, c, a);

}

produces the following:

m1=0123456789abcdef
m2=fedcba9876543210
mm=ffffffffffffffff

Classification: Intel

Systems: MACRO

504 Library Functions and Macros

_m_pslld

Synopsis: #include <mmintrin.h>m64mpslld(m64*m,m64*count);
Description: The 32-bit double-words in m are each independently shifted to the left by the scalar shift

count in count. The low-order bits of each element are filled with zeros. The shift count is
interpreted as unsigned. Shift counts greater than 31 yield all zeros.

Returns: Shift left each 32-bit double-word in m by an amount specified in count while shifting in
zeros.

See Also: mpslldi,mpsllq,mpsllqi,mpsllw,mpsllwi
Example: #include <stdio.h>

#include <mmintrin.h>#defineASDWORDS"%8.8lx%8.8lx"#defineASQWORD"%16.16Lx"m64a;m64b={0x3f04800300020001};m64c={0x0000000000000002};
void main()

{a=mpslld(b,c);printf("m1="ASDWORDS"\n""m2="ASQWORD"\n""mm="ASDWORDS"\n",b.32[1],b.32[0],
c,a.32[1],a.32[0]);

}

produces the following:

m1=3f048003 00020001
m2=0000000000000002
mm=fc12000c 00080004

Classification: Intel

Systems: MACRO

Library Functions and Macros 505

_m_pslldi

Synopsis: #include <mmintrin.h>m64mpslldi(m64*m,intcount);
Description: The 32-bit double-words in m are each independently shifted to the left by the scalar shift

count in count. The low-order bits of each element are filled with zeros. The shift count is
interpreted as unsigned. Shift counts greater than 31 yield all zeros.

Returns: Shift left each 32-bit double-word in m by an amount specified in count while shifting in
zeros.

See Also: mpslld,mpsllq,mpsllqi,mpsllw,mpsllwi
Example: #include <stdio.h>

#include <mmintrin.h>#defineASDWORDS"%8.8lx%8.8lx"m64a;m64b={0x3f04800300020001};
void main()

{a=mpslldi(b,2);printf("m="ASDWORDS"\n""mm="ASDWORDS"\n",b.32[1],b.32[0],a.32[1],a.32[0]);
}

produces the following:

m =3f048003 00020001
mm=fc12000c 00080004

Classification: Intel

Systems: MACRO

506 Library Functions and Macros

_m_psllq

Synopsis: #include <mmintrin.h>m64mpsllq(m64*m,m64*count);
Description: The 64-bit quad-word in m is shifted to the left by the scalar shift count in count. The

low-order bits are filled with zeros. The shift count is interpreted as unsigned. Shift counts
greater than 63 yield all zeros.

Returns: Shift left the 64-bit quad-word in m by an amount specified in count while shifting in zeros.

See Also: mpslld,mpslldi,mpsllqi,mpsllw,mpsllwi
Example: #include <stdio.h>

#include <mmintrin.h>#defineASQWORD"%16.16Lx"m64a;m64b={0x3f04800300020001};m64c={0x0000000000000002};
void main()

{a=mpsllq(b,c);printf("m1="ASQWORD"\n""m2="ASQWORD"\n""mm="ASQWORD"\n",
b, c, a);

}

produces the following:

m1=3f04800300020001
m2=0000000000000002
mm=fc12000c00080004

Classification: Intel

Systems: MACRO

Library Functions and Macros 507

_m_psllqi

Synopsis: #include <mmintrin.h>m64mpsllqi(m64*m,intcount);
Description: The 64-bit quad-word in m is shifted to the left by the scalar shift count in count. The

low-order bits are filled with zeros. The shift count is interpreted as unsigned. Shift counts
greater than 63 yield all zeros.

Returns: Shift left the 64-bit quad-word in m by an amount specified in count while shifting in zeros.

See Also: mpslld,mpslldi,mpsllq,mpsllw,mpsllwi
Example: #include <stdio.h>

#include <mmintrin.h>#defineASQWORD"%16.16Lx"m64a;m64b={0x3f04800300020001};
void main()

{a=mpsllqi(b,2);printf("m="ASQWORD"\n""mm="ASQWORD"\n",
b, a);

}

produces the following:

m =3f04800300020001
mm=fc12000c00080004

Classification: Intel

Systems: MACRO

508 Library Functions and Macros

_m_psllw

Synopsis: #include <mmintrin.h>m64mpsllw(m64*m,m64*count);
Description: The 16-bit words in m are each independently shifted to the left by the scalar shift count in

count. The low-order bits of each element are filled with zeros. The shift count is
interpreted as unsigned. Shift counts greater than 15 yield all zeros.

Returns: Shift left each 16-bit word in m by an amount specified in count while shifting in zeros.

See Also: mpslld,mpslldi,mpsllq,mpsllqi,mpsllwi
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"#defineASQWORD"%16.16Lx"m64a;m64b={0x3f04800300020001};m64c={0x0000000000000002};
void main()

{a=mpsllw(b,c);printf("m1="ASWORDS"\n""m2="ASQWORD"\n""mm="ASWORDS"\n",b.16[3],b.16[2],b.16[1],b.16[0],
c,a.16[3],a.16[2],a.16[1],a.16[0]);

}

produces the following:

m1=3f04 8003 0002 0001
m2=0000000000000002
mm=fc10 000c 0008 0004

Classification: Intel

Systems: MACRO

Library Functions and Macros 509

_m_psllwi

Synopsis: #include <mmintrin.h>m64mpsllwi(m64*m,intcount);
Description: The 16-bit words in m are each independently shifted to the left by the scalar shift count in

count. The low-order bits of each element are filled with zeros. The shift count is
interpreted as unsigned. Shift counts greater than 15 yield all zeros.

Returns: Shift left each 16-bit word in m by an amount specified in count while shifting in zeros.

See Also: mpslld,mpslldi,mpsllq,mpsllqi,mpsllw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"m64a;m64b={0x3f04800300020001};
void main()

{a=mpsllwi(b,2);printf("m="ASWORDS"\n""mm="ASWORDS"\n",b.16[3],b.16[2],b.16[1],b.16[0],a.16[3],a.16[2],a.16[1],a.16[0]);
}

produces the following:

m =3f04 8003 0002 0001
mm=fc10 000c 0008 0004

Classification: Intel

Systems: MACRO

510 Library Functions and Macros

_m_psrad

Synopsis: #include <mmintrin.h>m64mpsrad(m64*m,m64*count);
Description: The 32-bit signed double-words in m are each independently shifted to the right by the scalar

shift count in count. The high-order bits of each element are filled with the initial value of
the sign bit of each element. The shift count is interpreted as unsigned. Shift counts greater
than 31 yield all ones or zeros depending on the initial value of the sign bit.

Returns: Shift right each 32-bit double-word in m by an amount specified in count while shifting in
sign bits.

See Also: mpsradi,mpsraw,mpsrawi
Example: #include <stdio.h>

#include <mmintrin.h>#defineASDWORDS"%8.8lx%8.8lx"#defineASQWORD"%16.16Lx"m64a;m64b={0x3f04800300020001};m64c={0x0000000000000002};
void main()

{a=mpsrad(b,c);printf("m1="ASDWORDS"\n""m2="ASQWORD"\n""mm="ASDWORDS"\n",b.32[1],b.32[0],
c,a.32[1],a.32[0]);

}

produces the following:

m1=3f048003 00020001
m2=0000000000000002
mm=0fc12000 00008000

Classification: Intel

Systems: MACRO

Library Functions and Macros 511

_m_psradi

Synopsis: #include <mmintrin.h>m64mpsradi(m64*m,intcount);
Description: The 32-bit signed double-words in m are each independently shifted to the right by the scalar

shift count in count. The high-order bits of each element are filled with the initial value of
the sign bit of each element. The shift count is interpreted as unsigned. Shift counts greater
than 31 yield all ones or zeros depending on the initial value of the sign bit.

Returns: Shift right each 32-bit double-word in m by an amount specified in count while shifting in
sign bits.

See Also: mpsrad,mpsraw,mpsrawi
Example: #include <stdio.h>

#include <mmintrin.h>#defineASDWORDS"%8.8lx%8.8lx"m64a;m64b={0x3f04800300020001};
void main()

{a=mpsradi(b,2);printf("m="ASDWORDS"\n""mm="ASDWORDS"\n",b.32[1],b.32[0],a.32[1],a.32[0]);
}

produces the following:

m =3f048003 00020001
mm=0fc12000 00008000

Classification: Intel

Systems: MACRO

512 Library Functions and Macros

_m_psraw

Synopsis: #include <mmintrin.h>m64mpsraw(m64*m,m64*count);
Description: The 16-bit signed words in m are each independently shifted to the right by the scalar shift

count in count. The high-order bits of each element are filled with the initial value of the
sign bit of each element. The shift count is interpreted as unsigned. Shift counts greater than
15 yield all ones or zeros depending on the initial value of the sign bit.

Returns: Shift right each 16-bit word in m by an amount specified in count while shifting in sign bits.

See Also: mpsrad,mpsradi,mpsrawi
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"#defineASQWORD"%16.16Lx"m64a;m64b={0x3f04800300040001};m64c={0x0000000000000002};
void main()

{a=mpsraw(b,c);printf("m1="ASWORDS"\n""m2="ASQWORD"\n""mm="ASWORDS"\n",b.16[3],b.16[2],b.16[1],b.16[0],
c,a.16[3],a.16[2],a.16[1],a.16[0]);

}

produces the following:

m1=3f04 8003 0004 0001
m2=0000000000000002
mm=0fc1 e000 0001 0000

Classification: Intel

Systems: MACRO

Library Functions and Macros 513

_m_psrawi

Synopsis: #include <mmintrin.h>m64mpsrawi(m64*m,intcount);
Description: The 16-bit signed words in m are each independently shifted to the right by the scalar shift

count in count. The high-order bits of each element are filled with the initial value of the
sign bit of each element. The shift count is interpreted as unsigned. Shift counts greater than
15 yield all ones or zeros depending on the initial value of the sign bit.

Returns: Shift right each 16-bit word in m by an amount specified in count while shifting in sign bits.

See Also: mpsrad,mpsradi,mpsraw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"m64a;m64b={0x3f04800300040001};
void main()

{a=mpsrawi(b,2);printf("m="ASWORDS"\n""mm="ASWORDS"\n",b.16[3],b.16[2],b.16[1],b.16[0],a.16[3],a.16[2],a.16[1],a.16[0]);
}

produces the following:

m =3f04 8003 0004 0001
mm=0fc1 e000 0001 0000

Classification: Intel

Systems: MACRO

514 Library Functions and Macros

_m_psrld

Synopsis: #include <mmintrin.h>m64mpsrld(m64*m,m64*count);
Description: The 32-bit double-words in m are each independently shifted to the right by the scalar shift

count in count. The high-order bits of each element are filled with zeros. The shift count is
interpreted as unsigned. Shift counts greater than 31 yield all zeros.

Returns: Shift right each 32-bit double-word in m by an amount specified in count while shifting in
zeros.

See Also: mpsrldi,mpsrlq,mpsrlqi,mpsrlw,mpsrlwi
Example: #include <stdio.h>

#include <mmintrin.h>#defineASDWORDS"%8.8lx%8.8lx"#defineASQWORD"%16.16Lx"m64a;m64b={0x3f04800300020001};m64c={0x0000000000000002};
void main()

{a=mpsrld(b,c);printf("m1="ASDWORDS"\n""m2="ASQWORD"\n""mm="ASDWORDS"\n",b.32[1],b.32[0],
c,a.32[1],a.32[0]);

}

produces the following:

m1=3f048003 00020001
m2=0000000000000002
mm=0fc12000 00008000

Classification: Intel

Systems: MACRO

Library Functions and Macros 515

_m_psrldi

Synopsis: #include <mmintrin.h>m64mpsrldi(m64*m,intcount);
Description: The 32-bit double-words in m are each independently shifted to the right by the scalar shift

count in count. The high-order bits of each element are filled with zeros. The shift count is
interpreted as unsigned. Shift counts greater than 31 yield all zeros.

Returns: Shift right each 32-bit double-word in m by an amount specified in count while shifting in
zeros.

See Also: mpsrld,mpsrlq,mpsrlqi,mpsrlw,mpsrlwi
Example: #include <stdio.h>

#include <mmintrin.h>#defineASDWORDS"%8.8lx%8.8lx"m64a;m64b={0x3f04800300020001};
void main()

{a=mpsrldi(b,2);printf("m="ASDWORDS"\n""mm="ASDWORDS"\n",b.32[1],b.32[0],a.32[1],a.32[0]);
}

produces the following:

m =3f048003 00020001
mm=0fc12000 00008000

Classification: Intel

Systems: MACRO

516 Library Functions and Macros

_m_psrlq

Synopsis: #include <mmintrin.h>m64mpsrlq(m64*m,m64*count);
Description: The 64-bit quad-word in m is shifted to the right by the scalar shift count in count. The

high-order bits are filled with zeros. The shift count is interpreted as unsigned. Shift counts
greater than 63 yield all zeros.

Returns: Shift right the 64-bit quad-word in m by an amount specified in count while shifting in zeros.

See Also: mpsrld,mpsrldi,mpsrlqi,mpsrlw,mpsrlwi
Example: #include <stdio.h>

#include <mmintrin.h>#defineASQWORD"%16.16Lx"m64a;m64b={0x3f04800300020001};m64c={0x0000000000000002};
void main()

{a=mpsrlq(b,c);printf("m1="ASQWORD"\n""m2="ASQWORD"\n""mm="ASQWORD"\n",
b, c, a);

}

produces the following:

m1=3f04800300020001
m2=0000000000000002
mm=0fc12000c0008000

Classification: Intel

Systems: MACRO

Library Functions and Macros 517

_m_psrlqi

Synopsis: #include <mmintrin.h>m64mpsrlqi(m64*m,intcount);
Description: The 64-bit quad-word in m is shifted to the right by the scalar shift count in count. The

high-order bits are filled with zeros. The shift count is interpreted as unsigned. Shift counts
greater than 63 yield all zeros.

Returns: Shift right the 64-bit quad-word in m by an amount specified in count while shifting in zeros.

See Also: mpsrld,mpsrldi,mpsrlq,mpsrlw,mpsrlwi
Example: #include <stdio.h>

#include <mmintrin.h>#defineASQWORD"%16.16Lx"m64a;m64b={0x3f04800300020001};
void main()

{a=mpsrlqi(b,2);printf("m="ASQWORD"\n""mm="ASQWORD"\n",
b, a);

}

produces the following:

m =3f04800300020001
mm=0fc12000c0008000

Classification: Intel

Systems: MACRO

518 Library Functions and Macros

_m_psrlw

Synopsis: #include <mmintrin.h>m64mpsrlw(m64*m,m64*count);
Description: The 16-bit words in m are each independently shifted to the right by the scalar shift count in

count. The high-order bits of each element are filled with zeros. The shift count is
interpreted as unsigned. Shift counts greater than 15 yield all zeros.

Returns: Shift right each 16-bit word in m by an amount specified in count while shifting in zeros.

See Also: mpsrld,mpsrldi,mpsrlq,mpsrlqi,mpsrlwi
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"#defineASQWORD"%16.16Lx"m64a;m64b={0x3f04800300040001};m64c={0x0000000000000002};
void main()

{a=mpsrlw(b,c);printf("m1="ASWORDS"\n""m2="ASQWORD"\n""mm="ASWORDS"\n",b.16[3],b.16[2],b.16[1],b.16[0],
c,a.16[3],a.16[2],a.16[1],a.16[0]);

}

produces the following:

m1=3f04 8003 0004 0001
m2=0000000000000002
mm=0fc1 2000 0001 0000

Classification: Intel

Systems: MACRO

Library Functions and Macros 519

_m_psrlwi

Synopsis: #include <mmintrin.h>m64mpsrlwi(m64*m,intcount);
Description: The 16-bit words in m are each independently shifted to the right by the scalar shift count in

count. The high-order bits of each element are filled with zeros. The shift count is
interpreted as unsigned. Shift counts greater than 15 yield all zeros.

Returns: Shift right each 16-bit word in m by an amount specified in count while shifting in zeros.

See Also: mpsrld,mpsrldi,mpsrlq,mpsrlqi,mpsrlw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"m64a;m64b={0x3f04800300040001};
void main()

{a=mpsrlwi(b,2);printf("m="ASWORDS"\n""mm="ASWORDS"\n",b.16[3],b.16[2],b.16[1],b.16[0],a.16[3],a.16[2],a.16[1],a.16[0]);
}

produces the following:

m =3f04 8003 0004 0001
mm=0fc1 2000 0001 0000

Classification: Intel

Systems: MACRO

520 Library Functions and Macros

_m_psubb

Synopsis: #include <mmintrin.h>m64mpsubb(m64*m1,m64*m2);
Description: The signed or unsigned 8-bit bytes of m2 are subtracted from the respective signed or

unsigned 8-bit bytes of m1 and the result is stored in memory. If any result element does not
fit into 8 bits (underflow or overflow), the lower 8 bits of the result elements are stored (i.e.,
truncation takes place).

Returns: The result of subtracting the packed bytes of one 64-bit multimedia value from another is
returned.

See Also: mpsubd,mpsubsb,mpsubsw,mpsubusb,mpsubusw,mpsubw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASBYTES"%2.2x%2.2x%2.2x%2.2x"\
"%2.2x %2.2x %2.2x %2.2x"m64a;m64b={0x0123456789abcdef};m64c={0xfedcba9876543210};

void main()
{a=mpsubb(b,c);printf("m1="ASBYTES"\n""m2="ASBYTES"\n""mm="ASBYTES"\n",b.8[7],b.8[6],b.8[5],b.8[4],b.8[3],b.8[2],b.8[1],b.8[0],c.8[7],c.8[6],c.8[5],c.8[4],c.8[3],c.8[2],c.8[1],c.8[0],a.8[7],a.8[6],a.8[5],a.8[4],a.8[3],a.8[2],a.8[1],a.8[0]);
}

produces the following:

m1=01 23 45 67 89 ab cd ef
m2=fe dc ba 98 76 54 32 10
mm=03 47 8b cf 13 57 9b df

Classification: Intel

Library Functions and Macros 521

_m_psubb

Systems: MACRO

522 Library Functions and Macros

_m_psubd

Synopsis: #include <mmintrin.h>m64mpsubd(m64*m1,m64*m2);
Description: The signed or unsigned 32-bit double-words of m2 are subtracted from the respective signed

or unsigned 32-bit double-words of m1 and the result is stored in memory. If any result
element does not fit into 32 bits (underflow or overflow), the lower 32-bits of the result
elements are stored (i.e., truncation takes place).

Returns: The result of subtracting one set of packed double-words from a second set of packed
double-words is returned.

See Also: mpsubb,mpsubsb,mpsubsw,mpsubusb,mpsubusw,mpsubw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASDWORDS"%8.8lx%8.8lx"m64a;m64b={0x0123456789abcdef};m64c={0xfedcba9876543210};
void main()

{a=mpsubd(b,c);printf("m1="ASDWORDS"\n""m2="ASDWORDS"\n""mm="ASDWORDS"\n",b.32[1],b.32[0],c.32[1],c.32[0],a.32[1],a.32[0]);
}

produces the following:

m1=01234567 89abcdef
m2=fedcba98 76543210
mm=02468acf 13579bdf

Classification: Intel

Systems: MACRO

Library Functions and Macros 523

_m_psubsb

Synopsis: #include <mmintrin.h>m64mpsubsb(m64*m1,m64*m2);
Description: The signed 8-bit bytes of m2 are subtracted from the respective signed 8-bit bytes of m1 and

the result is stored in memory. Saturation occurs when a result exceeds the range of a signed
byte. In the case where a result is a byte larger than 0x7f (overflow), it is clamped to 0x7f.
In the case where a result is a byte smaller than 0x80 (underflow), it is clamped to 0x80.

Returns: The result of subtracting the packed signed bytes, with saturation, of one 64-bit multimedia
value from a second multimedia value is returned.

See Also: mpsubb,mpsubd,mpsubsw,mpsubusb,mpsubusw,mpsubw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASBYTES"%2.2x%2.2x%2.2x%2.2x"\
"%2.2x %2.2x %2.2x %2.2x"m64a;m64b={0x8aacceef02244668};m64c={0x76543211fedcba98};

void main()
{a=mpsubsb(b,c);printf("m1="ASBYTES"\n""m2="ASBYTES"\n""mm="ASBYTES"\n",b.8[7],b.8[6],b.8[5],b.8[4],b.8[3],b.8[2],b.8[1],b.8[0],c.8[7],c.8[6],c.8[5],c.8[4],c.8[3],c.8[2],c.8[1],c.8[0],a.8[7],a.8[6],a.8[5],a.8[4],a.8[3],a.8[2],a.8[1],a.8[0]);
}

produces the following:

m1=8a ac ce ef 02 24 46 68
m2=76 54 32 11 fe dc ba 98
mm=80 80 9c de 04 48 7f 7f

Classification: Intel

524 Library Functions and Macros

_m_psubsb

Systems: MACRO

Library Functions and Macros 525

_m_psubsw

Synopsis: #include <mmintrin.h>m64mpsubsw(m64*m1,m64*m2);
Description: The signed 16-bit words of m2 are subtracted from the respective signed 16-bit words of m1

and the result is stored in memory. Saturation occurs when a result exceeds the range of a
signed word. In the case where a result is a word larger than 0x7fff (overflow), it is clamped
to 0x7fff. In the case where a result is a word smaller than 0x8000 (underflow), it is clamped
to 0x8000.

Returns: The result of subtracting the packed signed words, with saturation, of one 64-bit multimedia
value from a second multimedia value is returned.

See Also: mpsubb,mpsubd,mpsubsb,mpsubusb,mpsubusw,mpsubw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"m64a;m64b={0x8aacceef02244668};m64c={0x76543211fedcba98};
void main()

{a=mpsubsw(b,c);printf("m1="ASWORDS"\n""m2="ASWORDS"\n""mm="ASWORDS"\n",b.16[3],b.16[2],b.16[1],b.16[0],c.16[3],c.16[2],c.16[1],c.16[0],a.16[3],a.16[2],a.16[1],a.16[0]);
}

produces the following:

m1=8aac ceef 0224 4668
m2=7654 3211 fedc ba98
mm=8000 9cde 0348 7fff

Classification: Intel

Systems: MACRO

526 Library Functions and Macros

_m_psubusb

Synopsis: #include <mmintrin.h>m64mpsubusb(m64*m1,m64*m2);
Description: The unsigned 8-bit bytes of m2 are subtracted from the respective unsigned 8-bit bytes of m1

and the result is stored in memory. Saturation occurs when a result is less than zero. If a
result is less than zero, it is clamped to 0xff.

Returns: The result of subtracting the packed unsigned bytes, with saturation, of one 64-bit
multimedia value from a second multimedia value is returned.

See Also: mpsubb,mpsubd,mpsubsb,mpsubsw,mpsubusw,mpsubw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASBYTES"%2.2x%2.2x%2.2x%2.2x"\
"%2.2x %2.2x %2.2x %2.2x"m64a;m64b={0x8aacceef02244668};m64c={0x76543211fedcba98};

void main()
{a=mpsubusb(b,c);printf("m1="ASBYTES"\n""m2="ASBYTES"\n""mm="ASBYTES"\n",b.8[7],b.8[6],b.8[5],b.8[4],b.8[3],b.8[2],b.8[1],b.8[0],c.8[7],c.8[6],c.8[5],c.8[4],c.8[3],c.8[2],c.8[1],c.8[0],a.8[7],a.8[6],a.8[5],a.8[4],a.8[3],a.8[2],a.8[1],a.8[0]);
}

produces the following:

m1=8a ac ce ef 02 24 46 68
m2=76 54 32 11 fe dc ba 98
mm=14 58 9c de 00 00 00 00

Classification: Intel

Library Functions and Macros 527

_m_psubusb

Systems: MACRO

528 Library Functions and Macros

_m_psubusw

Synopsis: #include <mmintrin.h>m64mpsubusw(m64*m1,m64*m2);
Description: The unsigned 16-bit words of m2 are subtracted from the respective unsigned 16-bit words

of m1 and the result is stored in memory. Saturation occurs when a result is less than zero.
If a result is less than zero, it is clamped to 0xffff.

Returns: The result of subtracting the packed unsigned words, with saturation, of one 64-bit
multimedia value from a second multimedia value is returned.

See Also: mpsubb,mpsubd,mpsubsb,mpsubsw,mpsubusb,mpsubw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"m64a;m64b={0x8aacceef02244668};m64c={0x76543211fedcba98};
void main()

{a=mpsubusw(b,c);printf("m1="ASWORDS"\n""m2="ASWORDS"\n""mm="ASWORDS"\n",b.16[3],b.16[2],b.16[1],b.16[0],c.16[3],c.16[2],c.16[1],c.16[0],a.16[3],a.16[2],a.16[1],a.16[0]);
}

produces the following:

m1=8aac ceef 0224 4668
m2=7654 3211 fedc ba98
mm=1458 9cde 0000 0000

Classification: Intel

Systems: MACRO

Library Functions and Macros 529

_m_psubw

Synopsis: #include <mmintrin.h>m64mpsubw(m64*m1,m64*m2);
Description: The signed or unsigned 16-bit words of m2 are subtracted from the respective signed or

unsigned 16-bit words of m1 and the result is stored in memory. If any result element does
not fit into 16 bits (underflow or overflow), the lower 16 bits of the result elements are stored
(i.e., truncation takes place).

Returns: The result of subtracting the packed words of two 64-bit multimedia values is returned.

See Also: mpsubb,mpsubd,mpsubsb,mpsubsw,mpsubusb,mpsubusw
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"m64a;m64b={0x0123456789abcdef};m64c={0xfedcba9876543210};
void main()

{a=mpsubw(b,c);printf("m1="ASWORDS"\n""m2="ASWORDS"\n""mm="ASWORDS"\n",b.16[3],b.16[2],b.16[1],b.16[0],c.16[3],c.16[2],c.16[1],c.16[0],a.16[3],a.16[2],a.16[1],a.16[0]);
}

produces the following:

m1=0123 4567 89ab cdef
m2=fedc ba98 7654 3210
mm=0247 8acf 1357 9bdf

Classification: Intel

Systems: MACRO

530 Library Functions and Macros

_m_punpckhbw

Synopsis: #include <mmintrin.h>m64mpunpckhbw(m64*m1,m64*m2);
Description: Thempunpckhbw function performs an interleaved unpack of the high-order data

elements of m1 and m2. It ignores the low-order bytes. When unpacking from a memory
operand, the full 64-bit operand is accessed from memory but only the high-order 32 bits are
utilized. By choosing m1 or m2 to be zero, an unpacking of byte elements into word
elements is performed.

m2 m1

------------------------- -------------------------
|b7|b6|b5|b4|b3|b2|b1|b0| |b7|b6|b5|b4|b3|b2|b1|b0|
------------------------- -------------------------
| | | | | | | |
V V V V V V V V
b7 b5 b3 b1 b6 b4 b2 b0

|b7|b6|b5|b4|b3|b2|b1|b0|

result

Returns: The result of the interleaved unpacking of the high-order bytes of two multimedia values is
returned.

See Also: mpunpckhdq,mpunpckhwd,mpunpcklbw,mpunpckldq,mpunpcklwd
Example: #include <stdio.h>

#include <mmintrin.h>#defineASBYTES"%2.2x%2.2x%2.2x%2.2x"\
"%2.2x %2.2x %2.2x %2.2x"m64a;m64b={0x0004000300020001};m64c={0xff7fff800080007f};

Library Functions and Macros 531

_m_punpckhbw

void main()
{a=mpunpckhbw(b,c);printf("m2="ASBYTES"""m1="ASBYTES"\n""mm="ASBYTES"\n",c.8[7],c.8[6],c.8[5],c.8[4],c.8[3],c.8[2],c.8[1],c.8[0],b.8[7],b.8[6],b.8[5],b.8[4],b.8[3],b.8[2],b.8[1],b.8[0],a.8[7],a.8[6],a.8[5],a.8[4],a.8[3],a.8[2],a.8[1],a.8[0]);
}

produces the following:

m2=ff 7f ff 80 00 80 00 7f m1=00 04 00 03 00 02 00 01
mm=ff 00 7f 04 ff 00 80 03

Classification: Intel

Systems: MACRO

532 Library Functions and Macros

_m_punpckhdq

Synopsis: #include <mmintrin.h>m64mpunpckhdq(m64*m1,m64*m2);
Description: Thempunpckhdq function performs an interleaved unpack of the high-order data

elements of m1 and m2. It ignores the low-order double-words. When unpacking from a
memory operand, the full 64-bit operand is accessed from memory but only the high-order
32 bits are utilized.

m2 m1

------------------------- -------------------------
| d1 | d0 | | d1 | d0 |
------------------------- -------------------------

| |
V V
d1 d0

| d1 | d0 |

result

Returns: The result of the interleaved unpacking of the high-order double-words of two multimedia
values is returned.

See Also: mpunpckhbw,mpunpckhwd,mpunpcklbw,mpunpckldq,mpunpcklwd
Example: #include <stdio.h>

#include <mmintrin.h>#defineASDWORDS"%8.8lx%8.8lx"m64a;m64b={0x0004000300020001};m64c={0xff7fff800080007f};

Library Functions and Macros 533

_m_punpckhdq

void main()
{a=mpunpckhdq(b,c);printf("m2="ASDWORDS"""m1="ASDWORDS"\n""mm="ASDWORDS"\n",c.32[1],c.32[0],b.32[1],b.32[0],a.32[1],a.32[0]);
}

produces the following:

m2=ff7fff80 0080007f m1=00040003 00020001
mm=ff7fff80 00040003

Classification: Intel

Systems: MACRO

534 Library Functions and Macros

_m_punpckhwd

Synopsis: #include <mmintrin.h>m64mpunpckhwd(m64*m1,m64*m2);
Description: Thempunpckhwd function performs an interleaved unpack of the high-order data

elements of m1 and m2. It ignores the low-order words. When unpacking from a memory
operand, the full 64-bit operand is accessed from memory but only the high-order 32 bits are
utilized. By choosing m1 or m2 to be zero, an unpacking of word elements into double-word
elements is performed.

m2 m1

------------------------- -------------------------
| w3 | w2 | w1 | w0 | | w3 | w2 | w1 | w0 |
------------------------- -------------------------

| | | |
V V V V
w3 w1 w2 w0

| w3 | w2 | w1 | w0 |

result

Returns: The result of the interleaved unpacking of the high-order words of two multimedia values is
returned.

See Also: mpunpckhbw,mpunpckhdq,mpunpcklbw,mpunpckldq,mpunpcklwd
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"m64a;m64b={0x0004000300020001};m64c={0xff7fff800080007f};

Library Functions and Macros 535

_m_punpckhwd

void main()
{a=mpunpckhwd(b,c);printf("m2="ASWORDS"""m1="ASWORDS"\n""mm="ASWORDS"\n",c.16[3],c.16[2],c.16[1],c.16[0],b.16[3],b.16[2],b.16[1],b.16[0],a.16[3],a.16[2],a.16[1],a.16[0]);
}

produces the following:

m2=ff7f ff80 0080 007f m1=0004 0003 0002 0001
mm=ff7f 0004 ff80 0003

Classification: Intel

Systems: MACRO

536 Library Functions and Macros

_m_punpcklbw

Synopsis: #include <mmintrin.h>m64mpunpcklbw(m64*m1,m64*m2);
Description: Thempunpcklbw function performs an interleaved unpack of the low-order data

elements of m1 and m2. It ignores the high-order bytes. When unpacking from a memory
operand, 32 bits are accessed and all are utilized by the instruction. By choosing m1 or m2 to
be zero, an unpacking of byte elements into word elements is performed.

m2 m1

------------------------- -------------------------
| |b3|b2|b1|b0| |b7|b6|b5|b4|b3|b2|b1|b0|
------------------------- -------------------------

| | | | | | | |
V V V V V V V V
b7 b5 b3 b1 b6 b4 b2 b0

|b7|b6|b5|b4|b3|b2|b1|b0|

result

Returns: The result of the interleaved unpacking of the low-order bytes of two multimedia values is
returned.

See Also: mpunpckhbw,mpunpckhdq,mpunpckhwd,mpunpckldq,mpunpcklwd
Example: #include <stdio.h>

#include <mmintrin.h>#defineASBYTES"%2.2x%2.2x%2.2x%2.2x"\
"%2.2x %2.2x %2.2x %2.2x"m64a;m64b={0x000200013478bcf0};m64c={0x0080007f12569ade};

Library Functions and Macros 537

_m_punpcklbw

void main()
{a=mpunpcklbw(b,c);printf("m2="ASBYTES"""m1="ASBYTES"\n""mm="ASBYTES"\n",c.8[7],c.8[6],c.8[5],c.8[4],c.8[3],c.8[2],c.8[1],c.8[0],b.8[7],b.8[6],b.8[5],b.8[4],b.8[3],b.8[2],b.8[1],b.8[0],a.8[7],a.8[6],a.8[5],a.8[4],a.8[3],a.8[2],a.8[1],a.8[0]);
}

produces the following:

m2=00 80 00 7f 12 56 9a de m1=00 02 00 01 34 78 bc f0
mm=12 34 56 78 9a bc de f0

Classification: Intel

Systems: MACRO

538 Library Functions and Macros

_m_punpckldq

Synopsis: #include <mmintrin.h>m64mpunpckldq(m64*m1,m64*m2);
Description: Thempunpckldq function performs an interleaved unpack of the low-order data

elements of m1 and m2. It ignores the high-order double-words. When unpacking from a
memory operand, 32 bits are accessed and all are utilized by the instruction.

m2 m1

------------------------- -------------------------
| d1 | d0 | | d1 | d0 |
------------------------- -------------------------

| |
V V
d1 d0

| d1 | d0 |

result

Returns: The result of the interleaved unpacking of the low-order double-words of two multimedia
values is returned.

See Also: mpunpckhbw,mpunpckhdq,mpunpckhwd,mpunpcklbw,mpunpcklwd
Example: #include <stdio.h>

#include <mmintrin.h>#defineASDWORDS"%8.8lx%8.8lx"m64a;m64b={0x0004000300020001};m64c={0xff7fff800080007f};
void main()

{a=mpunpckldq(b,c);printf("m2="ASDWORDS"""m1="ASDWORDS"\n""mm="ASDWORDS"\n",c.32[1],c.32[0],b.32[1],b.32[0],a.32[1],a.32[0]);
}

Library Functions and Macros 539

_m_punpckldq

produces the following:

m2=ff7fff80 0080007f m1=00040003 00020001
mm=0080007f 00020001

Classification: Intel

Systems: MACRO

540 Library Functions and Macros

_m_punpcklwd

Synopsis: #include <mmintrin.h>m64mpunpcklwd(m64*m1,m64*m2);
Description: Thempunpcklwd function performs an interleaved unpack of the low-order data

elements of m1 and m2. It ignores the high-order words. When unpacking from a memory
operand, 32 bits are accessed and all are utilized by the instruction. By choosing m1 or m2 to
be zero, an unpacking of word elements into double-word elements is performed.

m2 m1

------------------------- -------------------------
| w3 | w2 | w1 | w0 | | w3 | w2 | w1 | w0 |
------------------------- -------------------------

| | | |
V V V V
w3 w1 w2 w0

| w3 | w2 | w1 | w0 |

result

Returns: The result of the interleaved unpacking of the low-order words of two multimedia values is
returned.

See Also: mpunpckhbw,mpunpckhdq,mpunpckhwd,mpunpcklbw,mpunpckldq
Example: #include <stdio.h>

#include <mmintrin.h>#defineASWORDS"%4.4x%4.4x%4.4x%4.4x"m64a;m64b={0x0004000300020001};m64c={0xff7fff800080007f};

Library Functions and Macros 541

_m_punpcklwd

void main()
{a=mpunpcklwd(b,c);printf("m2="ASWORDS"""m1="ASWORDS"\n""mm="ASWORDS"\n",c.16[3],c.16[2],c.16[1],c.16[0],b.16[3],b.16[2],b.16[1],b.16[0],a.16[3],a.16[2],a.16[1],a.16[0]);
}

produces the following:

m2=ff7f ff80 0080 007f m1=0004 0003 0002 0001
mm=0080 0002 007f 0001

Classification: Intel

Systems: MACRO

542 Library Functions and Macros

_m_pxor

Synopsis: #include <mmintrin.h>m64mpxor(m64*m1,m64*m2);
Description: A bit-wise logical XOR is performed between 64-bit multimedia operands m1 and m2 and

the result is stored in memory.

Returns: The bit-wise logical exclusive OR of two 64-bit values is returned.

See Also: mpand,mpandn,mpor
Example: #include <stdio.h>

#include <mmintrin.h>#defineASQWORD"%16.16Lx"m64a;m64b={0x0123456789abcdef};m64c={0xfedcba9876543210};
void main()

{a=mpxor(b,c);printf("m1="ASQWORD"\n""m2="ASQWORD"\n""mm="ASQWORD"\n",
b, c, a);

}

produces the following:

m1=0123456789abcdef
m2=fedcba9876543210
mm=ffffffffffffffff

Classification: Intel

Systems: MACRO

Library Functions and Macros 543

_msize Functions

Synopsis: #include <malloc.h>sizetmsize(void*buffer);sizetbmsize(segmentseg,voidbased(void)*buffer);sizetfmsize(voidfar*buffer);sizetnmsize(voidnear*buffer);
Description: Themsize functions return the size of the memory block pointed to by buffer that was

allocated by a call to the appropriate version of the calloc, malloc, or realloc
functions.

You must use the correctmsize function as listed below depending on which heap the
memory block belongs to.

Function Heap

_msize Depends on data model of the program

_bmsize Based heap specified by seg value

_fmsize Far heap (outside the default data segment)

_nmsize Near heap (inside the default data segment)

In small data models (small and medium memory models),msize maps tonmsize. In
large data models (compact, large and huge memory models),msize maps to

fmsize.
Returns: Themsize functions return the size of the memory block pointed to by buffer.

See Also: calloc Functions,expand Functions, free Functions, halloc, hfree, malloc
Functions, realloc Functions, sbrk

Example: #include <stdio.h>
#include <malloc.h>

void main()
{

void *buffer;

buffer = malloc(999);
printf("Size of block is %u bytes\n",msize(buffer));

}

544 Library Functions and Macros

_msize Functions

produces the following:

Size of block is 1000 bytes

Classification: WATCOM

Systems: msize�All,Netwarebmsize�DOS/16,Windows,QNX/16,OS/21.x(all)fmsize�DOS/16,Windows,QNX/16,OS/21.x(all)nmsize�DOS,Windows,Win386,Win32,QNX,OS/21.x,OS/2
1.x(MT), OS/2-32

Library Functions and Macros 545

_m_to_int

Synopsis: #include <mmintrin.h>intmtoint(m64*m);
Description: Themtoint function returns the low-order 32 bits of a multimedia value.

Returns: The low-order 32 bits of a multimedia value are fetched and returned as the result.

See Also: mpacksswb,mpaddb,mpand,mpcmpeqb,mpmaddwd,mpsllw,mpsraw,mpsrlw,mpsubb,mpunpckhbw
Example: #include <stdio.h>

#include <mmintrin.h>m64b={0x0123456789abcdef};
int j;

void main()
{j=mtoint(b);

printf("m=%16.16Lx int=%8.8lx\n",
b, j);

}

produces the following:

m=0123456789abcdef int=89abcdef

Classification: Intel

Systems: MACRO

546 Library Functions and Macros

nosound

Synopsis: #include <i86.h>
void nosound(void);

Description: The nosound function turns off the PC’s speaker.

When you use the nosound function, your program must be linked for privity level 1 and
the process must be run by the superuser. See the Watcom C/C++ User’s Guide discussion
of privity levels and the documentation of the Watcom Linker PRIVILEGE option.

Returns: The nosound function has no return value.

See Also: delay, sound

Example: #include <i86.h>

void main()
{

sound(200);
delay(500); /* delay for 1/2 second */
nosound();

}

Classification: Intel

Systems: DOS, Windows, Win386, QNX

Library Functions and Macros 547

offsetof

Synopsis: #include <stddef.h>sizetoffsetof(composite,name);
Description: The offsetof macro returns the offset of the element name within the struct or union

composite. This provides a portable method to determine the offset.

Returns: The offsetof function returns the offset of name.

Example: #include <stdio.h>
#include <stddef.h>structnewdef
{ char *first;

char second[10];
int third;

};

void main()
{

printf("first:%d second:%d third:%d\n",offsetof(structnewdef,first),offsetof(structnewdef,second),offsetof(structnewdef,third));
}

produces the following:

In a small data model, the following would result:

first:0 second:2 third:12

In a large data model, the following would result:

first:0 second:4 third:14

Classification: ANSI

Systems: MACRO

548 Library Functions and Macros

onexit

Synopsis: #include <stdlib.h>onexittonexit(onexittfunc);
Description: The onexit function is passed the address of function func to be called when the program

terminates normally. Successive calls to onexit create a list of functions that will be
executed on a "last-in, first-out" basis. No more than 32 functions can be registered with the
onexit function.

The functions have no parameters and do not return values.

NOTE: The onexit function is not an ANSI function. The ANSI standard function
atexit does the same thing that onexit does and should be used instead of onexit
where ANSI portability is concerned.

Returns: The onexit function returns func if the registration succeeds, NULL if it fails.

See Also: abort, atexit, exit,exit
Example: #include <stdio.h>

#include <stdlib.h>

void main()
{

extern void func1(void), func2(void), func3(void);

onexit(func1);
onexit(func2);
onexit(func3);
printf("Do this first.\n");

}

void func1(void) { printf("last.\n"); }
void func2(void) { printf("this "); }
void func3(void) { printf("Do "); }

produces the following:

Do this first.
Do this last.

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 549

open

Synopsis: #include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *path, int access, ...);

Description: The open function opens a file at the operating system level. The name of the file to be
opened is given by path. The file will be accessed according to the access mode specified by
access. The optional argument is the file permissions to be used when the

OCREAT
 flag is

on in the access mode.

The access mode is established by a combination of the bits defined in the <fcntl.h>
header file. The following bits may be set:

Mode Meaning

O_RDONLY permit the file to be only read.

O_WRONLY permit the file to be only written.

O_RDWR permit the file to be both read and written.

O_APPEND causes each record that is written to be written at the end of the
file.

O_CREAT has no effect when the file indicated by filename already exists;
otherwise, the file is created;

O_TRUNC causes the file to be truncated to contain no data when the file
exists; has no effect when the file does not exist.

O_TEMP indicates that this file is to be treated as "temporary". It is a
request to keep the data in cache, if possible, for fast access to
temporary files.

O_EXCL indicates that this file is to be opened for exclusive access. If the
file exists and
OCREAT

 was also specified then the open will fail
(i.e., use
OEXCL

 to ensure that the file does not already exist).OCREAT
 must be specified when the file does not exist and it is to be written.

When the file is to be created (
OCREAT

 is specified), an additional argument must be
passed which contains the file permissions to be used for the new file. The access

550 Library Functions and Macros

open

permissions for the file or directory are specified as a combination of bits (defined in the
<sys/stat.h> header file).

The following bits define permissions for the owner.

Permission Meaning

S_IRWXU Read, write, execute/search
S_IRUSR Read permission
S_IWUSR Write permission
S_IXUSR Execute/search permission

The following bits define permissions for the group.

Permission Meaning

S_IRWXG Read, write, execute/search
S_IRGRP Read permission
S_IWGRP Write permission
S_IXGRP Execute/search permission

The following bits define permissions for others.

Permission Meaning

S_IRWXO Read, write, execute/search
S_IROTH Read permission
S_IWOTH Write permission
S_IXOTH Execute/search permission

The following bits define miscellaneous permissions used by other implementations.

Permission Meaning

S_IREAD is equivalent to S_IRUSR (read permission)
S_IWRITE is equivalent to S_IWUSR (write permission)
S_IEXEC is equivalent to S_IXUSR (execute/search permission)

The open function applies the current file permission mask to the specified permissions (see
umask).

Returns: If successful, open returns a descriptor for the file. When an error occurs while opening the
file, -1 is returned.

Library Functions and Macros 551

open

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

EACCES Access denied because path specifies a directory or a volume ID, or
attempting to open a read-only file for writing

EMFILE No more descriptors available (too many open files)

ENOENT Path or file not found

See Also: chsize, close, creat, dup, dup2, eof, exec Functions, fdopen, filelength,
fileno, fstat, lseek, read, setmode, sopen, stat, tell, write, umask

Example: #include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>

void main()
{

int fildes;

/* open a file for output */
/* replace existing file if it exists */

fildes = open("file",OWRONLY|OCREAT|OTRUNC,SIRUSR|SIWUSR|SIRGRP|SIWGRP);
/* read a file which is assumed to exist */fildes=open("file",ORDONLY);
/* append to the end of an existing file */
/* write a new file if file does not exist */

fildes = open("file",OWRONLY|OCREAT|OAPPEND,SIRUSR|SIWUSR|SIRGRP|SIWGRP);
}

Classification: POSIX 1003.1

Systems: All, Netware

552 Library Functions and Macros

opendir

Synopsis: #include <dirent.h>
DIR *opendir(const char *dirname);

Description: The opendir function is used in conjunction with the functions readdir and closedir
to obtain the list of file names contained in the directory specified by dirname. The path
indicated by dirname can be either relative to the current working directory or it can be an
absolute path name.

The file <dirent.h> contains definitions for the structure dirent and the DIR type.

In QNX the dirent structure contains a stat structure in the
dstat member. To speed

up applications which often want both the name and the stat data, a resource manager may
return the stat information at the same time the readdir function is called.

However, since the support of this feature is left to the discretion of various resource
managers, every program must use the following test to determine if the

dstat member
contains valid data:

 dstat.ststatus&FILEUSED
This test must be performed after every readdir call.

If the
dstat member doesn’t contain valid data and the data is needed then the application

should construct the file’s pathname and call stat or lstat as appropriate.

More than one directory can be read at the same time using the opendir, readdir,
rewinddir and closedir functions.

The result of using a directory stream after one of the exec or spawn family of functions is
undefined. After a call to the fork function, either the parent or the child (but not both)
may continue processing the directory stream using readdir or rewinddir or both. If
both the parent and child processes use these functions, the result is undefined. Either or
both processes may use closedir.

Returns: The opendir function, if successful, returns a pointer to a structure required for subsequent
calls to readdir to retrieve the file names specified by dirname. The opendir function
returns NULL if dirname is not a valid pathname.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Library Functions and Macros 553

opendir

Constant Meaning

EACCES Search permission is denied for a component of dirname or read
permission is denied for dirname.

ENAMETOOLONG The length of the argument dirname exceeds {PATH_MAX}, or a
pathname component is longer than {NAME_MAX}.

ENOENT The named directory does not exist.

ENOTDIR A component of dirname is not a directory.

See Also: closedir, readdir, rewinddir

Example: To get a list of files contained in the directory /home/fred of your node:

#include <stdio.h>
#include <dirent.h>

void main()
{

DIR *dirp;
struct dirent *direntp;

dirp = opendir("/home/fred");
if(dirp != NULL) {

for(;;) {
direntp = readdir(dirp);
if(direntp == NULL) break;printf("%s\n",direntp�>dname);

}
closedir(dirp);

}
}

Classification: POSIX 1003.1

Systems: All, Netware

554 Library Functions and Macros

_outgtext

Synopsis: #include <graph.h>voidFARoutgtext(charFAR*text);
Description: Theoutgtext function displays the character string indicated by the argument text. The

string must be terminated by a null character (’\0’).

The string is displayed starting at the current position (see themoveto function) in the
current color and in the currently selected font (see thesetfont function). The current
position is updated to follow the displayed text.

When no font has been previously selected withsetfont, a default font will be used.
The default font is an 8-by-8 bit-mapped font.

The graphics library can display text in three different ways.

1. Theouttext andoutmem functions can be used in any video mode.
However, this variety of text can be displayed in only one size.

2. Thegrtext function displays text as a sequence of line segments, and can be
drawn in different sizes, with different orientations and alignments.

3. Theoutgtext function displays text in the currently selected font. Both
bit-mapped and vector fonts are supported; the size and type of text depends on
the fonts that are available.

Returns: Theoutgtext function does not return a value.

See Also: registerfonts,unregisterfonts,setfont,getfontinfo,getgtextextent,setgtextvector,getgtextvector,outtext,outmem,grtext

Library Functions and Macros 555

_outgtext

Example: #include <conio.h>
#include <stdio.h>
#include <graph.h>

main()
{

int i, n;
char buf[10];setvideomode(VRES16COLOR);n=registerfonts("*.fon");
for(i = 0; i < n; ++i) {

sprintf(buf, "n%d", i);setfont(buf);moveto(100,100);outgtext("WATCOMGraphics");
getch();clearscreen(GCLEARSCREEN);

}unregisterfonts();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

556 Library Functions and Macros

_outmem

Synopsis: #include <graph.h>voidFARoutmem(charFAR*text,shortlength);
Description: Theoutmem function displays the character string indicated by the argument text. The

argument length specifies the number of characters to be displayed. Unlike theouttext
function,outmem will display the graphical representation of characters such as ASCII 10
and 0, instead of interpreting them as control characters.

The text is displayed using the current text color (see thesettextcolor function),
starting at the current text position (see thesettextposition function). The text
position is updated to follow the end of the displayed text.

The graphics library can display text in three different ways.

1. Theouttext andoutmem functions can be used in any video mode.
However, this variety of text can be displayed in only one size.

2. Thegrtext function displays text as a sequence of line segments, and can be
drawn in different sizes, with different orientations and alignments.

3. Theoutgtext function displays text in the currently selected font. Both
bit-mapped and vector fonts are supported; the size and type of text depends on
the fonts that are available.

Returns: Theoutmem function does not return a value.

See Also: settextcolor,settextposition,settextwindow,grtext,outtext,outgtext

Library Functions and Macros 557

_outmem

Example: #include <conio.h>
#include <graph.h>

main()
{

int i;
char buf[1];clearscreen(GCLEARSCREEN);
for(i = 0; i <= 255; ++i) {settextposition(1+i%16,

1 + 5 * (i / 16));
buf[0] = i;outmem(buf,1);

}
getch();

}

Classification: PC Graphics

Systems: DOS, QNX

558 Library Functions and Macros

outp

Synopsis: #include <conio.h>
unsigned int outp(int port, int value);

Description: The outp function writes one byte, determined by value, to the 80x86 hardware port whose
number is given by port.

A hardware port is used to communicate with a device. One or two bytes can be read and/or
written from each port, depending upon the hardware. Consult the technical documentation
for your computer to determine the port numbers for a device and the expected usage of each
port for a device.

When you use the outp function, your program must be linked for privity level 1 and the
process must be run by the superuser. See the Watcom C/C++ User’s Guide discussion of
privity levels and the documentation of the Watcom Linker PRIVILEGE option.

Returns: The value transmitted is returned.

See Also: inp, inpd, inpw, outpd, outpw

Example: #include <conio.h>

void main()
{

/* turn off speaker */
outp(0x61, inp(0x61) & 0xFC);

}

Classification: Intel

Systems: All, Netware

Library Functions and Macros 559

outpd

Synopsis: #include <conio.h>
unsigned long outpd(int port,

unsigned long value);

Description: The outpd function writes a double-word (four bytes), determined by value, to the 80x86
hardware port whose number is given by port.

A hardware port is used to communicate with a device. One or two bytes can be read and/or
written from each port, depending upon the hardware. Consult the technical documentation
for your computer to determine the port numbers for a device and the expected usage of each
port for a device.

When you use the outpd function, your program must be linked for privity level 1 and the
process must be run by the superuser. See the Watcom C/C++ User’s Guide discussion of
privity levels and the documentation of the Watcom Linker PRIVILEGE option.

Returns: The value transmitted is returned.

See Also: inp, inpd, inpw, outp, outpw

Example: #include <conio.h>
#define DEVICE 34

void main()
{

outpd(DEVICE, 0x12345678);
}

Classification: Intel

Systems: DOS/32, Win386, Win32, QNX/32, OS/2-32, Netware

560 Library Functions and Macros

outpw

Synopsis: #include <conio.h>
unsigned int outpw(int port,

unsigned int value);

Description: The outpw function writes a word (two bytes), determined by value, to the 80x86 hardware
port whose number is given by port.

A hardware port is used to communicate with a device. One or two bytes can be read and/or
written from each port, depending upon the hardware. Consult the technical documentation
for your computer to determine the port numbers for a device and the expected usage of each
port for a device.

When you use the outpw function, your program must be linked for privity level 1 and the
process must be run by the superuser. See the Watcom C/C++ User’s Guide discussion of
privity levels and the documentation of the Watcom Linker PRIVILEGE option.

Returns: The value transmitted is returned.

See Also: inp, inpd, inpw, outp, outpd

Example: #include <conio.h>
#define DEVICE 34

void main()
{

outpw(DEVICE, 0x1234);
}

Classification: Intel

Systems: All, Netware

Library Functions and Macros 561

_outtext

Synopsis: #include <graph.h>voidFARouttext(charFAR*text);
Description: Theouttext function displays the character string indicated by the argument text. The

string must be terminated by a null character (’\0’). When a line-feed character (’\n’) is
encountered in the string, the characters following will be displayed on the next row of the
screen.

The text is displayed using the current text color (see thesettextcolor function),
starting at the current text position (see thesettextposition function). The text
position is updated to follow the end of the displayed text.

The graphics library can display text in three different ways.

1. Theouttext andoutmem functions can be used in any video mode.
However, this variety of text can be displayed in only one size.

2. Thegrtext function displays text as a sequence of line segments, and can be
drawn in different sizes, with different orientations and alignments.

3. Theoutgtext function displays text in the currently selected font. Both
bit-mapped and vector fonts are supported; the size and type of text depends on
the fonts that are available.

Returns: Theouttext function does not return a value.

See Also: settextcolor,settextposition,settextwindow,grtext,outmem,outgtext
Example: #include <conio.h>

#include <graph.h>

main()
{ setvideomode(TEXTC80);settextposition(10,30);outtext("WATCOMGraphics");

getch();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

562 Library Functions and Macros

_outtext

Systems: DOS, QNX

Library Functions and Macros 563

perror, _wperror

Synopsis: #include <stdio.h>
void perror(const char *prefix);voidwperror(constwchart*prefix);

Description: The perror function prints, on the file designated by stderr, the error message
corresponding to the error number contained in errno. The perror function writes first
the string pointed to by prefix to stderr. This is followed by a colon (":"), a space, the string
returned by strerror(errno), and a newline character.

Thewperror function is identical to perror except that it accepts a wide-character
string argument and produces wide-character output.

Returns: The perror function returns no value. Because perror uses the fprintf function,
errno can be set when an error is detected during the execution of that function.

See Also: clearerr, feof, ferror, strerror

Example: #include <stdio.h>

void main()
{

FILE *fp;

fp = fopen("data.fil", "r");
if(fp == NULL) {

perror("Unable to open file");
}

}

Classification: perror is ANSI, _wperror is not ANSI

Systems: perror - All, Netwarewperror�All

564 Library Functions and Macros

_pg_analyzechart Functions

Synopsis: #include <pgchart.h>shortFARpganalyzechart(chartenvFAR*env,charFAR*FAR*cat,floatFAR*values,shortn);shortFARpganalyzechartms(chartenvFAR*env,charFAR*FAR*cat,floatFAR*values,
short nseries,
short n, short dim,charFAR*FAR*labels);

Description: Thepganalyzechart functions analyze either a single-series or a multi-series bar,
column or line chart. These functions calculate default values for chart elements without
actually displaying the chart.

Thepganalyzechart function analyzes a single-series bar, column or line chart. The
chart environment structure env is filled with default values based on the type of chart and
the values of the cat and values arguments. The arguments are the same as for thepgchart function.

Thepganalyzechartms function analyzes a multi-series bar, column or line chart.
The chart environment structure env is filled with default values based on the type of chart
and the values of the cat, values and labels arguments. The arguments are the same as for
thepgchartms function.

Returns: Thepganalyzechart functions return zero if successful; otherwise, a non-zero value
is returned.

See Also: pgdefaultchart,pginitchart,pgchart,pgchartpie,pgchartscatter,pganalyzepie,pganalyzescatter

Library Functions and Macros 565

_pg_analyzechart Functions

Example: #include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>#ifdefined(386)#defineFAR
#else#defineFARfar
#endif#defineNUMVALUES4charFAR*categories[NUMVALUES]={

"Jan", "Feb", "Mar", "Apr"
};floatvalues[NUMVALUES]={

20, 45, 30, 25
};

main()
{

chartenv env;setvideomode(VRES16COLOR);pginitchart();pgdefaultchart(&env,PGCOLUMNCHART,PGPLAINBARS);
strcpy(env.maintitle.title, "Column Chart");pganalyzechart(&env,categories,values,NUMVALUES);
/* use manual scaling */
env.yaxis.autoscale = 0;
env.yaxis.scalemin = 0.0;
env.yaxis.scalemax = 100.0;
env.yaxis.ticinterval = 25.0;pgchart(&env,categories,values,NUMVALUES);
getch();setvideomode(DEFAULTMODE);

}

Classification: _pg_analyzechart is PC Graphics

Systems: pganalyzechart�DOS,QNXpganalyzechartms�DOS,QNX
566 Library Functions and Macros

_pg_analyzepie

Synopsis: #include <pgchart.h>shortFARpganalyzepie(chartenvFAR*env,charFAR*FAR*cat,floatFAR*values,shortFAR*explode,shortn);
Description: Thepganalyzepie function analyzes a pie chart. This function calculates default

values for chart elements without actually displaying the chart.

The chart environment structure env is filled with default values based on the values of the
cat, values and explode arguments. The arguments are the same as for thepgchartpie
function.

Returns: Thepganalyzepie function returns zero if successful; otherwise, a non-zero value is
returned.

See Also: pgdefaultchart,pginitchart,pgchart,pgchartpie,pgchartscatter,pganalyzechart,pganalyzescatter

Library Functions and Macros 567

_pg_analyzepie

Example: #include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>#ifdefined(386)#defineFAR
#else#defineFARfar
#endif#defineNUMVALUES4charFAR*categories[NUMVALUES]={

"Jan", "Feb", "Mar", "Apr"
};floatvalues[NUMVALUES]={

20, 45, 30, 25
};shortexplode[NUMVALUES]={

1, 0, 0, 0
};

main()
{

chartenv env;setvideomode(VRES16COLOR);pginitchart();pgdefaultchart(&env,PGPIECHART,PGNOPERCENT);
strcpy(env.maintitle.title, "Pie Chart");env.legend.place=PGBOTTOM;pganalyzepie(&env,categories,values,explode,NUMVALUES);
/* make legend window same width as data window */
env.legend.autosize = 0;
env.legend.legendwindow.x1 = env.datawindow.x1;
env.legend.legendwindow.x2 = env.datawindow.x2;pgchartpie(&env,categories,values,explode,NUMVALUES);
getch();setvideomode(DEFAULTMODE);

}

568 Library Functions and Macros

_pg_analyzepie

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 569

_pg_analyzescatter Functions

Synopsis: #include <pgchart.h>shortFARpganalyzescatter(chartenvFAR*env,floatFAR*x,floatFAR*y,shortn);shortFARpganalyzescatterms(chartenvFAR*env,floatFAR*x,floatFAR*y,
short nseries, short n, short dim,charFAR*FAR*labels);

Description: Thepganalyzescatter functions analyze either a single-series or a multi-series
scatter chart. These functions calculate default values for chart elements without actually
displaying the chart.

Thepganalyzescatter function analyzes a single-series scatter chart. The chart
environment structure env is filled with default values based on the values of the x and y
arguments. The arguments are the same as for thepgchartscatter function.

Thepganalyzescatterms function analyzes a multi-series scatter chart. The chart
environment structure env is filled with default values based on the values of the x, y and
labels arguments. The arguments are the same as for thepgchartscatterms
function.

Returns: Thepganalyzescatter functions return zero if successful; otherwise, a non-zero
value is returned.

See Also: pgdefaultchart,pginitchart,pgchart,pgchartpie,pgchartscatter,pganalyzechart,pganalyzepie

570 Library Functions and Macros

_pg_analyzescatter Functions

Example: #include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>#ifdefined(386)#defineFAR
#else#defineFARfar
#endif#defineNUMVALUES4#defineNUMSERIES2charFAR*labels[NUMSERIES]={

"Jan", "Feb"
};floatx[NUMSERIES][NUMVALUES]={

5, 15, 30, 40, 10, 20, 30, 45
};floaty[NUMSERIES][NUMVALUES]={

10, 15, 30, 45, 40, 30, 15, 5
};

main()
{

chartenv env;setvideomode(VRES16COLOR);pginitchart();pgdefaultchart(&env,PGSCATTERCHART,PGPOINTANDLINE);
strcpy(env.maintitle.title, "Scatter Chart");pganalyzescatterms(&env,x,y,NUMSERIES,NUMVALUES,NUMVALUES,labels);
/* display x-axis labels with 2 decimal places */
env.xaxis.autoscale = 0;
env.xaxis.ticdecimals = 2;pgchartscatterms(&env,x,y,NUMSERIES,NUMVALUES,NUMVALUES,labels);
getch();setvideomode(DEFAULTMODE);

}

Library Functions and Macros 571

_pg_analyzescatter Functions

Classification: PC Graphics

Systems: pganalyzescatter�DOS,QNXpganalyzescatterms�DOS,QNX

572 Library Functions and Macros

_pg_chart Functions

Synopsis: #include <pgchart.h>shortFARpgchart(chartenvFAR*env,charFAR*FAR*cat,floatFAR*values,shortn);shortFARpgchartms(chartenvFAR*env,charFAR*FAR*cat,floatFAR*values,shortnseries,
short n, short dim,charFAR*FAR*labels);

Description: Thepgchart functions display either a single-series or a multi-series bar, column or
line chart. The type of chart displayed and other chart options are contained in the env
argument. The argument cat is an array of strings. These strings describe the categories
against which the data in the values array is charted.

Thepgchart function displays a bar, column or line chart from the single series of data
contained in the values array. The argument n specifies the number of values to chart.

Thepgchartms function displays a multi-series bar, column or line chart. The
argument nseries specifies the number of series of data to chart. The argument values is
assumed to be a two-dimensional array defined as follows:

float values[nseries][dim];

The number of values used from each series is given by the argument n, where n is less than
or equal to dim. The argument labels is an array of strings. These strings describe each of
the series and are used in the chart legend.

Returns: Thepgchart functions return zero if successful; otherwise, a non-zero value is returned.

See Also: pgdefaultchart,pginitchart,pgchartpie,pgchartscatter,pganalyzechart,pganalyzepie,pganalyzescatter

Library Functions and Macros 573

_pg_chart Functions

Example: #include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>#ifdefined(386)#defineFAR
#else#defineFARfar
#endif#defineNUMVALUES4charFAR*categories[NUMVALUES]={

"Jan", "Feb", "Mar", "Apr"
};floatvalues[NUMVALUES]={

20, 45, 30, 25
};

main()
{

chartenv env;setvideomode(VRES16COLOR);pginitchart();pgdefaultchart(&env,PGCOLUMNCHART,PGPLAINBARS);
strcpy(env.maintitle.title, "Column Chart");pgchart(&env,categories,values,NUMVALUES);
getch();setvideomode(DEFAULTMODE);

}

produces the following:

574 Library Functions and Macros

_pg_chart Functions

Classification: PC Graphics

Systems: pgchart�DOS,QNXpgchartms�DOS,QNX

Library Functions and Macros 575

_pg_chartpie

Synopsis: #include <pgchart.h>shortFARpgchartpie(chartenvFAR*env,charFAR*FAR*cat,floatFAR*values,shortFAR*explode,shortn);
Description: Thepgchartpie function displays a pie chart. The chart is displayed using the options

specified in the env argument.

The pie chart is created from the data contained in the values array. The argument n
specifies the number of values to chart.

The argument cat is an array of strings. These strings describe each of the pie slices and are
used in the chart legend. The argument explode is an array of values corresponding to each
of the pie slices. For each non-zero element in the array, the corresponding pie slice is drawn
"exploded", or slightly offset from the rest of the pie.

Returns: Thepgchartpie function returns zero if successful; otherwise, a non-zero value is
returned.

See Also: pgdefaultchart,pginitchart,pgchart,pgchartscatter,pganalyzechart,pganalyzepie,pganalyzescatter

576 Library Functions and Macros

_pg_chartpie

Example: #include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>#ifdefined(386)#defineFAR
#else#defineFARfar
#endif#defineNUMVALUES4charFAR*categories[NUMVALUES]={

"Jan", "Feb", "Mar", "Apr"
};floatvalues[NUMVALUES]={

20, 45, 30, 25
};shortexplode[NUMVALUES]={

1, 0, 0, 0
};

main()
{

chartenv env;setvideomode(VRES16COLOR);pginitchart();pgdefaultchart(&env,PGPIECHART,PGNOPERCENT);
strcpy(env.maintitle.title, "Pie Chart");pgchartpie(&env,categories,values,explode,NUMVALUES);
getch();setvideomode(DEFAULTMODE);

}

produces the following:

Library Functions and Macros 577

_pg_chartpie

Classification: PC Graphics

Systems: DOS, QNX

578 Library Functions and Macros

_pg_chartscatter Functions

Synopsis: #include <pgchart.h>shortFARpgchartscatter(chartenvFAR*env,floatFAR*x,floatFAR*y,shortn);shortFARpgchartscatterms(chartenvFAR*env,floatFAR*x,floatFAR*y,
short nseries,
short n, short dim,charFAR*FAR*labels);

Description: Thepgchartscatter functions display either a single-series or a multi-series scatter
chart. The chart is displayed using the options specified in the env argument.

Thepgchartscatter function displays a scatter chart from the single series of data
contained in the arrays x and y. The argument n specifies the number of values to chart.

Thepgchartscatterms function displays a multi-series scatter chart. The argument
nseries specifies the number of series of data to chart. The arguments x and y are assumed to
be two-dimensional arrays defined as follows:

float x[nseries][dim];

The number of values used from each series is given by the argument n, where n is less than
or equal to dim. The argument labels is an array of strings. These strings describe each of
the series and are used in the chart legend.

Returns: Thepgchartscatter functions return zero if successful; otherwise, a non-zero value
is returned.

See Also: pgdefaultchart,pginitchart,pgchart,pgchartpie,pganalyzechart,pganalyzepie,pganalyzescatter

Library Functions and Macros 579

_pg_chartscatter Functions

Example: #include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>#ifdefined(386)#defineFAR
#else#defineFARfar
#endif#defineNUMVALUES4#defineNUMSERIES2charFAR*labels[NUMSERIES]={

"Jan", "Feb"
};floatx[NUMSERIES][NUMVALUES]={

5, 15, 30, 40, 10, 20, 30, 45
};floaty[NUMSERIES][NUMVALUES]={

10, 15, 30, 45, 40, 30, 15, 5
};

main()
{

chartenv env;setvideomode(VRES16COLOR);pginitchart();pgdefaultchart(&env,PGSCATTERCHART,PGPOINTANDLINE);
strcpy(env.maintitle.title, "Scatter Chart");pgchartscatterms(&env,x,y,NUMSERIES,NUMVALUES,NUMVALUES,labels);
getch();setvideomode(DEFAULTMODE);

}

produces the following:

580 Library Functions and Macros

_pg_chartscatter Functions

Classification: PC Graphics

Systems: pgchartscatter�DOS,QNXpgchartscatterms�DOS,QNX

Library Functions and Macros 581

_pg_defaultchart

Synopsis: #include <pgchart.h>shortFARpgdefaultchart(chartenvFAR*env,
short type, short style);

Description: Thepgdefaultchart function initializes the chart structure env to contain default
values before a chart is drawn. All values in the chart structure are initialized, including
blanking of all titles. The chart type in the structure is initialized to the value type, and the
chart style is initialized to style.

The argument type can have one of the following values:

_PG_BARCHART Bar chart (horizontal bars)

_PG_COLUMNCHART Column chart (vertical bars)

_PG_LINECHART Line chart

_PG_SCATTERCHART Scatter chart

_PG_PIECHART Pie chart

Each type of chart can be drawn in one of two styles. For each chart type the argument style
can have one of the following values:

Type Style 1 Style 2

Bar PGPLAINBARSPGSTACKEDBARS
Column PGPLAINBARSPGSTACKEDBARS
Line PGPOINTANDLINEPGPOINTONLY
Scatter PGPOINTANDLINEPGPOINTONLY
Pie PGPERCENTPGNOPERCENT

For single-series bar and column charts, the chart style is ignored. The "plain" (clustered)
and "stacked" styles only apply when there is more than one series of data. The "percent"
style for pie charts causes percentages to be displayed beside each of the pie slices.

Returns: Thepgdefaultchart function returns zero if successful; otherwise, a non-zero value
is returned.

See Also: pginitchart,pgchart,pgchartpie,pgchartscatter
582 Library Functions and Macros

_pg_defaultchart

Example: #include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>#ifdefined(386)#defineFAR
#else#defineFARfar
#endif#defineNUMVALUES4charFAR*categories[NUMVALUES]={

"Jan", "Feb", "Mar", "Apr"
};floatvalues[NUMVALUES]={

20, 45, 30, 25
};

main()
{

chartenv env;setvideomode(VRES16COLOR);pginitchart();pgdefaultchart(&env,PGCOLUMNCHART,PGPLAINBARS);
strcpy(env.maintitle.title, "Column Chart");pgchart(&env,categories,values,NUMVALUES);
getch();setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 583

_pg_getchardef

Synopsis: #include <pgchart.h>shortFARpggetchardef(shortch,unsignedcharFAR*def);
Description: Thepggetchardef function retrieves the current bit-map definition for the character

ch. The bit-map is placed in the array def. The current font must be an 8-by-8 bit-mapped
font.

Returns: Thepggetchardef function returns zero if successful; otherwise, a non-zero value is
returned.

See Also: pgdefaultchart,pginitchart,pgchart,pgchartpie,pgchartscatter,pgsetchardef

584 Library Functions and Macros

_pg_getchardef

Example: #include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>#defineNUMVALUES4floatx[NUMVALUES]={

5, 25, 45, 65
};floaty[NUMVALUES]={

5, 45, 25, 65
};

char diamond[8] = {
0x10, 0x28, 0x44, 0x82, 0x44, 0x28, 0x10, 0x00

};

main()
{

chartenv env;charolddef[8];setvideomode(VRES16COLOR);pginitchart();pgdefaultchart(&env,PGSCATTERCHART,PGPOINTANDLINE);
strcpy(env.maintitle.title, "Scatter Chart");
/* change asterisk character to diamond */pggetchardef(’*’,olddef);pgsetchardef(’*’,diamond);pgchartscatter(&env,x,y,NUMVALUES);pgsetchardef(’*’,olddef);
getch();setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 585

_pg_getpalette

Synopsis: #include <pgchart.h>shortFARpggetpalette(paletteentryFAR*pal);
Description: Thepggetpalette function retrieves the internal palette of the presentation graphics

system. The palette controls the colors, line styles, fill patterns and plot characters used to
display each series of data in a chart.

The argument pal is an array of palette structures that will contain the palette. Each element
of the palette is a structure containing the following fields:

color color used to display series

style line style used for line and scatter charts

fill fill pattern used to fill interior of bar and pie sections

plotchar character plotted on line and scatter charts

Returns: Thepggetpalette function returns zero if successful; otherwise, a non-zero value is
returned.

See Also: pgdefaultchart,pginitchart,pgchart,pgchartpie,pgchartscatter,pgsetpalette,pgresetpalette

586 Library Functions and Macros

_pg_getpalette

Example: #include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>#ifdefined(386)#defineFAR
#else#defineFARfar
#endif#defineNUMVALUES4charFAR*categories[NUMVALUES]={

"Jan", "Feb", "Mar", "Apr"
};floatvalues[NUMVALUES]={

20, 45, 30, 25
};

char bricks[8] = {
0xff, 0x80, 0x80, 0x80, 0xff, 0x08, 0x08, 0x08

};

main()
{

chartenv env;
palettetype pal;setvideomode(VRES16COLOR);pginitchart();pgdefaultchart(&env,PGCOLUMNCHART,PGPLAINBARS);
strcpy(env.maintitle.title, "Column Chart");
/* get default palette and change 1st entry */pggetpalette(&pal);
pal[1].color = 12;
memcpy(pal[1].fill, bricks, 8);
/* use new palette */pgsetpalette(&pal);pgchart(&env,categories,values,NUMVALUES);
/* reset palette to default */pgresetpalette();
getch();setvideomode(DEFAULTMODE);

}

Library Functions and Macros 587

_pg_getpalette

Classification: PC Graphics

Systems: DOS, QNX

588 Library Functions and Macros

_pg_getstyleset

Synopsis: #include <pgchart.h>voidFARpggetstyleset(unsignedshortFAR*style);
Description: Thepggetstyleset function retrieves the internal style-set of the presentation

graphics system. The style-set is a set of line styles used for drawing window borders and
grid-lines. The argument style is an array that will contain the style-set.

Returns: Thepggetstyleset function does not return a value.

See Also: pgdefaultchart,pginitchart,pgchart,pgchartpie,pgchartscatter,pgsetstyleset,pgresetstyleset

Library Functions and Macros 589

_pg_getstyleset

Example: #include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>#ifdefined(386)#defineFAR
#else#defineFARfar
#endif#defineNUMVALUES4charFAR*categories[NUMVALUES]={

"Jan", "Feb", "Mar", "Apr"
};floatvalues[NUMVALUES]={

20, 45, 30, 25
};

main()
{

chartenv env;
styleset style;setvideomode(VRES16COLOR);pginitchart();pgdefaultchart(&env,PGCOLUMNCHART,PGPLAINBARS);
strcpy(env.maintitle.title, "Column Chart");
/* turn on yaxis grid, and use style 2 */
env.yaxis.grid = 1;
env.yaxis.gridstyle = 2;
/* get default style-set and change entry 2 */pggetstyleset(&style);
style[2] = 0x8888;
/* use new style-set */pgsetstyleset(&style);pgchart(&env,categories,values,NUMVALUES);
/* reset style-set to default */pgresetstyleset();
getch();setvideomode(DEFAULTMODE);

}

590 Library Functions and Macros

_pg_getstyleset

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 591

_pg_hlabelchart

Synopsis: #include <pgchart.h>shortFARpghlabelchart(chartenvFAR*env,
short x, short y,
short color,charFAR*label);

Description: Thepghlabelchart function displays the text string label on the chart described by
the env chart structure. The string is displayed horizontally starting at the point (x,y),
relative to the upper left corner of the chart. The color specifies the palette color used to
display the string.

Returns: Thepghlabelchart function returns zero if successful; otherwise, a non-zero value is
returned.

See Also: pgdefaultchart,pginitchart,pgchart,pgchartpie,pgchartscatter,pgvlabelchart

592 Library Functions and Macros

_pg_hlabelchart

Example: #include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>#ifdefined(386)#defineFAR
#else#defineFARfar
#endif#defineNUMVALUES4charFAR*categories[NUMVALUES]={

"Jan", "Feb", "Mar", "Apr"
};floatvalues[NUMVALUES]={

20, 45, 30, 25
};

main()
{

chartenv env;setvideomode(VRES16COLOR);pginitchart();pgdefaultchart(&env,PGCOLUMNCHART,PGPLAINBARS);
strcpy(env.maintitle.title, "Column Chart");pgchart(&env,categories,values,NUMVALUES);pghlabelchart(&env,64,32,1,"Horizontallabel");pgvlabelchart(&env,48,32,1,"Verticallabel");
getch();setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 593

_pg_initchart

Synopsis: #include <pgchart.h>shortFARpginitchart(void);
Description: Thepginitchart function initializes the presentation graphics system. This includes

initializing the internal palette and style-set used when drawing charts. This function must
be called before any of the other presentation graphics functions.

The initialization of the presentation graphics system requires that a valid graphics mode has
been selected. For this reason thesetvideomode function must be called beforepginitchart is called. If a font has been selected (with thesetfont function), that
font will be used when text is displayed in a chart. Font selection should also be done before
initializing the presentation graphics system.

Returns: Thepginitchart function returns zero if successful; otherwise, a non-zero value is
returned.

See Also: pgdefaultchart,pgchart,pgchartpie,pgchartscatter,setvideomode,setfont,registerfonts

594 Library Functions and Macros

_pg_initchart

Example: #include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>#ifdefined(386)#defineFAR
#else#defineFARfar
#endif#defineNUMVALUES4charFAR*categories[NUMVALUES]={

"Jan", "Feb", "Mar", "Apr"
};floatvalues[NUMVALUES]={

20, 45, 30, 25
};

main()
{

chartenv env;setvideomode(VRES16COLOR);pginitchart();pgdefaultchart(&env,PGCOLUMNCHART,PGPLAINBARS);
strcpy(env.maintitle.title, "Column Chart");pgchart(&env,categories,values,NUMVALUES);
getch();setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 595

_pg_resetpalette

Synopsis: #include <pgchart.h>shortFARpgresetpalette(void);
Description: Thepgresetpalette function resets the internal palette of the presentation graphics

system to default values. The palette controls the colors, line styles, fill patterns and plot
characters used to display each series of data in a chart. The default palette chosen is
dependent on the current video mode.

Returns: Thepgresetpalette function returns zero if successful; otherwise, a non-zero value
is returned.

See Also: pgdefaultchart,pginitchart,pgchart,pgchartpie,pgchartscatter,pggetpalette,pgsetpalette

596 Library Functions and Macros

_pg_resetpalette

Example: #include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>#ifdefined(386)#defineFAR
#else#defineFARfar
#endif#defineNUMVALUES4charFAR*categories[NUMVALUES]={

"Jan", "Feb", "Mar", "Apr"
};floatvalues[NUMVALUES]={

20, 45, 30, 25
};

char bricks[8] = {
0xff, 0x80, 0x80, 0x80, 0xff, 0x08, 0x08, 0x08

};

main()
{

chartenv env;
palettetype pal;setvideomode(VRES16COLOR);pginitchart();pgdefaultchart(&env,PGCOLUMNCHART,PGPLAINBARS);
strcpy(env.maintitle.title, "Column Chart");
/* get default palette and change 1st entry */pggetpalette(&pal);
pal[1].color = 12;
memcpy(pal[1].fill, bricks, 8);
/* use new palette */pgsetpalette(&pal);pgchart(&env,categories,values,NUMVALUES);
/* reset palette to default */pgresetpalette();
getch();setvideomode(DEFAULTMODE);

}

Library Functions and Macros 597

_pg_resetpalette

Classification: PC Graphics

Systems: DOS, QNX

598 Library Functions and Macros

_pg_resetstyleset

Synopsis: #include <pgchart.h>voidFARpgresetstyleset(void);
Description: Thepgresetstyleset function resets the internal style-set of the presentation

graphics system to default values. The style-set is a set of line styles used for drawing
window borders and grid-lines.

Returns: Thepgresetstyleset function does not return a value.

See Also: pgdefaultchart,pginitchart,pgchart,pgchartpie,pgchartscatter,pggetstyleset,pgsetstyleset

Library Functions and Macros 599

_pg_resetstyleset

Example: #include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>#ifdefined(386)#defineFAR
#else#defineFARfar
#endif#defineNUMVALUES4charFAR*categories[NUMVALUES]={

"Jan", "Feb", "Mar", "Apr"
};floatvalues[NUMVALUES]={

20, 45, 30, 25
};

main()
{

chartenv env;
styleset style;setvideomode(VRES16COLOR);pginitchart();pgdefaultchart(&env,PGCOLUMNCHART,PGPLAINBARS);
strcpy(env.maintitle.title, "Column Chart");
/* turn on yaxis grid, and use style 2 */
env.yaxis.grid = 1;
env.yaxis.gridstyle = 2;
/* get default style-set and change entry 2 */pggetstyleset(&style);
style[2] = 0x8888;
/* use new style-set */pgsetstyleset(&style);pgchart(&env,categories,values,NUMVALUES);
/* reset style-set to default */pgresetstyleset();
getch();setvideomode(DEFAULTMODE);

}

600 Library Functions and Macros

_pg_resetstyleset

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 601

_pg_setchardef

Synopsis: #include <pgchart.h>shortFARpgsetchardef(shortch,unsignedcharFAR*def);
Description: Thepgsetchardef function sets the current bit-map definition for the character ch.

The bit-map is contained in the array def. The current font must be an 8-by-8 bit-mapped
font.

Returns: Thepgsetchardef function returns zero if successful; otherwise, a non-zero value is
returned.

See Also: pgdefaultchart,pginitchart,pgchart,pgchartpie,pgchartscatter,pggetchardef

602 Library Functions and Macros

_pg_setchardef

Example: #include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>#defineNUMVALUES4floatx[NUMVALUES]={

5, 25, 45, 65
};floaty[NUMVALUES]={

5, 45, 25, 65
};

char diamond[8] = {
0x10, 0x28, 0x44, 0x82, 0x44, 0x28, 0x10, 0x00

};

main()
{

chartenv env;charolddef[8];setvideomode(VRES16COLOR);pginitchart();pgdefaultchart(&env,PGSCATTERCHART,PGPOINTANDLINE);
strcpy(env.maintitle.title, "Scatter Chart");
/* change asterisk character to diamond */pggetchardef(’*’,olddef);pgsetchardef(’*’,diamond);pgchartscatter(&env,x,y,NUMVALUES);pgsetchardef(’*’,olddef);
getch();setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 603

_pg_setpalette

Synopsis: #include <pgchart.h>shortFARpgsetpalette(paletteentryFAR*pal);
Description: Thepgsetpalette function sets the internal palette of the presentation graphics

system. The palette controls the colors, line styles, fill patterns and plot characters used to
display each series of data in a chart.

The argument pal is an array of palette structures containing the new palette. Each element
of the palette is a structure containing the following fields:

color color used to display series

style line style used for line and scatter charts

fill fill pattern used to fill interior of bar and pie sections

plotchar character plotted on line and scatter charts

Returns: Thepgsetpalette function returns zero if successful; otherwise, a non-zero value is
returned.

See Also: pgdefaultchart,pginitchart,pgchart,pgchartpie,pgchartscatter,pggetpalette,pgresetpalette

604 Library Functions and Macros

_pg_setpalette

Example: #include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>#ifdefined(386)#defineFAR
#else#defineFARfar
#endif#defineNUMVALUES4charFAR*categories[NUMVALUES]={

"Jan", "Feb", "Mar", "Apr"
};floatvalues[NUMVALUES]={

20, 45, 30, 25
};

char bricks[8] = {
0xff, 0x80, 0x80, 0x80, 0xff, 0x08, 0x08, 0x08

};

main()
{

chartenv env;
palettetype pal;setvideomode(VRES16COLOR);pginitchart();pgdefaultchart(&env,PGCOLUMNCHART,PGPLAINBARS);
strcpy(env.maintitle.title, "Column Chart");
/* get default palette and change 1st entry */pggetpalette(&pal);
pal[1].color = 12;
memcpy(pal[1].fill, bricks, 8);
/* use new palette */pgsetpalette(&pal);pgchart(&env,categories,values,NUMVALUES);
/* reset palette to default */pgresetpalette();
getch();setvideomode(DEFAULTMODE);

}

Library Functions and Macros 605

_pg_setpalette

Classification: PC Graphics

Systems: DOS, QNX

606 Library Functions and Macros

_pg_setstyleset

Synopsis: #include <pgchart.h>voidFARpgsetstyleset(unsignedshortFAR*style);
Description: Thepgsetstyleset function retrieves the internal style-set of the presentation

graphics system. The style-set is a set of line styles used for drawing window borders and
grid-lines. The argument style is an array containing the new style-set.

Returns: Thepgsetstyleset function does not return a value.

See Also: pgdefaultchart,pginitchart,pgchart,pgchartpie,pgchartscatter,pggetstyleset,pgresetstyleset

Library Functions and Macros 607

_pg_setstyleset

Example: #include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>#ifdefined(386)#defineFAR
#else#defineFARfar
#endif#defineNUMVALUES4charFAR*categories[NUMVALUES]={

"Jan", "Feb", "Mar", "Apr"
};floatvalues[NUMVALUES]={

20, 45, 30, 25
};

main()
{

chartenv env;
styleset style;setvideomode(VRES16COLOR);pginitchart();pgdefaultchart(&env,PGCOLUMNCHART,PGPLAINBARS);
strcpy(env.maintitle.title, "Column Chart");
/* turn on yaxis grid, and use style 2 */
env.yaxis.grid = 1;
env.yaxis.gridstyle = 2;
/* get default style-set and change entry 2 */pggetstyleset(&style);
style[2] = 0x8888;
/* use new style-set */pgsetstyleset(&style);pgchart(&env,categories,values,NUMVALUES);
/* reset style-set to default */pgresetstyleset();
getch();setvideomode(DEFAULTMODE);

}

608 Library Functions and Macros

_pg_setstyleset

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 609

_pg_vlabelchart

Synopsis: #include <pgchart.h>shortFARpgvlabelchart(chartenvFAR*env,
short x, short y,
short color,charFAR*label);

Description: Thepgvlabelchart function displays the text string label on the chart described by
the env chart structure. The string is displayed vertically starting at the point (x,y),
relative to the upper left corner of the chart. The color specifies the palette color used to
display the string.

Returns: Thepgvlabelchart function returns zero if successful; otherwise, a non-zero value is
returned.

See Also: pgdefaultchart,pginitchart,pgchart,pgchartpie,pgchartscatter,pghlabelchart

610 Library Functions and Macros

_pg_vlabelchart

Example: #include <graph.h>
#include <pgchart.h>
#include <string.h>
#include <conio.h>#ifdefined(386)#defineFAR
#else#defineFARfar
#endif#defineNUMVALUES4charFAR*categories[NUMVALUES]={

"Jan", "Feb", "Mar", "Apr"
};floatvalues[NUMVALUES]={

20, 45, 30, 25
};

main()
{

chartenv env;setvideomode(VRES16COLOR);pginitchart();pgdefaultchart(&env,PGCOLUMNCHART,PGPLAINBARS);
strcpy(env.maintitle.title, "Column Chart");pgchart(&env,categories,values,NUMVALUES);pghlabelchart(&env,64,32,1,"Horizontallabel");pgvlabelchart(&env,48,32,1,"Verticallabel");
getch();setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 611

_pie Functions

Synopsis: #include <graph.h>shortFARpie(shortfill,shortx1,shorty1,
short x2, short y2,
short x3, short y3,
short x4, short y4);shortFARpiew(shortfill,doublex1,doubley1,

double x2, double y2,
double x3, double y3,
double x4, double y4);shortFARpiewxy(shortfill,structwxycoordFAR*p1,structwxycoordFAR*p2,structwxycoordFAR*p3,structwxycoordFAR*p4);

Description: Thepie functions draw pie-shaped wedges. Thepie function uses the view coordinate
system. Thepiew andpiewxy functions use the window coordinate system.

The pie wedges are drawn by drawing an elliptical arc (in the way described for thearc
functions) and then joining the center of the rectangle that contains the ellipse to the two
endpoints of the arc.

The elliptical arc is drawn with its center at the center of the rectangle established by the
points (x1,y1) and (x2,y2). The arc is a segment of the ellipse drawn within this
bounding rectangle. The arc starts at the point on this ellipse that intersects the vector from
the centre of the ellipse to the point (x3,y3). The arc ends at the point on this ellipse that
intersects the vector from the centre of the ellipse to the point (x4,y4). The arc is drawn
in a counter-clockwise direction with the current plot action using the current color and the
current line style.

The following picture illustrates the way in which the bounding rectangle and the vectors
specifying the start and end points are defined.

612 Library Functions and Macros

_pie Functions

When the coordinates (x1,y1) and (x2,y2) establish a line or a point (this happens
when one or more of the x-coordinates or y-coordinates are equal), nothing is drawn.

The argument fill determines whether the figure is filled in or has only its outline drawn. The
argument can have one of two values:

_GFILLINTERIOR fill the interior by writing pixels with the current plot action using
the current color and the current fill mask

_GBORDER leave the interior unchanged; draw the outline of the figure with
the current plot action using the current color and line style

Returns: Thepie functions return a non-zero value when the figure was successfully drawn;
otherwise, zero is returned.

See Also: arc,ellipse,setcolor,setfillmask,setlinestyle,setplotaction
Library Functions and Macros 613

_pie Functions

Example: #include <conio.h>
#include <graph.h>

main()
{ setvideomode(VRES16COLOR);pie(GBORDER,120,90,520,390,

140, 20, 190, 460);
getch();setvideomode(DEFAULTMODE);

}

produces the following:

Classification: PC Graphics

Systems: pie�DOS,QNXpiew�DOS,QNXpiewxy�DOS,QNX
614 Library Functions and Macros

_polygon Functions

Synopsis: #include <graph.h>shortFARpolygon(shortfill,shortnumpts,structxycoordFAR*points);shortFARpolygonw(shortfill,shortnumpts,doubleFAR*points);shortFARpolygonwxy(shortfill,shortnumpts,structwxycoordFAR*points);
Description: Thepolygon functions draw polygons. Thepolygon function uses the view

coordinate system. Thepolygonw andpolygonwxy functions use the window
coordinate system.

The polygon is defined as containing numpts points whose coordinates are given in the array
points.

The argument fill determines whether the polygon is filled in or has only its outline drawn.
The argument can have one of two values:

_GFILLINTERIOR fill the interior by writing pixels with the current plot action using
the current color and the current fill mask

_GBORDER leave the interior unchanged; draw the outline of the figure with
the current plot action using the current color and line style

Returns: Thepolygon functions return a non-zero value when the polygon was successfully
drawn; otherwise, zero is returned.

See Also: setcolor,setfillmask,setlinestyle,setplotaction

Library Functions and Macros 615

_polygon Functions

Example: #include <conio.h>
#include <graph.h>

struct xycoord points[5] = {
319, 140, 224, 209, 261, 320,
378, 320, 415, 209

};

main()
{ setvideomode(VRES16COLOR);polygon(GBORDER,5,points);

getch();setvideomode(DEFAULTMODE);
}

produces the following:

Classification: PC Graphics

Systems: polygon�DOS,QNXpolygonw�DOS,QNX
616 Library Functions and Macros

_polygon Functionspolygonwxy�DOS,QNX

Library Functions and Macros 617

pow

Synopsis: #include <math.h>
double pow(double x, double y);

Description: The pow function computes x raised to the power y. A domain error occurs if x is zero and y
is less than or equal to 0, or if x is negative and y is not an integer. A range error may occur.

Returns: The pow function returns the value of x raised to the power y. When the argument is outside
the permissible range, the matherr function is called. Unless the default matherr
function is replaced, it will set the global variable errno to EDOM, and print a "DOMAIN
error" diagnostic message using the stderr stream.

See Also: exp, log, sqrt

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", pow(1.5, 2.5));
}

produces the following:

2.755676

Classification: ANSI

Systems: Math

618 Library Functions and Macros

printf, wprintf

Synopsis: #include <stdio.h>
int printf(const char *format, ...);
#include <wchar.h>intwprintf(constwchart*format,...);

Safer C: The Safer C Library extension provides theprintfs function which is a safer alternative
to printf. This newerprintfs function is recommended to be used instead of the
traditional "unsafe" printf function.

Description: The printf function writes output to the file designated by stdout under control of the
argument format. The format string is described below.

The wprintf function is identical to printf except that it accepts a wide-character string
argument for format.

Returns: The printf function returns the number of characters written, or a negative value if an
output error occurred.

The wprintf function returns the number of wide characters written, or a negative value if
an output error occurred. When an error has occurred, errno contains a value indicating
the type of error that has been detected.

See Also:
bprintf, cprintf, fprintf, sprintf,vbprintf, vcprintf, vfprintf,

vprintf, vsprintf

Example: #include <stdio.h>

void main(void)
{

char *weekday, *month;

weekday = "Saturday";
month = "April";
printf("%s, %s %d, %d\n",

weekday, month, 18, 1987);
printf("f1 = %8.4f f2 = %10.2E x = %#08x i = %d\n",

23.45, 3141.5926, 0x1db, -1);
}

produces the following:

Saturday, April 18, 1987
f1 = 23.4500 f2 = 3.14E+003 x = 0x0001db i = -1

Library Functions and Macros 619

printf, wprintf

Format Control String: The format control string consists of ordinary characters, that are written exactly
as they occur in the format string, and conversion specifiers, that cause argument values to be
written as they are encountered during the processing of the format string. An ordinary
character in the format string is any character, other than a percent character (%), that is not
part of a conversion specifier. A conversion specifier is a sequence of characters in the
format string that begins with a percent character (%) and is followed, in sequence, by the
following:

• zero or more format control flags that can modify the final effect of the format
directive;

• an optional decimal integer, or an asterisk character (’*’), that specifies a minimum
field width to be reserved for the formatted item;

• an optional precision specification in the form of a period character (.), followed by an
optional decimal integer or an asterisk character (*);

• an optional type length specification: one of "hh", "h", "l", "ll", "j", "z", "t", "L",
"I64", "w", "N" or "W"; and

• a character that specifies the type of conversion to be performed: one of the
characters "bcCdeEfFgGinopsSuxX".

The valid format control flags are:

"-" the formatted item is left-justified within the field; normally, items are right-justified

"+" a signed, positive object will always start with a plus character (+); normally, only
negative items begin with a sign

" " a signed, positive object will always start with a space character; if both "+" and " " are
specified, "+" overrides " "

"#" an alternate conversion form is used:

• for "b" (unsigned binary) and "o" (unsigned octal) conversions, the precision is
incremented, if necessary, so that the first digit is "0".

• for "x" or "X" (unsigned hexadecimal) conversions, a non-zero value is
prepended with "0x" or "0X" respectively.

• for "e", "E", "f", "F", "g" or "G" (any floating-point) conversions, the result
always contains a decimal-point character, even if no digits follow it; normally, a
decimal-point character appears in the result only if there is a digit to follow it.

620 Library Functions and Macros

printf, wprintf

• in addition to the preceding, for "g" or "G" conversions, trailing zeros are not
removed from the result.

If no field width is specified, or if the value that is given is less than the number of characters
in the converted value (subject to any precision value), a field of sufficient width to contain
the converted value is used. If the converted value has fewer characters than are specified by
the field width, the value is padded on the left (or right, subject to the left-justification flag)
with spaces or zero characters ("0"). If the field width begins with "0" and no precision is
specified, the value is padded with zeros; otherwise the value is padded with spaces. If the
field width is "*", a value of type int from the argument list is used (before a precision
argument or a conversion argument) as the minimum field width. A negative field width
value is interpreted as a left-justification flag, followed by a positive field width.

As with the field width specifier, a precision specifier of "*" causes a value of type int from
the argument list to be used as the precision specifier. If no precision value is given, a
precision of 0 is used. The precision value affects the following conversions:

• For "b", "d", "i", "o", "u", "x" and "X" (integer) conversions, the precision specifies
the minimum number of digits to appear.

• For "e", "E", "f" and "F" (fixed-precision, floating-point) conversions, the precision
specifies the number of digits to appear after the decimal-point character.

• For "g" and "G" (variable-precision, floating-point) conversions, the precision
specifies the maximum number of significant digits to appear.

• For "s" or "S" (string) conversions, the precision specifies the maximum number of
characters to appear.

A type length specifier affects the conversion as follows:

• "hh" causes a "b", "d", "i", "o", "u", "x" or "X" (integer) format conversion to treat the
argument as a signed char or unsigned char argument. Note that, although
the argument may have been promoted to an int as part of the function call, the value
is converted to the smaller type before it is formatted.

• "hh" causes an "n" (converted length assignment) operation to assign the converted
length to an object of type signed char.

• "h" causes a "b", "d", "i", "o", "u", "x" or "X" (integer) format conversion to treat the
argument as a short int or unsigned short int argument. Note that,
although the argument may have been promoted to an int as part of the function call,
the value is converted to the smaller type before it is formatted.

Library Functions and Macros 621

printf, wprintf

• "h" causes an "f" format conversion to interpret a long argument as a fixed-point
number consisting of a 16-bit signed integer part and a 16-bit unsigned fractional part.
The integer part is in the high 16 bits and the fractional part is in the low 16 bits.

struct fixpt {

unsigned short fraction; /* Intel architecture! */
signed short integral;

};

struct fixpt foo1 =
{ 0x8000, 1234 }; /* represents 1234.5 */

struct fixpt foo2 =
{ 0x8000, -1 }; /* represents -0.5 (-1+.5) */

The value is formatted with the same rules as for floating-point values. This is a
Watcom extension.

• "h" causes an "n" (converted length assignment) operation to assign the converted
length to an object of type short int.

• "h" causes an "s" operation to treat the argument string as an ASCII character string
composed of 8-bit characters.

For printf and related byte input/output functions, this specifier is redundant. For
wprintf and related wide character input/output functions, this specifier is required
if the argument string is to be treated as an 8-bit ASCII character string; otherwise it
will be treated as a wide character string.

printf("%s%d", "Num=", 12345);
wprintf(L"%hs%d", "Num=", 12345);

• "l" causes a "b", "d", "i", "o", "u", "x" or "X" (integer) conversion to process a long
int or unsigned long int argument.

• "l" causes an "n" (converted length assignment) operation to assign the converted
length to an object of type long int.

• "l" or "w" cause an "s" operation to treat the argument string as a wide character string
(a string composed of characters of typewchart).
For printf and related byte input/output functions, this specifier is required if the
argument string is to be treated as a wide character string; otherwise it will be treated
as an 8-bit ASCII character string. For wprintf and related wide character
input/output functions, this specifier is redundant.

622 Library Functions and Macros

printf, wprintf

printf("%ls%d", L"Num=", 12345);
wprintf(L"%s%d", L"Num=", 12345);

• "ll" causes a "b", "d", "i", "o", "u", "x" or "X" (integer) conversion to process a long
long or unsigned long long argument (e.g., %lld).

• "ll" causes an "n" (converted length assignment) operation to assign the converted
length to an object of type long long int.

• "j" causes a "b", "d", "i", "o", "u", "x" or "X" (integer) conversion to process anintmaxt oruintmaxt argument.

• "j" causes an "n" (converted length assignment) operation to assign the converted
length to an object of type
intmaxt.

• "z" causes a "b", "d", "i", "o", "u", "x" or "X" (integer) conversion to process asizet or the corresponding signed integer type argument.

• "z" causes an "n" (converted length assignment) operation to assign the converted
length to an object of signed integer type corresponding tosizet.

• "t" causes a "b", "d", "i", "o", "u", "x" or "X" (integer) conversion to process aptrdifft or the corresponding unsigned integer type argument.

• "t" causes an "n" (converted length assignment) operation to assign the converted
length to an object of typeptrdifft.

• "I64" causes a "b", "d", "i", "o", "u", "x" or "X" (integer) conversion to process anint64 orunsignedint64 argument (e.g., %I64d).

• "L" causes an "e", "E", "f", "F", "g", "G" (double) conversion to process a long
double argument.

• "W" causes the pointer associated with "n", "p", "s" conversions to be treated as a far
pointer.

• "N" causes the pointer associated with "n", "p", "s" conversions to be treated as a near
pointer.

The valid conversion type specifiers are:

Library Functions and Macros 623

printf, wprintf

b An argument of type int is converted to an unsigned binary notation and written to the
output stream. The default precision is 1, but if more digits are required, leading zeros
are added.

c An argument of type int is converted to a value of type char and the corresponding
ASCII character code is written to the output stream.

C An argument of typewchart is converted to a multibyte character and written to the
output stream.

d, i An argument of type int is converted to a signed decimal notation and written to the
output stream. The default precision is 1, but if more digits are required, leading zeros
are added.

e, E An argument of type double is converted to a decimal notation in the form
[-]d.ddde[+|-]ddd similar to FORTRAN exponential (E) notation. The leading
sign appears (subject to the format control flags) only if the argument is negative. If the
argument is non-zero, the digit before the decimal-point character is non-zero. The
precision is used as the number of digits following the decimal-point character. If the
precision is not specified, a default precision of six is used. If the precision is 0, the
decimal-point character is suppressed. The value is rounded to the appropriate number
of digits. For "E" conversions, the exponent begins with the character "E" rather than
"e". The exponent sign and a three-digit number (that indicates the power of ten by
which the decimal fraction is multiplied) are always produced.

f, F An argument of type double is converted to a decimal notation in the form
[-]ddd.ddd similar to FORTRAN fixed-point (F) notation. The leading sign
appears (subject to the format control flags) only if the argument is negative. The
precision is used as the number of digits following the decimal-point character. If the
precision is not specified, a default precision of six is used. If the precision is 0, the
decimal-point character is suppressed, otherwise, at least one digit is produced before
the decimal-point character. The value is rounded to the appropriate number of digits.

g, G An argument of type double is converted using either the "f" or "e" (or "F" or "E", for
a "G" conversion) style of conversion depending on the value of the argument. In
either case, the precision specifies the number of significant digits that are contained in
the result. "e" style conversion is used only if the exponent from such a conversion
would be less than -4 or greater than the precision. Trailing zeros are removed from the
result and a decimal-point character only appears if it is followed by a digit.

n The number of characters that have been written to the output stream is assigned to the
integer pointed to by the argument. No output is produced.

624 Library Functions and Macros

printf, wprintf

o An argument of type int is converted to an unsigned octal notation and written to the
output stream. The default precision is 1, but if more digits are required, leading zeros
are added.

p, P An argument of type void * is converted to a value of type int and the value is
formatted as for a hexadecimal ("x") conversion.

s Characters from the string specified by an argument of type char * orwchart*,
up to, but not including the terminating null character (’\0’), are written to the output
stream. If a precision is specified, no more than that many characters (bytes) are
written (e.g., %.7s)

For printf, this specifier refers to an ASCII character string unless the "l" or "w"
modifiers are used to indicate a wide character string.

For wprintf, this specifier refers to a wide character string unless the "h" modifier is
used to indicate an ASCII character string.

S Characters from the string specified by an argument of typewchart*, up to, but
not including the terminating null wide character (L’\0’), are converted to multibyte
characters and written to the output stream. If a precision is specified, no more than
that many characters (bytes) are written (e.g., %.7S)

u An argument of type int is converted to an unsigned decimal notation and written to
the output stream. The default precision is 1, but if more digits are required, leading
zeros are added.

x, X An argument of type int is converted to an unsigned hexadecimal notation and written
to the output stream. The default precision is 1, but if more digits are required, leading
zeros are added. Hexadecimal notation uses the digits "0" through "9" and the
characters "a" through "f" or "A" through "F" for "x" or "X" conversions respectively,
as the hexadecimal digits. Subject to the alternate-form control flag, "0x" or "0X" is
prepended to the output.

Any other conversion type specifier character, including another percent character (%), is
written to the output stream with no special interpretation.

The arguments must correspond with the conversion type specifiers, left to right in the string;
otherwise, indeterminate results will occur.

If the value corresponding to a floating-point specifier is infinity, or not a number (NaN),
then the output will be "inf" or "-inf" for infinity, and "nan" or "-nan" for NaN’s. If the
conversion specifier is an uppercase character (ie. "E", "F", or "G"), the output will be
uppercase as well ("INF", "NAN"), otherwise the output will be lowercase as noted above.

Library Functions and Macros 625

printf, wprintf

The pointer size specification ("N" or "W") is only effective on platforms that use a
segmented memory model, although it is always recognized.

For example, a specifier of the form "%8.*f" will define a field to be at least 8 characters
wide, and will get the next argument for the precision to be used in the conversion.

Classification: ANSI (except for N, W pointer size modifiers and b, I64 specifiers)

Systems: printf - All, Netware
wprintf - All

626 Library Functions and Macros

printf_s, wprintf_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdio.h>intprintfs(constchar*restrictformat,...);
#include <wchar.h>intwprintfs(constwchart*restrictformat,...);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked andprintfs will return a non-zero value to
indicate an error, or the runtime-constraint handler aborts the program.

The format argument shall not be a null pointer. The %n specifier (modified or not by flags,
field width, or precision) shall not appear in the string pointed to by format. Any argument
toprintfs corresponding to a %s specifier shall not be a null pointer.

If there is a runtime-constraint violation, theprintfs function does not attempt to
produce further output, and it is unspecified to what extentprintfs produced output
before discovering the runtime-constraint violation.

Description: Theprintfs function is equivalent to the printf function except for the explicit
runtime-constraints listed above.

Thewprintfs function is identical toprintfs except that it accepts a wide-character
string argument for format.

Returns: Theprintfs function returns the number of characters written, or a negative value if an
output error or runtime-constraint violation occurred.

Thewprintfs function returns the number of wide characters written, or a negative value
if an output error or runtime-constraint violation occurred.

See Also:
bprintf, cprintf, fprintf, printf, sprintf,vbprintf, vcprintf,

vfprintf, vprintf, vsprintf

Example:
#defineSTDCWANTLIBEXT11
#include <stdio.h>

void main(void)
{

char *weekday, *month;

Library Functions and Macros 627

printf_s, wprintf_s

weekday = "Saturday";
month = "April";printfs("%s,%s%d,%d\n",

weekday, month, 18, 1987);printfs("f1=%8.4ff2=%10.2Ex=%#08xi=%d\n",
23.45, 3141.5926, 0x1db, -1);

}

produces the following:

Saturday, April 18, 1987
f1 = 23.4500 f2 = 3.14E+003 x = 0x0001db i = -1

Classification: printf_s is TR 24731, wprintf_s is TR 24731

Systems:printfs�All,Netwarewprintfs�All

628 Library Functions and Macros

putc, putwc

Synopsis: #include <stdio.h>
int putc(int c, FILE *fp);
#include <stdio.h>
#include <wchar.h>winttputwc(winttc,FILE*fp);

Description: The putc function is equivalent to fputc, except it may be implemented as a macro. The
putc function writes the character specified by the argument c to the output stream
designated by fp.

The putwc function is identical to putc except that it converts the wide character specified
by c to a multibyte character and writes it to the output stream.

Returns: The putc function returns the character written or, if a write error occurs, the error indicator
is set and putc returns EOF.

The putwc function returns the wide character written or, if a write error occurs, the error
indicator is set and putwc returns WEOF.

When an error has occurred, errno contains a value indicating the type of error that has
been detected.

See Also: fopen, fputc, fputchar, fputs, putchar, puts, ferror

Example: #include <stdio.h>

void main()
{

FILE *fp;
int c;

fp = fopen("file", "r");
if(fp != NULL) {

while((c = fgetc(fp)) != EOF)
putc(c, stdout);

fclose(fp);
}

}

Classification: putc is ANSI, putwc is ANSI

Systems: putc - All, Netware
putwc - All

Library Functions and Macros 629

putch

Synopsis: #include <conio.h>
int putch(int c);

Description: The putch function writes the character specified by the argument c to the console.

Returns: The putch function returns the character written.

See Also: getch, getche, kbhit, ungetch

Example: #include <conio.h>
#include <stdio.h>

void main()
{

FILE *fp;
int c;

fp = fopen("file", "r");
if (fp != NULL) {

while((c = fgetc(fp)) != EOF)
putch(c);

}
fclose(fp);

}

Classification: WATCOM

Systems: All, Netware

630 Library Functions and Macros

putchar, putwchar

Synopsis: #include <stdio.h>
int putchar(int c);
#include <wchar.h>winttputwchar(winttc);

Description: The putchar function writes the character specified by the argument c to the output stream
stdout.

The function is equivalent to

fputc(c, stdout);

The putwchar function is identical to putchar except that it converts the wide character
specified by c to a multibyte character and writes it to the output stream.

Returns: The putchar function returns the character written or, if a write error occurs, the error
indicator is set and putchar returns EOF.

The putwchar function returns the wide character written or, if a write error occurs, the
error indicator is set and putwchar returns WEOF.

When an error has occurred, errno contains a value indicating the type of error that has
been detected.

See Also: fopen, fputc, fputchar, fputs, putc, puts, ferror

Example: #include <stdio.h>

void main()
{

FILE *fp;
int c;

fp = fopen("file", "r");
c = fgetc(fp);
while(c != EOF) {

putchar(c);
c = fgetc(fp);

}
fclose(fp);

}

Classification: putchar is ANSI, putwchar is ANSI

Library Functions and Macros 631

putchar, putwchar

Systems: putchar - All, Netware
putwchar - All

632 Library Functions and Macros

putenv, _putenv, _wputenv

Synopsis: #include <process.h>intputenv(constchar*envname);intputenv(constchar*envname);intwputenv(constwchart*envname);
Description: The environment list consists of a number of environment names, each of which has a value

associated with it. Entries can be added to the environment list with the QNX export
command or with the putenv function. All entries in the environment list can be displayed
by using the QNX export command with no arguments. A program can obtain the value
for an environment variable by using the getenv function.

When the value of env_name has the format
 envname=value

an environment name and its value is added to the environment list. When the value of
env_name has the format

 envname=
the environment name and value is removed from the environment list.

The matching is case-sensitive; all lowercase letters are treated as different from uppercase
letters.

The space into which environment names and their values are placed is limited.
Consequently, the putenv function can fail when there is insufficient space remaining to
store an additional value.

Theputenv function is identical to putenv. Useputenv for ANSI naming
conventions.

Thewputenv function is a wide-character version of putenv the env_name argument towputenv is a wide-character string.

putenv andwputenv affect only the environment that is local to the current process; you
cannot use them to modify the command-level environment. That is, these functions operate
only on data structures accessible to the run-time library and not on the environment
"segment" created for a process by the operating system. When the current process
terminates, the environment reverts to the level of the calling process (in most cases, the
operating-system level). However, the modified environment can be passed to any new
processes created by _spawn, _exec, or system, and these new processes get any new items
added by putenv andwputenv.

Library Functions and Macros 633

putenv, _putenv, _wputenv

With regard to environment entries, observe the following cautions:

• Do not change an environment entry directly; instead, use putenv orwputenv to
change it. To modify the return value of putenv orwputenv without affecting the
environment table, usestrdup or strcpy to make a copy of the string.

• If the argument env_name is not a literal string, you should duplicate the string, since
putenv does not copy the value; for example,

 putenv(strdup(buffer));
• Never free a pointer to an environment entry, because the environment variable will
then point to freed space. A similar problem can occur if you pass putenv orwputenv a pointer to a local variable, then exit the function in which the variable is
declared.

To assign a string to a variable and place it in the environment list:

% export INCLUDE=/usr/include

To see what variables are in the environment list, and their current assignments:

% export
SHELL=ksh
TERM=qnx
LOGNAME=fred
PATH=:/bin:/usr/bin
HOME=/home/fred
INCLUDE=/usr/include
LIB=/usr/lib
%

Returns: The putenv function returns zero when it is successfully executed and returns -1 when it
fails.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

ENOMEM Not enough memory to allocate a new environment string.

See Also: clearenv, getenv, setenv

634 Library Functions and Macros

putenv, _putenv, _wputenv

Example: The following gets the string currently assigned to INCLUDE and displays it, assigns a new
value to it, gets and displays it, and then removes the environment name and value.

#include <stdio.h>
#include <stdlib.h>

void main()
{

char *path;
path = getenv("INCLUDE");
if(path != NULL)

printf("INCLUDE=%s\n", path);
if(putenv("INCLUDE=//5/usr/include") != 0)

printf("putenv failed");
path = getenv("INCLUDE");
if(path != NULL)

printf("INCLUDE=%s\n", path);
if(putenv("INCLUDE=") != 0)

printf("putenv failed");
}

produces the following:

INCLUDE=/usr/include
INCLUDE=//5/usr/include

Classification: putenv is POSIX 1003.1, _putenv is not POSIX, _wputenv is not POSIX

Systems: putenv - Allputenv�Allwputenv�All

Library Functions and Macros 635

_putimage Functions

Synopsis: #include <graph.h>voidFARputimage(shortx,shorty,charHUGE*image,shortmode);voidFARputimagew(doublex,doubley,charHUGE*image,shortmode);
Description: Theputimage functions display the screen image indicated by the argument image. Theputimage function uses the view coordinate system. Theputimagew function uses

the window coordinate system.

The image is displayed upon the screen with its top left corner located at the point with
coordinates (x,y). The image was previously saved using thegetimage functions.
The image is displayed in a rectangle whose size is the size of the rectangular image saved by
thegetimage functions.

The image can be displayed in a number of ways, depending upon the value of the mode
argument. This argument can have the following values:

_GPSET replace the rectangle on the screen by the saved image

_GPRESET replace the rectangle on the screen with the pixel values of the
saved image inverted; this produces a negative image

_GAND produce a new image on the screen by ANDing together the pixel
values from the screen with those from the saved image

_GOR produce a new image on the screen by ORing together the pixel
values from the screen with those from the saved image

_GXOR produce a new image on the screen by exclusive ORing together
the pixel values from the screen with those from the saved image;
the original screen is restored by two successive calls to theputimage function with this value, providing an efficient
method to produce animated effects

Returns: Theputimage functions do not return a value.

See Also: getimage,imagesize
636 Library Functions and Macros

_putimage Functions

Example: #include <conio.h>
#include <graph.h>
#include <malloc.h>

main()
{

char *buf;
int y;setvideomode(VRES16COLOR);ellipse(GFILLINTERIOR,100,100,200,200);
buf = (char*) malloc(imagesize(100,100,201,201));
if(buf != NULL) {getimage(100,100,201,201,buf);putimage(260,200,buf,GPSET);putimage(420,100,buf,GPSET);

for(y = 100; y < 300;) {putimage(420,y,buf,GXOR);
y += 20;putimage(420,y,buf,GXOR);

}
free(buf);

}
getch();setvideomode(DEFAULTMODE);

}

Classification: _putimage is PC Graphics

Systems: putimage�DOS,QNXputimagew�DOS,QNX

Library Functions and Macros 637

puts, _putws

Synopsis: #include <stdio.h>
int puts(const char *buf);
#include <stdio.h>intputws(constwchart*bufs);

Description: The puts function writes the character string pointed to by buf to the output stream
designated by stdout, and appends a new-line character to the output. The terminating
null character is not written.

Theputws function is identical to puts except that it converts the wide character string
specified by buf to a multibyte character string and writes it to the output stream.

Returns: The puts function returns EOF if an error occurs; otherwise, it returns a non-negative value
(the amount written including the new-line character). Theputws function returns WEOF
if a write or encoding error occurs; otherwise, it returns a non-negative value (the amount
written including the new-line character). When an error has occurred, errno contains a
value indicating the type of error that has been detected.

See Also: fopen, fputc, fputchar, fputs, putc, putchar, ferror

Example: #include <stdio.h>

void main()
{

FILE *fp;
char buffer[80];

fp = freopen("file", "r", stdin);
while(gets(buffer) != NULL) {

puts(buffer);
}
fclose(fp);

}

Classification: puts is ANSI, _putws is not ANSI

Systems: puts - All, Netwareputws�All
638 Library Functions and Macros

_putw

Synopsis: #include <stdio.h>intputw(intbinint,FILE*fp);
Description: Theputw function writes a binary value of type int to the current position of the stream fp.putw does not affect the alignment of items in the stream, nor does it assume any special

alignment.putw is provided primarily for compatibility with previous libraries. Portability problems
may occur withputw because the size of an int and the ordering of bytes within an int
differ across systems.

Returns: Theputw function returns the value written or, if a write error occurs, the error indicator is
set andputw returns EOF. Since EOF is a legitimate value to write to fp, use ferror to
verify that an error has occurred.

See Also: ferror, fopen, fputc, fputchar, fputs, putc, putchar, puts

Example: #include <stdio.h>

void main()
{

FILE *fp;
int c;

fp = fopen("file", "r");
if(fp != NULL) {while((c=getw(fp))!=EOF)putw(c,stdout);

fclose(fp);
}

}

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 639

_putw

640 Library Functions and Macros

Watcom C Library Reference
Volume 2

Watcom C Library Reference Volume 2

642

qsort

Synopsis: #include <stdlib.h>
void qsort(void *base,sizetnum,sizetwidth,

int (*compar) (const void *,
const void *));

Safer C: The Safer C Library extension provides theqsorts function which is a safer alternative to
qsort. This newerqsorts function is recommended to be used instead of the traditional
"unsafe" qsort function.

Description: The qsort function sorts an array of num elements, which is pointed to by base, using a
modified version of Sedgewick’s Quicksort algorithm. Each element in the array is width
bytes in size. The comparison function pointed to by compar is called with two arguments
that point to elements in the array. The comparison function shall return an integer less than,
equal to, or greater than zero if the first argument is less than, equal to, or greater than the
second argument.

The version of the Quicksort algorithm that is employed was proposed by Jon Louis Bentley
and M. Douglas McIlroy in the article "Engineering a sort function" published in Software --
Practice and Experience, 23(11):1249-1265, November 1993.

Returns: The qsort function returns no value.

See Also:qsorts, bsearch,
bsearchs

Example: #include <stdio.h>
#include <stdlib.h>
#include <string.h>

char *CharVect[] = { "last", "middle", "first" };

int compare(const void *op1, const void *op2)
{

const char **p1 = (const char **) op1;
const char **p2 = (const char **) op2;
return(strcmp(*p1, *p2));

}

 643

qsort

void main()
{

qsort(CharVect, sizeof(CharVect)/sizeof(char *),
sizeof(char *), compare);

printf("%s %s %s\n",
CharVect[0], CharVect[1], CharVect[2]);

}

produces the following:

first last middle

Classification: ANSI

Systems: All, Netware

644

qsort_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdlib.h>errnotqsorts(void*base,rsizetnmemb,rsizetsize,

int (*compar)(const void *x, const void *y, void *context
),

void *context);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked andqsorts will return a non-zero value to
indicate an error, or the runtime-constraint handler aborts the program.

Neither nmemb nor size shall be greater than
RSIZEMAX. If nmemb is not equal to zero,

then neither base nor compar shall be a null pointer. If there is a runtime-constraint
violation, theqsorts function does not sort the array.

Description: Theqsorts function sorts an array of nmemb objects, the initial element of which is
pointed to by base. The size of each object is specified by size. The contents of the array are
sorted into ascending order according to a comparison function pointed to by compar, which
is called with three arguments. The first two point to the objects being compared. The
function shall return an integer less than, equal to, or greater than zero if the first argument is
considered to be respectively less than, equal to, or greater than the second. The third
argument to the comparison function is the context argument passed toqsorts The sole
use of context byqsorts is to pass it to the comparison function. If two elements
compare as equal, their relative order in the resulting sorted array is unspecified.

Returns: Theqsorts function returns zero if there was no runtime-constraint violation. Otherwise,
a non-zero value is returned.

See Also: qsort, bsearch,
bsearchs

Example:
#defineSTDCWANTLIBEXT11
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char *CharVect[] = { "last", "middle", "first" };

 645

qsort_s

int compare(const void *op1, const void *op2, void *context)
{

const char **p1 = (const char **) op1;
const char **p2 = (const char **) op2;
return(strcmp(*p1, *p2));

}

void main()
{

void * context = NULL;qsorts(CharVect,sizeof(CharVect)/sizeof(char*),
sizeof(char *), compare, context);

printf("%s %s %s\n",
CharVect[0], CharVect[1], CharVect[2]);

}

produces the following:

first last middle

Classification: TR 24731

Systems: All, Netware

646

raise

Synopsis: #include <signal.h>
int raise(int condition);

Description: The raise function signals the exceptional condition indicated by the condition argument.
The possible conditions are defined in the <signal.h> header file and are documented
with the signal function. The signal function can be used to specify the action which is
to take place when such a condition occurs.

Returns: The raise function returns zero when the condition is successfully raised and a non-zero
value otherwise. There may be no return of control following the function call if the action
for that condition is to terminate the program or to transfer control using the longjmp
function.

See Also: signal

Example: /*
* This program waits until a SIGINT signal
* is received.
*/

#include <stdio.h>
#include <signal.h>sigatomictsignalcount;sigatomictsignalnumber;staticvoidalarmhandler(intsignum)

{++signalcount;signalnumber=signum;
}

void main()
{

unsigned long i;signalcount=0;signalnumber=0;signal(SIGINT,alarmhandler);
 647

raise

printf("Signal will be auto-raised on iteration "
"10000 or hit CTRL-C.\n");

printf("Iteration: ");
for(i = 0; i < 100000; ++i)
{

printf("\b\b\b\b\b%*d", 5, i);

if(i == 10000) raise(SIGINT);if(signalcount>0)break;
}

if(i == 100000) {
printf("\nNo signal was raised.\n");

} else if(i == 10000) {
printf("\nSignal %d was raised by the ""raise()function.\n",signalnumber);

} else {
printf("\nUser raised the signal.\n",signalnumber);

}
}

Classification: ANSI

Systems: All, Netware

648

rand

Synopsis: #include <stdlib.h>
int rand(void);

Description: The rand function computes a sequence of pseudo-random integers in the range 0 toRANDMAX
 (32767). The sequence can be started at different values by calling the srand

function.

Returns: The rand function returns a pseudo-random integer.

See Also: srand

Example: #include <stdio.h>
#include <stdlib.h>

void main()
{

int i;

for(i=1; i < 10; ++i) {
printf("%d\n", rand());

}
}

Classification: ANSI

Systems: All, Netware

 649

read

Synopsis: #include <unistd.h>
int read(int fildes, void *buffer, unsigned len);

Description: The read function reads data at the operating system level. The number of bytes
transmitted is given by len and the data is transmitted starting at the address specified by
buffer.

The fildes value is returned by the open function. The access mode must have included
either
ORDONLY

 or
ORDWR

 when the open function was invoked. The data is read
starting at the current file position for the file in question. This file position can be
determined with the tell function and can be set with the lseek function.

When
OBINARY

 is included in the access mode, the data is transmitted unchanged. WhenOTEXT
 is included in the access mode, the data is transmitted with the extra carriage return

character removed before each linefeed character encountered in the original data.

Returns: The read function returns the number of bytes of data transmitted from the file to the buffer
(this does not include any carriage-return characters that were removed during the
transmission). Normally, this is the number given by the len argument. When the end of the
file is encountered before the read completes, the return value will be less than the number of
bytes requested.

A value of -1 is returned when an input/output error is detected. When an error has occurred,
errno contains a value indicating the type of error that has been detected.

See Also: close, creat, fread, open, write

Example: #include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

void main()
{

int fildes;intsizeread;
char buffer[80];

/* open a file for input */fildes=open("file",ORDONLY);
if(fildes != -1) {

650

read

/* read the text */sizeread=read(fildes,buffer,
sizeof(buffer));

/* test for error */if(sizeread==�1){
printf("Error reading file\n");

}

/* close the file */
close(fildes);

}
}

Classification: POSIX 1003.1

Systems: All, Netware

 651

readdir

Synopsis: #include <dirent.h>
struct dirent *readdir(DIR *dirp);

Description: The readdir function obtains information about the next matching file name from the
argument dirp. The argument dirp is the value returned from the opendir function. The
readdir function can be called repeatedly to obtain the list of file names contained in the
directory specified by the pathname given to opendir. The function closedir must be
called to close the directory and free the memory allocated by opendir.

The file <dirent.h> contains definitions for the structure dirent and the DIR type.

In QNX the dirent structure contains a stat structure in the
dstat member. To speed

up applications which often want both the name and the stat data, a resource manager may
return the stat information at the same time the readdir function is called.

However, since the support of this feature is left to the discretion of various resource
managers, every program must use the following test to determine if the

dstat member
contains valid data:

 dstat.ststatus&FILEUSED
This test must be performed after every readdir call.

If the
dstat member doesn’t contain valid data and the data is needed then the application

should construct the file’s pathname and call stat or lstat as appropriate.

The result of using a directory stream after one of the exec or spawn family of functions is
undefined. After a call to the fork function, either the parent or the child (but not both)
may continue processing the directory stream using readdir or rewinddir or both. If
both the parent and child processes use these functions, the result is undefined. Either or
both processes may use closedir.

Returns: When successful, readdir returns a pointer to an object of type struct dirent. When an
error occurs, readdir returns the value NULL and errno is set to indicate the error.
When the end of the directory is encountered, readdir returns the value NULL and errno
is unchanged.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

652

readdir

EBADF The argument dirp does not refer to an open directory stream.

See Also: closedir, opendir, rewinddir

Example: To get a list of files contained in the directory /home/fred of your node:

#include <stdio.h>
#include <dirent.h>

void main()
{

DIR *dirp;
struct dirent *direntp;

dirp = opendir("/home/fred");
if(dirp != NULL) {

for(;;) {
direntp = readdir(dirp);
if(direntp == NULL) break;printf("%s\n",direntp�>dname);

}
closedir(dirp);

}
}

Classification: POSIX 1003.1

Systems: All, Netware

 653

realloc Functions

Synopsis: #include <stdlib.h> For ANSI compatibility (realloc only)
#include <malloc.h> Required for other function prototypesvoid*realloc(void*oldblk,sizetsize);voidbased(void)*brealloc(segmentseg,voidbased(void)*oldblk,sizetsize);voidfar*frealloc(voidfar*oldblk,sizetsize);voidnear*nrealloc(voidnear*oldblk,sizetsize);

Description: When the value of the old_blk argument is NULL, a new block of memory of size bytes is
allocated.

If the value of size is zero, the corresponding free function is called to release the memory
pointed to by old_blk.

Otherwise, the realloc function re-allocates space for an object of size bytes by either:

• shrinking the allocated size of the allocated memory block old_blk when size is
sufficiently smaller than the size of old_blk.

• extending the allocated size of the allocated memory block old_blk if there is a large
enough block of unallocated memory immediately following old_blk.

• allocating a new block and copying the contents of old_blk to the new block.

Because it is possible that a new block will be allocated, any pointers into the old memory
should not be maintained. These pointers will point to freed memory, with possible
disastrous results, when a new block is allocated.

The function returns NULL when the memory pointed to by old_blk cannot be re-allocated.
In this case, the memory pointed to by old_blk is not freed so care should be exercised to
maintain a pointer to the old memory block.

buffer = (char *) realloc(buffer, 100);

In the above example, buffer will be set to NULL if the function fails and will no longer
point to the old memory block. If buffer was your only pointer to the memory block then
you will have lost access to this memory.

Each function reallocates memory from a particular heap, as listed below:

654

realloc Functions

Function Heap

realloc Depends on data model of the program

_brealloc Based heap specified by seg value

_frealloc Far heap (outside the default data segment)

_nrealloc Near heap (inside the default data segment)

In a small data memory model, the realloc function is equivalent to thenrealloc
function; in a large data memory model, the realloc function is equivalent to thefrealloc function.

Returns: The realloc functions return a pointer to the start of the re-allocated memory. The return
value is NULL if there is insufficient memory available or if the value of the size argument is
zero. The
brealloc function returns
NULLOFF if there is insufficient memory

available or if the requested size is zero.

See Also: calloc Functions,expand Functions, free Functions, halloc, hfree, malloc
Functions,msize Functions, sbrk

Example: #include <stdlib.h>
#include <malloc.h>

void main()
{

char *buffer;char*newbuffer;
buffer = (char *) malloc(80);newbuffer=(char*)realloc(buffer,100);if(newbuffer==NULL){

/* not able to allocate larger buffer */

} else {buffer=newbuffer;
}

}

Classification: realloc is ANSI, _frealloc is not ANSI, _brealloc is not ANSI, _nrealloc is not ANSI

Systems: realloc - All, Netware

 655

realloc Functionsbrealloc�DOS/16,Windows,QNX/16,OS/21.x(all)frealloc�DOS/16,Windows,QNX/16,OS/21.x(all)nrealloc�DOS,Windows,Win386,Win32,QNX,OS/21.x,OS/2
1.x(MT), OS/2-32

656

_rectangle Functions

Synopsis: #include <graph.h>shortFARrectangle(shortfill,
short x1, short y1,
short x2, short y2);shortFARrectanglew(shortfill,

double x1, double y1,
double x2, double y2);shortFARrectanglewxy(shortfill,structwxycoordFAR*p1,structwxycoordFAR*p2);

Description: Therectangle functions draw rectangles. Therectangle function uses the view
coordinate system. Therectanglew andrectanglewxy functions use the
window coordinate system.

The rectangle is defined with opposite corners established by the points (x1,y1) and
(x2,y2).

The argument fill determines whether the rectangle is filled in or has only its outline drawn.
The argument can have one of two values:

_GFILLINTERIOR fill the interior by writing pixels with the current plot action using
the current color and the current fill mask

_GBORDER leave the interior unchanged; draw the outline of the figure with
the current plot action using the current color and line style

Returns: Therectangle functions return a non-zero value when the rectangle was successfully
drawn; otherwise, zero is returned.

See Also: setcolor,setfillmask,setlinestyle,setplotaction
Example: #include <conio.h>

#include <graph.h>

main()
{ setvideomode(VRES16COLOR);rectangle(GBORDER,100,100,540,380);

getch();setvideomode(DEFAULTMODE);
}

 657

_rectangle Functions

produces the following:

Classification: _rectangle is PC Graphics

Systems: rectangle�DOS,QNXrectanglew�DOS,QNXrectanglewxy�DOS,QNX

658

_registerfonts

Synopsis: #include <graph.h>shortFARregisterfonts(charFAR*path);
Description: Theregisterfonts function initializes the font graphics system. Fonts must be

registered, and a font selected, before text can be displayed with theoutgtext function.

The argument path specifies the location of the font files. This argument is a file
specification, and can contain drive and directory components and may contain wildcard
characters. Theregisterfonts function opens each of the font files specified and
reads the font information. Memory is allocated to store the characteristics of the font.
These font characteristics are used by thesetfont function when selecting a font.

Returns: Theregisterfonts function returns the number of fonts that were registered if the
function is successful; otherwise, a negative number is returned.

See Also: unregisterfonts,setfont,getfontinfo,outgtext,getgtextextent,setgtextvector,getgtextvector
Example: #include <conio.h>

#include <stdio.h>
#include <graph.h>

main()
{

int i, n;
char buf[10];setvideomode(VRES16COLOR);n=registerfonts("*.fon");
for(i = 0; i < n; ++i) {

sprintf(buf, "n%d", i);setfont(buf);moveto(100,100);outgtext("WATCOMGraphics");
getch();clearscreen(GCLEARSCREEN);

}unregisterfonts();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

 659

_remapallpalette

Synopsis: #include <graph.h>shortFARremapallpalette(longFAR*colors);
Description: Theremapallpalette function sets (or remaps) all of the colors in the palette. The

color values in the palette are replaced by the array of color values given by the argument
colors. This function is supported in all video modes, but only works with EGA, MCGA and
VGA adapters.

The array colors must contain at least as many elements as there are supported colors. The
newly mapped palette will cause the complete screen to change color wherever there is a
pixel value of a changed color in the palette.

The representation of colors depends upon the hardware being used. The number of colors in
the palette can be determined by using thegetvideoconfig function.

Returns: Theremapallpalette function returns (-1) if the palette is remapped successfully and
zero otherwise.

See Also: remappalette,getvideoconfig

660

_remapallpalette

Example: #include <conio.h>
#include <graph.h>

long colors[16] = {BRIGHTWHITE,YELLOW,LIGHTMAGENTA,LIGHTRED,LIGHTCYAN,LIGHTGREEN,LIGHTBLUE,GRAY,WHITE,BROWN,MAGENTA,RED,CYAN,GREEN,BLUE,BLACK,
};

main()
{

int x, y;setvideomode(VRES16COLOR);
for(y = 0; y < 4; ++y) {

for(x = 0; x < 4; ++x) {setcolor(x+4*y);rectangle(GFILLINTERIOR,
x * 160, y * 120,
(x + 1) * 160, (y + 1) * 120);

}
}
getch();remapallpalette(colors);
getch();setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

 661

_remappalette

Synopsis: #include <graph.h>longFARremappalette(shortpixval,longcolor);
Description: Theremappalette function sets (or remaps) the palette color pixval to be the color

color. This function is supported in all video modes, but only works with EGA, MCGA and
VGA adapters.

The argument pixval is an index in the color palette of the current video mode. The
argument color specifies the actual color displayed on the screen by pixels with pixel value
pixval. Color values are selected by specifying the red, green and blue intensities that make
up the color. Each intensity can be in the range from 0 to 63, resulting in 262144 possible
different colors. A given color value can be conveniently specified as a value of type long.
The color value is of the form 0x00bbggrr, where bb is the blue intensity, gg is the
green intensity and rr is the red intensity of the selected color. The file graph.h defines
constants containing the color intensities of each of the 16 default colors.

Theremappalette function takes effect immediately. All pixels on the complete screen
which have a pixel value equal to the value of pixval will now have the color indicated by the
argument color.

Returns: Theremappalette function returns the previous color for the pixel value if the palette is
remapped successfully; otherwise, (-1) is returned.

See Also: remapallpalette,setvideomode

662

_remappalette

Example: #include <conio.h>
#include <graph.h>

long colors[16] = {BLACK,BLUE,GREEN,CYAN,RED,MAGENTA,BROWN,WHITE,GRAY,LIGHTBLUE,LIGHTGREEN,LIGHTCYAN,LIGHTRED,LIGHTMAGENTA,YELLOW,BRIGHTWHITE
};

main()
{

int col;setvideomode(VRES16COLOR);
for(col = 0; col < 16; ++col) {remappalette(0,colors[col]);

getch();
}setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

 663

remove

Synopsis: #include <stdio.h>
int remove(const char *filename);

Description: The remove function deletes the file whose name is the string pointed to by filename.

Returns: The remove function returns zero if the operation succeeds, non-zero if it fails. When an
error has occurred, errno contains a value indicating the type of error that has been
detected.

Example: #include <stdio.h>

void main()
{

remove("vm.tmp");
}

Classification: ANSI

Systems: All, Netware

664

rename

Synopsis: #include <stdio.h>
int rename(const char *old, const char *new);

Description: The rename function causes the file whose name is indicated by the string old to be
renamed to the name given by the string new.

Returns: The rename function returns zero if the operation succeeds, a non-zero value if it fails.
When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Example: #include <stdio.h>

void main()
{

rename("old.dat", "new.dat");
}

Classification: ANSI

Systems: All, Netware

 665

rewind

Synopsis: #include <stdio.h>
void rewind(FILE *fp);

Description: The rewind function sets the file position indicator for the stream indicated to by fp to the
beginning of the file. It is equivalent to

 fseek(fp,0L,SEEKSET);
except that the error indicator for the stream is cleared.

Returns: The rewind function returns no value.

See Also: fopen, clearerr

Example: #include <stdio.h>staticassemblepass(intpassno)
{

printf("Pass %d\n", passno);
}

void main()
{

FILE *fp;

if((fp = fopen("program.asm", "r")) != NULL) {assemblepass(1);
rewind(fp);assemblepass(2);
fclose(fp);

}
}

Classification: ANSI

Systems: All, Netware

666

rewinddir

Synopsis: #include <sys/types.h>
#include <dirent.h>
void rewinddir(DIR *dirp);

Description: The rewinddir function resets the position of the directory stream to which dirp refers to
the beginning of the directory. It also causes the directory stream to refer to the current state
of the corresponding directory, as a call to opendir would have done.

The result of using a directory stream after one of the exec or spawn family of functions is
undefined. After a call to the fork function, either the parent or the child (but not both)
may continue processing the directory stream using readdir or rewinddir or both. If
both the parent and child processes use these functions, the result is undefined. Either or
both processes may use closedir.

Returns: The rewinddir function does not return a value.

See Also: closedir, opendir, readdir

Example: The following example lists all the files in a directory, creates a new file, and then relists the
directory.

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <dirent.h>

void main()
{

DIR *dirp;
struct dirent *direntp;
int fildes;

dirp = opendir("/home/fred");
if(dirp != NULL) {

printf("Old directory listing\n");
for(;;) {

direntp = readdir(dirp);
if(direntp == NULL)

break;printf("%s\n",direntp�>dname);
}

fildes = creat("/home/fred/file.new",SIRUSR|SIWUSR|SIRGRP|SIWGRP);
close(fildes);

 667

rewinddir

rewinddir(dirp);
printf("New directory listing\n");
for(;;) {

direntp = readdir(dirp);
if(direntp == NULL)

break;printf("%s\n",direntp�>dname);
}
closedir(dirp);

}
}

Classification: POSIX 1003.1

Systems: All

668

rmdir

Synopsis: #include <sys/types.h>
#include <unistd.h>
int rmdir(const char *path);

Description: The rmdir function removes (deletes) the specified directory. The directory must not
contain any files or directories. The path can be either relative to the current working
directory or it can be an absolute path name.

If the directory is the root directory or the current working directory of any process, the
effect of this function is implementation-defined.

If the directory’s link count becomes zero and no process has the directory open, the space
occupied by the directory is freed and the directory is no longer accessible. If one or more
processes have the directory open when the last link is removed, the dot and dot-dot entries,
if present, are removed before rmdir returns and no new entries may be created in the
directory, but the directory is not removed until all references to the directory have been
closed.

Upon successful completion, the rmdir function will mark for update the st_ctime and
st_mtime fields of the parent directory.

Returns: The rmdir function returns zero if successful and -1 otherwise.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

EACCES Search permission is denied for a component of path or write
permission is denied on the parent directory of the directory to be
removed.

EBUSY The directory named by the path argument cannot be removed because
it is being used by another process and the implementation considers
this to be an error.

EEXIST The path argument names a directory that is not an empty directory.

ENAMETOOLONG The argument path exceeds {PATH_MAX} in length, or a pathname
component is longer than {NAME_MAX}.

ENOENT The specified path does not exist or path is an empty string.

 669

rmdir

ENOTDIR A component of path is not a directory.

ENOTEMPTY The path argument names a directory that is not an empty directory.

EROFS The directory entry to be removed resides on a read-only file system.

See Also: chdir, getcwd, mkdir, stat, umask

Example: To remove the directory called /home/terry

#include <sys/types.h>
#include <sys/stat.h>

void main(void)
{

rmdir("/home/terry");
}

Classification: POSIX 1003.1

Systems: All, Netware

670

_rotl

Synopsis: #include <stdlib.h>unsignedintrotl(unsignedintvalue,
unsigned int shift);

Description: Therotl function rotates the unsigned integer, determined by value, to the left by the
number of bits specified in shift. If you port an application usingrotl between a 16-bit
and a 32-bit environment, you will get different results because of the difference in the size
of integers.

Returns: The rotated value is returned.

See Also:
lrotl,lrotr,rotr

Example: #include <stdio.h>
#include <stdlib.h>

unsigned int mask = 0x0F00;

void main()
{mask=rotl(mask,4);

printf("%04X\n", mask);
}

produces the following:

F000

Classification: WATCOM

Systems: All, Netware

 671

_rotr

Synopsis: #include <stdlib.h>unsignedintrotr(unsignedintvalue,
unsigned int shift);

Description: Therotr function rotates the unsigned integer, determined by value, to the right by the
number of bits specified in shift. If you port an application usingrotr between a 16-bit
and a 32-bit environment, you will get different results because of the difference in the size
of integers.

Returns: The rotated value is returned.

See Also:
lrotl,lrotr,rotl

Example: #include <stdio.h>
#include <stdlib.h>

unsigned int mask = 0x1230;

void main()
{mask=rotr(mask,4);

printf("%04X\n", mask);
}

produces the following:

0123

Classification: WATCOM

Systems: All, Netware

672

sbrk

Synopsis: #include <stdlib.h>
void *sbrk(int increment);

Description: The "break" value is the address of the first byte of unallocated memory. When a program
starts execution, the break value is placed following the code and constant data for the
program. As memory is allocated, this pointer will advance when there is no freed block
large enough to satisfy an allocation request. The sbrk function can be used to set a new
"break" value for the program by adding the value of increment to the current break value.
This increment may be positive or negative.

The variableamblksiz defined in <stdlib.h> contains the default increment by
which the "break" pointer for memory allocation will be advanced when there is no freed
block large enough to satisfy a request to allocate a block of memory. This value may be
changed by a program at any time.

Returns: If the call to sbrk succeeds, a pointer to the start of the new block of memory is returned. If
the call to sbrk fails, -1 is returned. When an error has occurred, errno contains a value
indicating the type of error that has been detected.

See Also: calloc Functions,expand Functions, free Functions, halloc, hfree, malloc
Functions,msize Functions, realloc Functions

Example: #include <stdio.h>
#include <stdlib.h>#ifdefined(MI86)
#define alloc(x, y) sbrk(x); y = sbrk(0);
#else
#define alloc(x, y) y = sbrk(x);
#endif

void main()
{

void *brk;

 673

sbrk #ifdefined(MI86)
alloc(0x0000, brk);
/* calling printf will cause an allocation */
printf("Original break value %p\n", brk);printf("Currentamblksizvalue%x\n",amblksiz);
alloc(0x0000, brk);
printf("New break value after printf \t\t%p\n", brk);

#endif
alloc(0x3100, brk);
printf("New break value after sbrk(0x3100) \t%p\n",

brk);
alloc(0x0200, brk);
printf("New break value after sbrk(0x0200) \t%p\n",

brk);#ifdefined(MI86)
alloc(-0x0100, brk);
printf("New break value after sbrk(-0x0100) \t%p\n",

brk);
#endif
}

Classification: WATCOM

Systems: DOS, Windows, Win386, Win32, QNX, OS/2 1.x, OS/2 1.x(MT), OS/2-32

674

scanf, wscanf

Synopsis: #include <stdio.h>
int scanf(const char *format, ...);
#include <wchar.h>intwscanf(constwchart*format,...);

Safer C: The Safer C Library extension provides thescanfs function which is a safer alternative to
scanf. This newerscanfs function is recommended to be used instead of the traditional
"unsafe" scanf function.

Description: The scanf function scans input from the file designated by stdin under control of the
argument format. The format string is described below. Following the format string is the
list of addresses of items to receive values.

The wscanf function is identical to scanf except that it accepts a wide-character string
argument for format.

Returns: The scanf function returns EOF if an input failure occured before any conversion.
Otherwise, the number of input arguments for which values were successfully scanned and
stored is returned.

See Also: cscanf, fscanf, sscanf, vcscanf, vfscanf, vscanf, vsscanf

Example: To scan a date in the form "Saturday April 18 1987":

#include <stdio.h>

void main(void)
{

int day, year;
char weekday[10], month[10];

scanf("%s %s %d %d", weekday, month, &day, &year);
}

Format Control String: The format control string consists of zero or more format directives that specify
acceptable input file data. Subsequent arguments are pointers to various types of objects that
are assigned values as the format string is processed.

A format directive can be a sequence of one or more white-space characters, an ordinary
character, or a conversion specifier. An ordinary character in the format string is any
character, other than a white-space character or the percent character (%), that is not part of a
conversion specifier. A conversion specifier is a sequence of characters in the format string
that begins with a percent character (%) and is followed, in sequence, by the following:

 675

scanf, wscanf

• an optional assignment suppression indicator: the asterisk character (*);

• an optional decimal integer that specifies the maximum field width to be scanned for
the conversion;

• an optional pointer-type specification: one of "N" or "W";

• an optional type length specification: one of "hh", "h", "l", "ll", "j", "z", "t", "L" or
"I64";

• a character that specifies the type of conversion to be performed: one of the
characters "cCdeEfFgGinopsSuxX[".

As each format directive in the format string is processed, the directive may successfully
complete, fail because of a lack of input data, or fail because of a matching error as defined
by the particular directive. If end-of-file is encountered on the input data before any
characters that match the current directive have been processed (other than leading
white-space where permitted), the directive fails for lack of data. If end-of-file occurs after a
matching character has been processed, the directive is completed (unless a matching error
occurs), and the function returns without processing the next directive. If a directive fails
because of an input character mismatch, the character is left unread in the input stream.
Trailing white-space characters, including new-line characters, are not read unless matched
by a directive. When a format directive fails, or the end of the format string is encountered,
the scanning is completed and the function returns.

When one or more white-space characters (space " ", horizontal tab "\t", vertical tab "\v",
form feed "\f", carriage return "\r", new line or linefeed "\n") occur in the format string, input
data up to the first non-white-space character is read, or until no more data remains. If no
white-space characters are found in the input data, the scanning is complete and the function
returns.

An ordinary character in the format string is expected to match the same character in the
input stream.

A conversion specifier in the format string is processed as follows:

• for conversion types other than "[", "c", "C" and "n", leading white-space characters
are skipped

• for conversion types other than "n", all input characters, up to any specified maximum
field length, that can be matched by the conversion type are read and converted to the
appropriate type of value; the character immediately following the last character to be
matched is left unread; if no characters are matched, the format directive fails

676

scanf, wscanf

• unless the assignment suppression indicator ("*") was specified, the result of the
conversion is assigned to the object pointed to by the next unused argument (if
assignment suppression was specified, no argument is skipped); the arguments must
correspond in number, type and order to the conversion specifiers in the format string

A pointer-type specification is used to indicate the type of pointer used to locate the next
argument to be scanned:

W pointer is a far pointer

N pointer is a near pointer

The pointer-type specification is only effective on platforms that use a segmented memory
model, although it is always recognized.

The pointer type defaults to that used for data in the memory model for which the program
has been compiled.

A type length specifier affects the conversion as follows:

• "hh" causes a "d", "i", "o", "u" or "x" (integer) conversion to assign the converted
value to an object of type signed char or unsigned char.

• "hh" causes an "n" (read length assignment) operation to assign the number of
characters that have been read to an object of type signed char.

• "h" causes a "d", "i", "o", "u" or "x" (integer) conversion to assign the converted value
to an object of type short int or unsigned short int.

• "h" causes an "f" conversion to assign a fixed-point number to an object of type long
consisting of a 16-bit signed integer part and a 16-bit unsigned fractional part. The
integer part is in the high 16 bits and the fractional part is in the low 16 bits.

struct fixpt {

unsigned short fraction; /* Intel architecture! */
signed short integral;

};

struct fixpt foo1 =
{ 0x8000, 1234 }; /* represents 1234.5 */

struct fixpt foo2 =
{ 0x8000, -1 }; /* represents -0.5 (-1+.5) */

• "h" causes an "n" (read length assignment) operation to assign the number of
characters that have been read to an object of type short int.

 677

scanf, wscanf

• "h" causes an "s" operation to convert the input string to an ASCII character string.
For scanf, this specifier is redundant. For wscanf, this specifier is required if the
wide character input string is to be converted to an ASCII character string; otherwise it
will not be converted.

• "l" causes a "d", "i", "o", "u" or "x" (integer) conversion to assign the converted value
to an object of type long int or unsigned long int.

• "l" causes an "n" (read length assignment) operation to assign the number of
characters that have been read to an object of type long int.

• "l" causes an "e", "f" or "g" (floating-point) conversion to assign the converted value
to an object of type double.

• "l" or "w" cause an "s" operation to convert the input string to a wide character string.
For scanf, this specifier is required if the input ASCII string is to be converted to a
wide character string; otherwise it will not be converted.

• "ll" causes a "d", "i", "o", "u" or "x" (integer) conversion to assign the converted value
to an object of type long long or unsigned long long (e.g., %lld).

• "ll" causes an "n" (read length assignment) operation to assign the number of
characters that have been read to an object of type long long int.

• "j" causes a "d", "i", "o", "u" or "x" (integer) conversion to assign the converted value
to an object of type
intmaxt oruintmaxt.

• "j" causes an "n" (read length assignment) operation to assign the number of
characters that have been read to an object of type

intmaxt.
• "z" causes a "d", "i", "o", "u" or "x" (integer) conversion to assign the converted value
to an object of typesizet or the corresponding signed integer type.

• "z" causes an "n" (read length assignment) operation to assign the number of
characters that have been read to an object of signed integer type corresponding tosizet.

• "t" causes a "d", "i", "o", "u" or "x" (integer) conversion to assign the converted value
to an object of typeptrdifft or the corresponding unsigned integer type.

• "t" causes an "n" (read length assignment) operation to assign the number of
characters that have been read to an object of typeptrdifft.

678

scanf, wscanf

• "I64" causes a "d", "i", "o", "u" or "x" (integer) conversion to assign the converted
value to an object of type
int64 orunsignedint64 (e.g., %I64d).

• "L" causes an "e", "f" or "g" (floating-point) conversion to assign the converted value
to an object of type long double.

The valid conversion type specifiers are:

c Any sequence of characters in the input stream of the length specified by the field
width, or a single character if no field width is specified, is matched. The argument
is assumed to point to the first element of a character array of sufficient size to
contain the sequence, without a terminating null character (’\0’). For a single
character assignment, a pointer to a single object of type char is sufficient.

C A sequence of multibyte characters in the input stream is matched. Each multibyte
character is converted to a wide character of typewchart. The number of wide
characters matched is specified by the field width (1 if no field width is specified).
The argument is assumed to point to the first element of an array ofwchart of
sufficient size to contain the sequence. No terminating null wide character (L’\0’) is
added. For a single wide character assignment, a pointer to a single object of typewchart is sufficient.

d A decimal integer, consisting of an optional sign, followed by one or more decimal
digits, is matched. The argument is assumed to point to an object of type int.

e, f, g A floating-point number, consisting of an optional sign ("+" or "-"), followed by one
or more decimal digits, optionally containing a decimal-point character, followed by
an optional exponent of the form "e" or "E", an optional sign and one or more
decimal digits, is matched. The exponent, if present, specifies the power of ten by
which the decimal fraction is multiplied. The argument is assumed to point to an
object of type float.

i An optional sign, followed by an octal, decimal or hexadecimal constant is matched.
An octal constant consists of "0" and zero or more octal digits. A decimal constant
consists of a non-zero decimal digit and zero or more decimal digits. A
hexadecimal constant consists of the characters "0x" or "0X" followed by one or
more (upper- or lowercase) hexadecimal digits. The argument is assumed to point
to an object of type int.

n No input data is processed. Instead, the number of characters that have already been
read is assigned to the object of type unsigned int that is pointed to by the
argument. The number of items that have been scanned and assigned (the return
value) is not affected by the "n" conversion type specifier.

 679

scanf, wscanf

o An octal integer, consisting of an optional sign, followed by one or more (zero or
non-zero) octal digits, is matched. The argument is assumed to point to an object of
type int.

p A hexadecimal integer, as described for "x" conversions below, is matched. The
converted value is further converted to a value of type void* and then assigned to
the object pointed to by the argument.

s A sequence of non-white-space characters is matched. The argument is assumed to
point to the first element of a character array of sufficient size to contain the
sequence and a terminating null character, which is added by the conversion
operation.

S A sequence of multibyte characters is matched. None of the multibyte characters in
the sequence may be single byte white-space characters. Each multibyte character
is converted to a wide character. The argument is assumed to point to the first
element of an array ofwchart of sufficient size to contain the sequence and a
terminating null wide character, which is added by the conversion operation.

u An unsigned decimal integer, consisting of one or more decimal digits, is matched.
The argument is assumed to point to an object of type unsigned int.

x A hexadecimal integer, consisting of an optional sign, followed by an optional
prefix "0x" or "0X", followed by one or more (upper- or lowercase) hexadecimal
digits, is matched. The argument is assumed to point to an object of type int.

[c1c2...] The longest, non-empty sequence of characters, consisting of any of the characters
c1, c2, ... called the scanset, in any order, is matched. c1 cannot be the
caret character (’^’). If c1 is "]", that character is considered to be part of the
scanset and a second "]" is required to end the format directive. The argument is
assumed to point to the first element of a character array of sufficient size to contain
the sequence and a terminating null character, which is added by the conversion
operation.

[^c1c2...] The longest, non-empty sequence of characters, consisting of any characters other
than the characters between the "^" and "]", is matched. As with the preceding
conversion, if c1 is "]", it is considered to be part of the scanset and a second "]"
ends the format directive. The argument is assumed to point to the first element of a
character array of sufficient size to contain the sequence and a terminating null
character, which is added by the conversion operation.

For example, the specification %[^\n] will match an entire input line up to but not
including the newline character.

680

scanf, wscanf

A conversion type specifier of "%" is treated as a single ordinary character that matches a
single "%" character in the input data. A conversion type specifier other than those listed
above causes scanning to terminate and the function to return.

Conversion type specifiers "E", "F", "G", "X" have meaning identical to their lowercase
equivalents.

The line

scanf("%s%*f%3hx%d", name, &hexnum, &decnum)

with inputsomestring34.555e�3abc1234
will copy
"somestring" into the array name, skip 34.555e-3, assign 0xabc to

hexnum and 1234 to decnum. The return value will be 3.

The program

#include <stdio.h>

void main(void)
{

char string1[80], string2[80];

scanf("%[abcdefghijklmnopqrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWZ]%*2s%[^\n]",
string1, string2);

printf("%s\n%s\n", string1, string2);
}

with input

They may look alike, but they don’t perform alike.

will assign

"They may look alike"

to string1, skip the comma (the "%*2s" will match only the comma; the following
blank terminates that field), and assign

" but they don’t perform alike."

 681

scanf, wscanf

to string2.

Classification: scanf is ISO C90, wscanf is ISO C95
The N, W pointer size modifiers and the I64 modifier are extensions to ISO C.

Systems: scanf - All, Netware
wscanf - All

682

scanf_s, wscanf_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdio.h>intscanfs(constchar*restrictformat,...);
#include <wchar.h>intwscanfs(constwchart*restrictformat,...);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked andscanfs will return a non-zero value to
indicate an error, or the runtime-constraint handler aborts the program.

The format argument shall not be a null pointer. Any argument indirected through in order
to store converted input shall not be a null pointer.

If there is a runtime-constraint violation, thescanfs function does not attempt to perform
further input, and it is unspecified to what extentscanfs performed input before
discovering the runtime-constraint violation.

Description: Thescanfs function is equivalent to
fscanfs with the argument stdin interposed

before the arguments toscanfs
Thewscanfs function is identical toscanfs except that it accepts a wide-character
string argument for format.

Returns: Thescanfs function returns EOF if an input failure occurred before any conversion or if
there was a runtime-constraint violation. Otherwise, thescanfs function returns the
number of input items successfully assigned, which can be fewer than provided for, or even
zero.

When a file input error occurs, the errno global variable may be set.

See Also: cscanf, fscanf, scanf, sscanf, vcscanf, vfscanf, vscanf, vsscanf

Example: To scan a date in the form "Friday August 13 2004":#defineSTDCWANTLIBEXT11
#include <stdio.h>

void main(void)
{

int day, year;
char weekday[10], month[10];

 683

scanf_s, wscanf_sscanfs("%s%s%d%d",
weekday, sizeof(weekday),
month, sizeof(month),
&day, &year);

}

Classification: scanf_s is TR 24731, wscanf_s is TR 24731

Systems:scanfs�All,Netwarewscanfs�All

684

_scrolltextwindow

Synopsis: #include <graph.h>voidFARscrolltextwindow(shortrows);
Description: Thescrolltextwindow function scrolls the lines in the current text window. A text

window is defined with thesettextwindow function. By default, the text window is the
entire screen.

The argument rows specifies the number of rows to scroll. A positive value means to scroll
the text window up or towards the top of the screen. A negative value means to scroll the
text window down or towards the bottom of the screen. Specifying a number of rows greater
than the height of the text window is equivalent to clearing the text window with theclearscreen function.

Two constants are defined that can be used with thescrolltextwindow function:

_GSCROLLUP the contents of the text window are scrolled up (towards the top of
the screen) by one row

_GSCROLLDOWN the contents of the text window are scrolled down (towards the
bottom of the screen) by one row

Returns: Thescrolltextwindow function does not return a value.

See Also: settextwindow,clearscreen,outtext,outmem,settextposition

 685

_scrolltextwindow

Example: #include <conio.h>
#include <graph.h>
#include <stdio.h>

main()
{

int i;
char buf[80];setvideomode(TEXTC80);settextwindow(5,20,20,40);
for(i = 1; i <= 10; ++i) {

sprintf(buf, "Line %d\n", i);outtext(buf);
}
getch();scrolltextwindow(GSCROLLDOWN);
getch();scrolltextwindow(GSCROLLUP);
getch();setvideomode(DEFAULTMODE);

}

Classification: _scrolltextwindow is PC Graphics

Systems: DOS, QNX

686

_searchenv

Synopsis: #include <stdlib.h>voidsearchenv(constchar*name,constchar*envvar,
char *pathname);

Description: Thesearchenv function searches for the file specified by name in the list of directories
assigned to the environment variable specified by env_var. Common values for env_var are
PATH, LIB and INCLUDE.

The current directory is searched first to find the specified file. If the file is not found in the
current directory, each of the directories specified by the environment variable is searched.

The full pathname is placed in the buffer pointed to by the argument pathname. If the
specified file cannot be found, then pathname will contain an empty string.

Returns: Thesearchenv function returns no value.

See Also: getenv, setenv,splitpath, putenv
Example: #include <stdio.h>

#include <stdlib.h>voiddisplayhelp(FILE*fp)
{printf("displayhelpT.B.I.\n");
}

void main()
{FILE*helpfile;charfullpath[MAXPATH];searchenv("watcomc.hlp","PATH",fullpath);if(fullpath[0]==’\0’){

printf("Unable to find help file\n");
} else {helpfile=fopen(fullpath,"r");displayhelp(helpfile);fclose(helpfile);
}

}

Classification: WATCOM

 687

_searchenv

Systems: All

688

segread

Synopsis: #include <i86.h>voidsegread(structSREGS*segregs);
Description: The segread function places the values of the segment registers into the structure located

by seg_regs.

Returns: No value is returned.

See Also:FPOFF,FPSEG,MKFP
Example: #include <stdio.h>

#include <i86.h>

void main()
{

struct SREGS sregs;

segread(&sregs);
printf("Current value of CS is %04X\n", sregs.cs);

}

Classification: WATCOM

Systems: All, Netware

 689

_selectpalette

Synopsis: #include <graph.h>shortFARselectpalette(shortpalnum);
Description: Theselectpalette function selects the palette indicated by the argument palnum from

the color palettes available. This function is only supported by the video modesMRES4COLOR
 and
MRESNOCOLOR.

Mode
MRES4COLOR

 supports four palettes of four colors. In each palette, color 0, the
background color, can be any of the 16 possible colors. The color values associated with the
other three pixel values, (1, 2 and 3), are determined by the selected palette.

The following table outlines the available color palettes:

Palette Pixel Values
Number 1 2 3

0 green red brown
1 cyan magenta white
2 light green light red yellow
3 light cyan light magenta bright white

Returns: Theselectpalette function returns the number of the previously selected palette.

See Also: setvideomode,getvideoconfig

690

_selectpalette

Example: #include <conio.h>
#include <graph.h>

main()
{

int x, y, pal;setvideomode(MRES4COLOR);
for(y = 0; y < 2; ++y) {

for(x = 0; x < 2; ++x) {setcolor(x+2*y);rectangle(GFILLINTERIOR,
x * 160, y * 100,
(x + 1) * 160, (y + 1) * 100);

}
}
for(pal = 0; pal < 4; ++pal) {selectpalette(pal);

getch();
}setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

 691

set_constraint_handler_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdlib.h>constrainthandlertsetconstrainthandlers(constrainthandlerthandler);

Description: Thesetconstrainthandlers function sets the runtime-constraint handler to be
handler. The runtime-constraint handler is the function called when a library function detect
a runtime-constraint violation. Only the most recent handler registered withsetconstrainthandlers is called when a runtime-constraint violation occurs.

When the handler is called, it is passed the following arguments:

1. A pointer to a character string describing the runtime-constraint violation.

2. A null pointer or a pointer to an implementation defined object. This
implementation passes a null pointer.

3. If the function calling the handler has a return type declared aserrnot, the
return value of the function is passed. Otherwise, a positive value of typeerrnot is passed.

If no calls to thesetconstrainthandlers function have been made, a default
constraint handler is used. This handler will display an error message and abort the program.

If the handler argument tosetconstrainthandlers is a null pointer, the default
handler becomes the current constraint handler.

Returns: Thesetconstrainthandlers function returns a pointer to the previously
registered handler.

See Also:aborthandlers,ignorehandlers
Example:
#defineSTDCWANTLIBEXT11
#include <stdlib.h>
#include <stdio.h>voidmyhandler(constchar*msg,void*ptr,errnoterror)
{

fprintf(stderr, "rt-constraint violation caught :");
fprintf(stderr, msg);
fprintf(stderr, "\n");

}

692

set_constraint_handler_s

void main(void)
{constrainthandlertoldhandler;oldhandler=setconstrainthandlers(myhandler);if(getenvs(NULL,NULL,0,NULL)){printf("getenvsfailed\n");

}setconstrainthandlers(oldhandler);
}

produces the following:rt�constraintviolationcaught:getenvs,name==NULL.getenvsfailed
Classification: TR 24731

Systems: All, Netware

 693

_setactivepage

Synopsis: #include <graph.h>shortFARsetactivepage(shortpagenum);
Description: Thesetactivepage function selects the page (in memory) to which graphics output is

written. The page to be selected is given by the pagenum argument.

Only some combinations of video modes and hardware allow multiple pages of graphics to
exist. When multiple pages are supported, the active page may differ from the visual page.
The graphics information in the visual page determines what is displayed upon the screen.
Animation may be accomplished by alternating the visual page. A graphics page can be
constructed without affecting the screen by setting the active page to be different than the
visual page.

The number of available video pages can be determined by using thegetvideoconfig
function. The default video page is 0.

Returns: Thesetactivepage function returns the number of the previous page when the active
page is set successfully; otherwise, a negative number is returned.

See Also: getactivepage,setvisualpage,getvisualpage,getvideoconfig

694

_setactivepage

Example: #include <conio.h>
#include <graph.h>

main()
{intoldapage;intoldvpage;setvideomode(HRES16COLOR);oldapage=getactivepage();oldvpage=getvisualpage();

/* draw an ellipse on page 0 */setactivepage(0);setvisualpage(0);ellipse(GFILLINTERIOR,100,50,540,150);
/* draw a rectangle on page 1 */setactivepage(1);rectangle(GFILLINTERIOR,100,50,540,150);
getch();
/* display page 1 */setvisualpage(1);
getch();setactivepage(oldapage);setvisualpage(oldvpage);setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

 695

_setbkcolor

Synopsis: #include <graph.h>longFARsetbkcolor(longcolor);
Description: Thesetbkcolor function sets the current background color to be that of the color

argument. In text modes, the background color controls the area behind each individual
character. In graphics modes, the background refers to the entire screen. The default
background color is 0.

When the current video mode is a graphics mode, any pixels with a zero pixel value will
change to the color of the color argument. When the current video mode is a text mode,
nothing will immediately change; only subsequent output is affected.

Returns: Thesetbkcolor function returns the previous background color.

See Also: getbkcolor
Example: #include <conio.h>

#include <graph.h>

long colors[16] = {BLACK,BLUE,GREEN,CYAN,RED,MAGENTA,BROWN,WHITE,GRAY,LIGHTBLUE,LIGHTGREEN,LIGHTCYAN,LIGHTRED,LIGHTMAGENTA,YELLOW,BRIGHTWHITE
};

main()
{longoldbk;

int bk;setvideomode(VRES16COLOR);oldbk=getbkcolor();
for(bk = 0; bk < 16; ++bk) {setbkcolor(colors[bk]);

getch();
}setbkcolor(oldbk);setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

696

setbuf

Synopsis: #include <stdio.h>
void setbuf(FILE *fp, char *buffer);

Description: The setbuf function can be used to associate a buffer with the file designated by fp. If this
function is used, it must be called after the file has been opened and before it has been read
or written. If the argument buffer is NULL, then all input/output for the file fp will be
completely unbuffered. If the argument buffer is not NULL, then it must point to an array
that is at least BUFSIZ characters in length, and all input/output will be fully buffered.

Returns: The setbuf function returns no value.

See Also: fopen, setvbuf

Example: #include <stdio.h>
#include <stdlib.h>

void main()
{

char *buffer;
FILE *fp;

fp = fopen("file", "r");
buffer = (char *) malloc(BUFSIZ);
setbuf(fp, buffer);
/* . */
/* . */
/* . */
fclose(fp);

}

Classification: ANSI

Systems: All, Netware

 697

_setcharsize Functions

Synopsis: #include <graph.h>voidFARsetcharsize(shortheight,shortwidth);voidFARsetcharsizew(doubleheight,doublewidth);
Description: Thesetcharsize functions set the character height and width to the values specified by

the arguments height and width. For thesetcharsize function, the arguments height
and width represent a number of pixels. For thesetcharsizew function, the
arguments height and width represent lengths along the y-axis and x-axis in the window
coordinate system.

These sizes are used when displaying text with thegrtext function. The default
character sizes are dependent on the graphics mode selected, and can be determined by thegettextsettings function.

Returns: Thesetcharsize functions do not return a value.

See Also: grtext,gettextsettings
Example: #include <conio.h>

#include <graph.h>

main()
{

struct textsettings ts;setvideomode(VRES16COLOR);gettextsettings(&ts);grtext(100,100,"WATCOM");setcharsize(2*ts.height,2*ts.width);grtext(100,300,"Graphics");setcharsize(ts.height,ts.width);
getch();setvideomode(DEFAULTMODE);

}

produces the following:

698

_setcharsize Functions

Classification: PC Graphics

Systems: setcharsize�DOS,QNXsetcharsizew�DOS,QNX

 699

_setcharspacing Functions

Synopsis: #include <graph.h>voidFARsetcharspacing(shortspace);voidFARsetcharspacingw(doublespace);
Description: Thesetcharspacing functions set the current character spacing to have the value of

the argument space. For thesetcharspacing function, space represents a number of
pixels. For thesetcharspacingw function, space represents a length along the x-axis
in the window coordinate system.

The character spacing specifies the additional space to leave between characters when a text
string is displayed with thegrtext function. A negative value can be specified to cause
the characters to be drawn closer together. The default value of the character spacing is 0.

Returns: Thesetcharspacing functions do not return a value.

See Also: grtext,gettextsettings
Example: #include <conio.h>

#include <graph.h>

main()
{ setvideomode(VRES16COLOR);grtext(100,100,"WATCOM");setcharspacing(20);grtext(100,300,"Graphics");

getch();setvideomode(DEFAULTMODE);
}

produces the following:

700

_setcharspacing Functions

Classification: PC Graphics

Systems: setcharspacing�DOS,QNXsetcharspacingw�DOS,QNX

 701

_setcliprgn

Synopsis: #include <graph.h>voidFARsetcliprgn(shortx1,shorty1,
short x2, short y2);

Description: Thesetcliprgn function restricts the display of graphics output to the clipping region.
This region is a rectangle whose opposite corners are established by the physical points
(x1,y1) and (x2,y2).

Thesetcliprgn function does not affect text output using theouttext andoutmem functions. To control the location of text output, see thesettextwindow
function.

Returns: Thesetcliprgn function does not return a value.

See Also: settextwindow,setvieworg,setviewport
Example: #include <conio.h>

#include <graph.h>

main()
{

short x1, y1, x2, y2;setvideomode(VRES16COLOR);getcliprgn(&x1,&y1,&x2,&y2);setcliprgn(130,100,510,380);ellipse(GBORDER,120,90,520,390);
getch();setcliprgn(x1,y1,x2,y2);setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

702

_setcolor

Synopsis: #include <graph.h>shortFARsetcolor(shortpixval);
Description: Thesetcolor function sets the pixel value for the current color to be that indicated by

the pixval argument. The current color is only used by the functions that produce graphics
output; text output withouttext uses the current text color (see thesettextcolor
function). The default color value is one less than the maximum number of colors in the
current video mode.

Returns: Thesetcolor function returns the previous value of the current color.

See Also: getcolor,settextcolor
Example: #include <conio.h>

#include <graph.h>

main()
{intcol,oldcol;setvideomode(VRES16COLOR);oldcol=getcolor();

for(col = 0; col < 16; ++col) {setcolor(col);rectangle(GFILLINTERIOR,100,100,540,380);
getch();

}setcolor(oldcol);setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

 703

setenv, _setenv, _wsetenv

Synopsis: #include <env.h>
int setenv(const char *name,

const char *newvalue,
int overwrite);intsetenv(constchar*name,
const char *newvalue,
int overwrite);intwsetenv(constwchart*name,constwchart*newvalue,
int overwrite);

Description: The environment list consists of a number of environment names, each of which has a value
associated with it. Entries can be added to the environment list with the QNX export
command or with the setenv function. All entries in the environment list can be displayed
by using the QNX export command with no arguments. A program can obtain the value
for an environment variable by using the getenv function.

The setenv function searches the environment list for an entry of the form name=value. If
no such string is present, setenv adds an entry of the form name=newvalue to the
environment list. Otherwise, if the overwrite argument is non-zero, setenv either will
change the existing value to newvalue or will delete the string name=value and add the string
name=newvalue.

If the newvalue pointer is NULL, all strings of the form name=value in the environment list
will be deleted.

The value of the pointer environ may change across a call to the setenv function.

The setenv function will make copies of the strings associated with name and newvalue.

The matching is case-sensitive; all lowercase letters are treated as different from uppercase
letters.

Entries can also be added to the environment list with the QNX export command or with
the putenv or setenv functions. All entries in the environment list can be obtained by
using the getenv function.

To assign a string to a variable and place it in the environment list:

% export INCLUDE=/usr/include

To see what variables are in the environment list, and their current assignments:

704

setenv, _setenv, _wsetenv

% export
SHELL=ksh
TERM=qnx
LOGNAME=fred
PATH=:/bin:/usr/bin
HOME=/home/fred
INCLUDE=/usr/include
LIB=/usr/lib
%

Thesetenv function is identical to setenv. Usesetenv for ANSI naming
conventions.

Thewsetenv function is a wide-character version of setenv that operates with
wide-character strings.

Returns: The setenv function returns zero upon successful completion. Otherwise, it will return a
non-zero value and set errno to indicate the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

ENOMEM Not enough memory to allocate a new environment string.

See Also: clearenv, exec Functions, getenv,getenvs, putenv,searchenv, spawn
Functions, system

Example: The following will change the string assigned to INCLUDE and then display the new string.

#include <stdio.h>
#include <stdlib.h>
#include <env.h>

void main()
{

char *path;

if(setenv("INCLUDE",
"/usr/include:/home/fred/include",
1

) == 0)
if((path = getenv("INCLUDE")) != NULL)

printf("INCLUDE=%s\n", path);
}

 705

setenv, _setenv, _wsetenv

Classification: WATCOM

Systems: setenv - Allsetenv�Allwsetenv�All

706

_setfillmask

Synopsis: #include <graph.h>voidFARsetfillmask(charFAR*mask);
Description: Thesetfillmask function sets the current fill mask to the value of the argument mask.

When the value of the mask argument is NULL, there will be no fill mask set.

The fill mask is an eight-byte array which is interpreted as a square pattern (8 by 8) of 64
bits. Each bit in the mask corresponds to a pixel. When a region is filled, each point in the
region is mapped onto the fill mask. When a bit from the mask is one, the pixel value of the
corresponding point is set using the current plotting action with the current color; when the
bit is zero, the pixel value of that point is not affected.

When the fill mask is not set, a fill operation will set all points in the fill region to have a
pixel value of the current color. By default, no fill mask is set.

Returns: Thesetfillmask function does not return a value.

See Also: getfillmask,ellipse,floodfill,rectangle,polygon,pie,setcolor,setplotaction
Example: #include <conio.h>

#include <graph.h>charoldmask[8];charnewmask[8]={0x81,0x42,0x24,0x18,
0x18, 0x24, 0x42, 0x81 };

main()
{ setvideomode(VRES16COLOR);getfillmask(oldmask);setfillmask(newmask);rectangle(GFILLINTERIOR,100,100,540,380);setfillmask(oldmask);

getch();setvideomode(DEFAULTMODE);
}

produces the following:

 707

_setfillmask

Classification: _setfillmask is PC Graphics

Systems: DOS, QNX

708

_setfont

Synopsis: #include <graph.h>shortFARsetfont(charFAR*opt);
Description: Thesetfont function selects a font from the list of registered fonts (see theregisterfonts function). The font selected becomes the current font and is used

whenever text is displayed with theoutgtext function. The function will fail if no fonts
have been registered, or if a font cannot be found that matches the given characteristics.

The argument opt is a string of characters specifying the characteristics of the desired font.
These characteristics determine which font is selected. The options may be separated by
blanks and are not case-sensitive. Any number of options may be specified and in any order.
The available options are:

hX character height X (in pixels)

wX character width X (in pixels)

f choose a fixed-width font

p choose a proportional-width font

r choose a raster (bit-mapped) font

v choose a vector font

b choose the font that best matches the options

nX choose font number X (the number of fonts is returned by theregisterfonts function)

t’facename’ choose a font with specified facename

The facename option is specified as a "t" followed by a facename enclosed in single quotes.
The available facenames are:

Courier fixed-width raster font with serifs

Helv proportional-width raster font without serifs

Tms Rmn proportional-width raster font with serifs

Script proportional-width vector font that appears similar to hand-writing

 709

_setfont

Modern proportional-width vector font without serifs

Roman proportional-width vector font with serifs

When "nX" is specified to select a particular font, the other options are ignored.

If the best fit option ("b") is specified,setfont will always be able to select a font. The
font chosen will be the one that best matches the options specified. The following
precedence is given to the options when selecting a font:

1. Pixel height (higher precedence is given to heights less than the specified height)

2. Facename

3. Pixel width

4. Font type (fixed or proportional)

When a pixel height or width does not match exactly and a vector font has been selected, the
font will be stretched appropriately to match the given size.

Returns: Thesetfont function returns zero if successful; otherwise, (-1) is returned.

See Also: registerfonts,unregisterfonts,getfontinfo,outgtext,getgtextextent,setgtextvector,getgtextvector

710

_setfont

Example: #include <conio.h>
#include <stdio.h>
#include <graph.h>

main()
{

int i, n;
char buf[10];setvideomode(VRES16COLOR);n=registerfonts("*.fon");
for(i = 0; i < n; ++i) {

sprintf(buf, "n%d", i);setfont(buf);moveto(100,100);outgtext("WATCOMGraphics");
getch();clearscreen(GCLEARSCREEN);

}unregisterfonts();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

 711

_setgtextvector

Synopsis: #include <graph.h>structxycoordFARsetgtextvector(shortx,shorty);
Description: Thesetgtextvector function sets the orientation for text output used by theoutgtext function to the vector specified by the arguments (x,y). Each of the

arguments can have a value of -1, 0 or 1, allowing for text to be displayed at any multiple of
a 45-degree angle. The default text orientation, for normal left-to-right text, is the vector
(1,0).

Returns: Thesetgtextvector function returns, as an xycoord structure, the previous value of
the text orientation vector.

See Also: registerfonts,unregisterfonts,setfont,getfontinfo,outgtext,getgtextextent,getgtextvector
Example: #include <conio.h>

#include <graph.h>

main()
{structxycoordoldvec;setvideomode(VRES16COLOR);oldvec=getgtextvector();setgtextvector(0,�1);moveto(100,100);outgtext("WATCOMGraphics");setgtextvector(oldvec.xcoord,oldvec.ycoord);

getch();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

712

setjmp

Synopsis: #include <setjmp.h>intsetjmp(jmpbufenv);
Description: The setjmp function saves its calling environment in its

jmpbuf argument, for
subsequent use by the longjmp function.

In some cases, error handling can be implemented by using setjmp to record the point to
which a return will occur following an error. When an error is detected in a called function,
that function uses longjmp to jump back to the recorded position. The original function
which called setjmp must still be active (it cannot have returned to the function which
called it).

Special care must be exercised to ensure that any side effects that are left undone (allocated
memory, opened files, etc.) are satisfactorily handled.

Returns: The setjmp function returns zero when it is initially called. The return value will be
non-zero if the return is the result of a call to the longjmp function. An if statement is
often used to handle these two returns. When the return value is zero, the initial call to
setjmp has been made; when the return value is non-zero, a return from a longjmp has
just occurred.

See Also: longjmp

Example: #include <stdio.h>
#include <setjmp.h>jmpbufenv;
rtn()

{
printf("about to longjmp\n");
longjmp(env, 14);

}

 713

setjmp

void main()
{intretval=293;if(0==(retval=setjmp(env))){printf("aftersetjmp%d\n",retval);

rtn();printf("backfromrtn%d\n",retval);
} else {printf("backfromlongjmp%d\n",retval);
}

}

produces the following:

after setjmp 0
about to longjmp
back from longjmp 14

Classification: ANSI

Systems: MACRO

714

_setlinestyle

Synopsis: #include <graph.h>voidFARsetlinestyle(unsignedshortstyle);
Description: Thesetlinestyle function sets the current line-style mask to the value of the style

argument.

The line-style mask determines the style by which lines and arcs are drawn. The mask is
treated as an array of 16 bits. As a line is drawn, a pixel at a time, the bits in this array are
cyclically tested. When a bit in the array is 1, the pixel value for the current point is set using
the current color according to the current plotting action; otherwise, the pixel value for the
point is left unchanged. A solid line would result from a value of 0xFFFF and a dashed line
would result from a value of 0xF0F0

The default line style mask is 0xFFFF

Returns: Thesetlinestyle function does not return a value.

See Also: getlinestyle,lineto,rectangle,polygon,setplotaction
Example: #include <conio.h>

#include <graph.h>

#define DASHED 0xf0f0

main()
{unsignedoldstyle;setvideomode(VRES16COLOR);oldstyle=getlinestyle();setlinestyle(DASHED);rectangle(GBORDER,100,100,540,380);setlinestyle(oldstyle);

getch();setvideomode(DEFAULTMODE);
}

produces the following:

 715

_setlinestyle

Classification: PC Graphics

Systems: DOS, QNX

716

setlocale, _wsetlocale

Synopsis: #include <locale.h>
char *setlocale(int category, const char *locale);wchart*wsetlocale(intcategory,constwchart*locale);

Description: The setlocale function selects a portion of a program’s locale according to the category
given by category and the locale specified by locale. A locale affects the collating sequence
(the order in which characters compare with one another), the way in which certain
character-handling functions operate, the decimal-point character that is used in formatted
input/output and string conversion, and the format and names used in the time string
produced by the strftime function.

Potentially, there may be many such environments. Watcom C/C++ supports only the "C"
locale and so invoking this function will have no effect upon the behavior of a program at
present.

The possible values for the argument category are as follows:

Category Meaning

LC_ALL select entire environment

LC_COLLATE select collating sequence

LC_CTYPE select the character-handling

LC_MESSAGES

LC_MONETARY select monetary formatting information

LC_NUMERIC select the numeric-format environment

LC_TIME select the time-related environment

At the start of a program, the equivalent of the following statement is executed.setlocale(LCALL,"C");
Thewsetlocale function is a wide-character version of setlocale that operates with
wide-character strings.

Returns: If the selection is successful, a string is returned to indicate the locale that was in effect
before the function was invoked; otherwise, a NULL pointer is returned.

 717

setlocale, _wsetlocale

See Also: strcoll, strftime, strxfrm

Example: #include <stdio.h>
#include <string.h>
#include <locale.h>

char src[] = { "A sample STRING" };
char dst[20];

void main()
{char*prevlocale;sizetlen;

/* set native locale */prevlocale=setlocale(LCALL,"");printf("%s\n",prevlocale);
len = strxfrm(dst, src, 20);
printf("%s (%u)\n", dst, len);

}

produces the following:

C
A sample STRING (15)

Classification: setlocale is ANSI, POSIX 1003.1, _wsetlocale is not ANSI

Systems: setlocale - All, Netwarewsetlocale�All

718

setmode

Synopsis: #include <unistd.h>
#include <fcntl.h>
int setmode(int fildes, int mode);

Description: The setmode is provided for compatibility with other systems. setmode performs no
useful action under QNX.

Returns: setmode always returns
OBINARY

 under QNX. This manifest is defined in the
<fcntl.h> header file.

See Also: chsize, close, creat, dup, dup2, eof, exec Functions, fdopen, filelength,
fileno, fstat, lseek, open, read, sopen, stat, tell, write, umask

Example: #include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

void main(void)
{

FILE *fp;
long count;

fp = fopen("file", "rb");
if(fp != NULL) {setmode(fileno(fp),OBINARY);

count = 0L;
while(fgetc(fp) != EOF) ++count;
printf("File contains %lu characters\n",

count);
fclose(fp);

}
}

Classification: WATCOM

Systems: All, Netware

 719

set_new_handler, _set_new_handler

Synopsis: #include <new.h>PFVsetnewhandler(PFVpNewHandler);PFUsetnewhandler(PFUpNewHandler);
Description: Thesetnewhandler functions are used to transfer control to a user-defined error

handler if the new operator fails to allocate memory. The argument pNewHandler is the
name of a function of type PFV or PFU.

Type Description

PFV Pointer to a function that returns void (i.e., returns nothing) and takes
an argument of type void (i.e., takes no argument).

PFU Pointer to a function that returns int and takes an argument of type
unsigned which is the amount of space to be allocated.

In a multi-threaded environment, handlers are maintained separately for each process and
thread. Each new process lacks installed handlers. Each new thread gets a copy of its parent
thread’s new handlers. Thus, each process and thread is in charge of its own free-store error
handling.

Returns: Thesetnewhandler functions return a pointer to the previous error handler so that the
previous error handler can be reinstated at a later time.

The error handler specified as the argument tosetnewhandler returns zero
indicating that further attempts to allocate memory should be halted or non-zero to indicate
that an allocation request should be re-attempted.

See Also:
bfreeseg,bheapseg, calloc, free, malloc, realloc

Example: #include <stdio.h>
#include <new.h>#ifdefined(386)constsizetMemBlock=8192;
#elseconstsizetMemBlock=2048;
#endif

720

set_new_handler, _set_new_handler

/*
Pre-allocate a memory block for demonstration
purposes. The out-of-memory handler will return
it to the system so that "new" can use it.

*/

long *failsafe = new long[MemBlock];

/*
Declare a customized function to handle memory
allocation failure.

*/intoutofmemoryhandler(unsignedsize)
{

printf("Allocation failed, ");
printf("%u bytes not available.\n", size);
/* Release pre-allocated memory if we can */
if(failsafe == NULL) {

printf("Halting allocation.\n");
/* Tell new to stop allocation attempts */
return(0);

} else {
delete failsafe;
failsafe = NULL;
printf("Retrying allocation.\n");
/* Tell new to retry allocation attempt */
return(1);

}
}

void main(void)
{

int i;

/* Register existence of a new memory handler */setnewhandler(outofmemoryhandler);
long *pmemdump = new long[MemBlock];
for(i=1 ; pmemdump != NULL; i++) {

pmemdump = new long[MemBlock];
if(pmemdump != NULL)

printf("Another block allocated %d\n", i);
}

}

Classification: WATCOM

 721

set_new_handler, _set_new_handler

Systems:setnewhandler�All,Netwaresetnewhandler�All,Netware

722

_setpixel Functions

Synopsis: #include <graph.h>shortFARsetpixel(shortx,shorty);shortFARsetpixelw(doublex,doubley);
Description: Thesetpixel function sets the pixel value of the point (x,y) using the current plotting

action with the current color. Thesetpixel function uses the view coordinate system.
Thesetpixelw function uses the window coordinate system.

A pixel value is associated with each point. The values range from 0 to the number of colors
(less one) that can be represented in the palette for the current video mode. The color
displayed at the point is the color in the palette corresponding to the pixel number. For
example, a pixel value of 3 causes the fourth color in the palette to be displayed at the point
in question.

Returns: Thesetpixel functions return the previous value of the indicated pixel if the pixel value
can be set; otherwise, (-1) is returned.

See Also: getpixel,setcolor,setplotaction
Example: #include <conio.h>

#include <graph.h>
#include <stdlib.h>

main()
{

int x, y;
unsigned i;setvideomode(VRES16COLOR);rectangle(GBORDER,100,100,540,380);
for(i = 0; i <= 60000; ++i) {

x = 101 + rand() % 439;
y = 101 + rand() % 279;setcolor(getpixel(x,y)+1);setpixel(x,y);

}
getch();setvideomode(DEFAULTMODE);

}

Classification: _setpixel is PC Graphics

Systems: setpixel�DOS,QNX
 723

_setpixel Functionssetpixelw�DOS,QNX

724

_setplotaction

Synopsis: #include <graph.h>shortFARsetplotaction(shortaction);
Description: Thesetplotaction function sets the current plotting action to the value of the action

argument.

The drawing functions cause pixels to be set with a pixel value. By default, the value to be
set is obtained by replacing the original pixel value with the supplied pixel value.
Alternatively, the replaced value may be computed as a function of the original and the
supplied pixel values.

The plotting action can have one of the following values:

_GPSET replace the original screen pixel value with the supplied pixel
value

_GAND replace the original screen pixel value with the bitwise and of the
original pixel value and the supplied pixel value

_GOR replace the original screen pixel value with the bitwise or of the
original pixel value and the supplied pixel value

_GXOR replace the original screen pixel value with the bitwise
exclusive-or of the original pixel value and the supplied pixel
value. Performing this operation twice will restore the original
screen contents, providing an efficient method to produce
animated effects.

Returns: The previous value of the plotting action is returned.

See Also: getplotaction

 725

_setplotaction

Example: #include <conio.h>
#include <graph.h>

main()
{intoldact;setvideomode(VRES16COLOR);oldact=getplotaction();setplotaction(GPSET);rectangle(GFILLINTERIOR,100,100,540,380);

getch();setplotaction(GXOR);rectangle(GFILLINTERIOR,100,100,540,380);
getch();setplotaction(oldact);setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

726

_settextalign

Synopsis: #include <graph.h>voidFARsettextalign(shorthoriz,shortvert);
Description: Thesettextalign function sets the current text alignment to the values specified by

the arguments horiz and vert. When text is displayed with thegrtext function, it is
aligned (justified) horizontally and vertically about the given point according to the current
text alignment settings.

The horizontal component of the alignment can have one of the following values:

_NORMAL use the default horizontal alignment for the current setting of the
text path

_LEFT the text string is left justified at the given point

_CENTER the text string is centred horizontally about the given point

_RIGHT the text string is right justified at the given point

The vertical component of the alignment can have one of the following values:

_NORMAL use the default vertical alignment for the current setting of the text
path

_TOP the top of the text string is aligned at the given point

_CAP the cap line of the text string is aligned at the given point

_HALF the text string is centred vertically about the given point

_BASE the base line of the text string is aligned at the given point

_BOTTOM the bottom of the text string is aligned at the given point

The default is to use
LEFT alignment for the horizontal component unless the text path isPATHLEFT, in which case
RIGHT

 alignment is used. The default value for the vertical
component is
TOP unless the text path isPATHUP, in which case

BOTTOM
 alignment

is used.

Returns: Thesettextalign function does not return a value.

See Also: grtext,gettextsettings
 727

_settextalign

Example: #include <conio.h>
#include <graph.h>

main()
{ setvideomode(VRES16COLOR);grtext(200,100,"WATCOM");setpixel(200,100);settextalign(CENTER,HALF);grtext(200,200,"Graphics");setpixel(200,200);

getch();setvideomode(DEFAULTMODE);
}

produces the following:

Classification: PC Graphics

Systems: DOS, QNX

728

_settextcolor

Synopsis: #include <graph.h>shortFARsettextcolor(shortpixval);
Description: Thesettextcolor function sets the current text color to be the color indicated by the

pixel value of the pixval argument. This is the color value used for displaying text with theouttext andoutmem functions. Use thesetcolor function to change the color of
graphics output. The default text color value is set to 7 whenever a new video mode is
selected.

The pixel value pixval is a number in the range 0-31. Colors in the range 0-15 are displayed
normally. In text modes, blinking colors are specified by adding 16 to the normal color
values. The following table specifies the default colors in color text modes.

Pixel Color Pixel Color
value value

0 Black 8 Gray
1 Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Light Magenta
6 Brown 14 Yellow
7 White 15 Bright White

Returns: Thesettextcolor function returns the pixel value of the previous text color.

See Also: gettextcolor,outtext,outmem,setcolor

 729

_settextcolor

Example: #include <conio.h>
#include <graph.h>

main()
{intoldcol;longoldbk;setvideomode(TEXTC80);oldcol=gettextcolor();oldbk=getbkcolor();settextcolor(7);setbkcolor(BLUE);outtext("WATCOM\nGraphics");settextcolor(oldcol);setbkcolor(oldbk);

getch();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

730

_settextcursor

Synopsis: #include <graph.h>shortFARsettextcursor(shortcursor);
Description: Thesettextcursor function sets the attribute, or shape, of the cursor in text modes.

The argument cursor specifies the new cursor shape. The cursor shape is selected by
specifying the top and bottom rows in the character matrix. The high byte of cursor specifies
the top row of the cursor; the low byte specifies the bottom row.

Some typical values for cursor are:

Cursor Shape

0x0607 normal underline cursor
0x0007 full block cursor
0x0407 half-height block cursor
0x2000 no cursor

Returns: Thesettextcursor function returns the previous cursor shape when the shape is set
successfully; otherwise, (-1) is returned.

See Also: gettextcursor,displaycursor
Example: #include <conio.h>

#include <graph.h>

main()
{intoldshape;oldshape=gettextcursor();settextcursor(0x0007);outtext("\nBlockcursor");

getch();settextcursor(0x0407);outtext("\nHalfheightcursor");
getch();settextcursor(0x2000);outtext("\nNocursor");
getch();settextcursor(oldshape);

}

Classification: PC Graphics

 731

_settextcursor

Systems: DOS, QNX

732

_settextorient

Synopsis: #include <graph.h>voidFARsettextorient(shortvecx,shortvecy);
Description: Thesettextorient function sets the current text orientation to the vector specified by

the arguments (vecx,vecy). The text orientation specifies the direction of the base-line
vector when a text string is displayed with thegrtext function. The default text
orientation, for normal left-to-right text, is the vector (1,0).

Returns: Thesettextorient function does not return a value.

See Also: grtext,gettextsettings
Example: #include <conio.h>

#include <graph.h>

main()
{ setvideomode(VRES16COLOR);grtext(200,100,"WATCOM");settextorient(1,1);grtext(200,200,"Graphics");

getch();setvideomode(DEFAULTMODE);
}

produces the following:

 733

_settextorient

Classification: PC Graphics

Systems: DOS, QNX

734

_settextpath

Synopsis: #include <graph.h>voidFARsettextpath(shortpath);
Description: Thesettextpath function sets the current text path to have the value of the path

argument. The text path specifies the writing direction of the text displayed by thegrtext function. The argument can have one of the following values:

_PATH_RIGHT subsequent characters are drawn to the right of the previous
character

_PATH_LEFT subsequent characters are drawn to the left of the previous
character

_PATH_UP subsequent characters are drawn above the previous character

_PATH_DOWN subsequent characters are drawn below the previous character

The default value of the text path isPATHRIGHT.
Returns: Thesettextpath function does not return a value.

See Also: grtext,gettextsettings
Example: #include <conio.h>

#include <graph.h>

main()
{ setvideomode(VRES16COLOR);grtext(200,100,"WATCOM");settextpath(PATHDOWN);grtext(200,200,"Graphics");

getch();setvideomode(DEFAULTMODE);
}

produces the following:

 735

_settextpath

Classification: PC Graphics

Systems: DOS, QNX

736

_settextposition

Synopsis: #include <graph.h>structrccoordFARsettextposition(shortrow,
short col);

Description: Thesettextposition function sets the current output position for text to be
(row,col) where this position is in terms of characters, not pixels.

The text position is relative to the current text window. It defaults to the top left corner of
the screen, (1,1), when a new video mode is selected, or when a new text window is set.
The position is updated as text is drawn with theouttext andoutmem functions.

Note that the output position for graphics output differs from that for text output. The output
position for graphics output can be set by use of themoveto function.

Also note that output to the standard output file, stdout, is line buffered by default. It
may be necessary to flush the output stream using fflush(stdout) after a printf
call if your output does not contain a newline character. Mixing of calls toouttext and
printf may cause overlapped text sinceouttext uses the output position that was set
bysettextposition.

Returns: Thesettextposition function returns, as an rccoord structure, the previous output
position for text.

See Also: gettextposition,outtext,outmem,settextwindow,moveto
Example: #include <conio.h>

#include <graph.h>

main()
{structrccoordoldpos;setvideomode(TEXTC80);oldpos=gettextposition();settextposition(10,40);outtext("WATCOMGraphics");settextposition(oldpos.row,oldpos.col);

getch();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

 737

_settextposition

Systems: DOS, QNX

738

_settextrows

Synopsis: #include <graph.h>shortFARsettextrows(shortrows);
Description: Thesettextrows function selects the number of rows of text displayed on the screen.

The number of rows is specified by the argument rows. Computers equipped with EGA,
MCGA and VGA adapters can support different numbers of text rows. The number of rows
that can be selected depends on the current video mode and the type of monitor attached.

If the argument rows has the value _MAXTEXTROWS, the maximum number of text rows
will be selected for the current video mode and hardware configuration. In text modes the
maximum number of rows is 43 for EGA adapters, and 50 for MCGA and VGA adapters.
Some graphics modes will support 43 rows for EGA adapters and 60 rows for MCGA and
VGA adapters.

Returns: Thesettextrows function returns the number of screen rows when the number of rows
is set successfully; otherwise, zero is returned.

See Also: getvideoconfig,setvideomode,setvideomoderows

 739

_settextrows

Example: #include <conio.h>
#include <graph.h>
#include <stdio.h>intvalidrows[]={

14, 25, 28, 30,
34, 43, 50, 60

};

main()
{

int i, j, rows;
char buf[80];

for(i = 0; i < 8; ++i) {rows=validrows[i];if(settextrows(rows)==rows){
for(j = 1; j <= rows; ++j) {

sprintf(buf, "Line %d", j);settextposition(j,1);outtext(buf);
}
getch();

}
}setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

740

_settextwindow

Synopsis: #include <graph.h>voidFARsettextwindow(shortrow1,shortcol1,
short row2, short col2);

Description: Thesettextwindow function sets the text window to be the rectangle with a top left
corner at (row1,col1) and a bottom right corner at (row2,col2). These coordinates
are in terms of characters not pixels.

The initial text output position is (1,1). Subsequent text positions are reported (by thegettextposition function) and set (by theouttext,outmem andsettextposition functions) relative to this rectangle.

Text is displayed from the current output position for text proceeding along the current row
and then downwards. When the window is full, the lines scroll upwards one line and then
text is displayed on the last line of the window.

Returns: Thesettextwindow function does not return a value.

See Also: gettextposition,outtext,outmem,settextposition
Example: #include <conio.h>

#include <graph.h>
#include <stdio.h>

main()
{

int i;
short r1, c1, r2, c2;
char buf[80];setvideomode(TEXTC80);gettextwindow(&r1,&c1,&r2,&c2);settextwindow(5,20,20,40);
for(i = 1; i <= 20; ++i) {

sprintf(buf, "Line %d\n", i);outtext(buf);
}
getch();settextwindow(r1,c1,r2,c2);setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

 741

_settextwindow

Systems: DOS, QNX

742

setvbuf

Synopsis: #include <stdio.h>
int setvbuf(FILE *fp,

char *buf,
int mode,sizetsize);

Description: The setvbuf function can be used to associate a buffer with the file designated by fp. If
this function is used, it must be called after the file has been opened and before it has been
read or written. The argument mode determines how the file fp will be buffered, as follows:

Mode Meaning

_IOFBF causes input/output to be fully buffered.

_IOLBF causes output to be line buffered (the buffer will be flushed when a new-line
character is written, when the buffer is full, or when input is requested on a
line buffered or unbuffered stream).

_IONBF causes input/output to be completely unbuffered.

If the argument buf is not NULL, the array to which it points will be used instead of an
automatically allocated buffer. The argument size specifies the size of the array.

Returns: The setvbuf function returns zero on success, or a non-zero value if an invalid value is
given for mode or size.

See Also: fopen, setbuf

Example: #include <stdio.h>
#include <stdlib.h>

void main()
{

char *buf;
FILE *fp;

fp = fopen("file", "r");
buf = (char *) malloc(1024);setvbuf(fp,buf,IOFBF,1024);

}

Classification: ANSI

 743

setvbuf

Systems: All, Netware

744

_setvideomode

Synopsis: #include <graph.h>shortFARsetvideomode(shortmode);
Description: Thesetvideomode function sets the video mode according to the value of the mode

argument. The value of mode can be one of the following:

Mode Type Size Colors AdapterMAXRESMODE(graphicsmodewithhighestresolution)MAXCOLORMODE(graphicsmodewithmostcolors)DEFAULTMODE(restoresscreentooriginalmode)TEXTBW40M,T40x2516MDPA,HGC,VGA,SVGATEXTC40C,T40x2516CGA,EGA,MCGA,VGA,SVGATEXTBW80M,T80x2516MDPA,HGC,VGA,SVGATEXTC80C,T80x2516CGA,EGA,MCGA,VGA,SVGAMRES4COLORC,G320x2004CGA,EGA,MCGA,VGA,SVGAMRESNOCOLORC,G320x2004CGA,EGA,MCGA,VGA,SVGAHRESBWC,G640x2002CGA,EGA,MCGA,VGA,SVGATEXTMONOM,T80x2516MDPA,HGC,VGA,SVGAHERCMONOM,G720x3502HGCMRES16COLORC,G320x20016EGA,VGA,SVGAHRES16COLORC,G640x20016EGA,VGA,SVGAERESNOCOLORM,G640x3504EGA,VGA,SVGAERESCOLORC,G640x3504/16EGA,VGA,SVGAVRES2COLORC,G640x4802MCGA,VGA,SVGAVRES16COLORC,G640x48016VGA,SVGAMRES256COLORC,G320x200256MCGA,VGA,SVGAURES256COLORC,G640x400256SVGAVRES256COLORC,G640x480256SVGASVRES16COLORC,G800x60016SVGASVRES256COLORC,G800x600256SVGAXRES16COLORC,G1024x76816SVGAXRES256COLORC,G1024x768256SVGA

In the preceding table, the Type column contains the following letters:

M indicates monochrome; multiple colors are shades of grey

C indicates color

G indicates graphics mode; size is in pixels

T indicates text mode; size is in columns and rows of characters

 745

_setvideomode

The Adapter column contains the following codes:

MDPA IBM Monochrome Display/Printer Adapter

CGA IBM Color Graphics Adapter

EGA IBM Enhanced Graphics Adapter

VGA IBM Video Graphics Array

MCGA IBM Multi-Color Graphics Array

HGC Hercules Graphics Adapter

SVGA SuperVGA adapters

The modes
MAXRESMODE

 and
MAXCOLORMODE

 will select from among the video modes
supported by the current graphics adapter the one that has the highest resolution or the
greatest number of colors. The video mode will be selected from the standard modes, not
including the SuperVGA modes.

Selecting a new video mode resets the current output positions for graphics and text to be the
top left corner of the screen. The background color is reset to black and the default color
value is set to be one less than the number of colors in the selected mode.

Returns: Thesetvideomode function returns the number of text rows when the new mode is
successfully selected; otherwise, zero is returned.

See Also: getvideoconfig,settextrows,setvideomoderows

746

_setvideomode

Example: #include <conio.h>
#include <graph.h>
#include <stdio.h>
#include <stdlib.h>

main()
{

int mode;
struct videoconfig vc;
char buf[80];getvideoconfig(&vc);
/* select "best" video mode */
switch(vc.adapter) {caseVGA:caseSVGA:mode=VRES16COLOR;

break;caseMCGA:mode=MRES256COLOR;
break;caseEGA:if(vc.monitor==MONO){mode=ERESNOCOLOR;
} else {mode=ERESCOLOR;
}
break;caseCGA:mode=MRES4COLOR;
break;caseHERCULES:mode=HERCMONO;
break;

default :
puts("No graphics adapter");
exit(1);

}if(setvideomode(mode)){getvideoconfig(&vc);
sprintf(buf, "%d x %d x %d\n", vc.numxpixels,

vc.numypixels, vc.numcolors);outtext(buf);
getch();setvideomode(DEFAULTMODE);

}
}

 747

_setvideomode

Classification: PC Graphics

Systems: DOS, QNX

748

_setvideomoderows

Synopsis: #include <graph.h>shortFARsetvideomoderows(shortmode,shortrows);
Description: Thesetvideomoderows function selects a video mode and the number of rows of text

displayed on the screen. The video mode is specified by the argument mode and is selected
with thesetvideomode function. The number of rows is specified by the argument
rows and is selected with thesettextrows function.

Computers equipped with EGA, MCGA and VGA adapters can support different numbers of
text rows. The number of rows that can be selected depends on the video mode and the type
of monitor attached.

Returns: Thesetvideomoderows function returns the number of screen rows when the mode
and number of rows are set successfully; otherwise, zero is returned.

See Also: getvideoconfig,setvideomode,settextrows
Example: #include <conio.h>

#include <graph.h>
#include <stdio.h>

main()
{

int rows;
char buf[80];rows=setvideomoderows(TEXTC80,MAXTEXTROWS);
if(rows != 0) {

sprintf(buf, "Number of rows is %d\n", rows);outtext(buf);
getch();setvideomode(DEFAULTMODE);

}
}

Classification: PC Graphics

Systems: DOS, QNX

 749

_setvieworg

Synopsis: #include <graph.h>structxycoordFARsetvieworg(shortx,shorty);
Description: Thesetvieworg function sets the origin of the view coordinate system, (0,0), to be

located at the physical point (x,y). This causes subsequently drawn images to be
translated by the amount (x,y).

Note: In previous versions of the software, thesetvieworg function was calledsetlogorg.
Returns: Thesetvieworg function returns, as an xycoord structure, the physical coordinates of

the previous origin.

See Also: getviewcoord,getphyscoord,setcliprgn,setviewport
Example: #include <conio.h>

#include <graph.h>

main()
{ setvideomode(VRES16COLOR);setvieworg(320,240);ellipse(GBORDER,�200,�150,200,150);

getch();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

750

_setviewport

Synopsis: #include <graph.h>voidFARsetviewport(shortx1,shorty1,
short x2, short y2);

Description: Thesetviewport function restricts the display of graphics output to the clipping region
and then sets the origin of the view coordinate system to be the top left corner of the region.
This region is a rectangle whose opposite corners are established by the physical points
(x1,y1) and (x2,y2).

Thesetviewport function does not affect text output using theouttext andoutmem functions. To control the location of text output, see thesettextwindow
function.

Returns: Thesetviewport function does not return a value.

See Also: setcliprgn,setvieworg,settextwindow,setwindow
Example: #include <conio.h>

#include <graph.h>

#define XSIZE 380
#define YSIZE 280

main()
{ setvideomode(VRES16COLOR);setviewport(130,100,130+XSIZE,100+YSIZE);ellipse(GBORDER,0,0,XSIZE,YSIZE);

getch();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

 751

_setvisualpage

Synopsis: #include <graph.h>shortFARsetvisualpage(shortpagenum);
Description: Thesetvisualpage function selects the page (in memory) from which graphics output

is displayed. The page to be selected is given by the pagenum argument.

Only some combinations of video modes and hardware allow multiple pages of graphics to
exist. When multiple pages are supported, the active page may differ from the visual page.
The graphics information in the visual page determines what is displayed upon the screen.
Animation may be accomplished by alternating the visual page. A graphics page can be
constructed without affecting the screen by setting the active page to be different than the
visual page.

The number of available video pages can be determined by using thegetvideoconfig
function. The default video page is 0.

Returns: Thesetvisualpage function returns the number of the previous page when the visual
page is set successfully; otherwise, a negative number is returned.

See Also: getvisualpage,setactivepage,getactivepage,getvideoconfig

752

_setvisualpage

Example: #include <conio.h>
#include <graph.h>

main()
{intoldapage;intoldvpage;setvideomode(HRES16COLOR);oldapage=getactivepage();oldvpage=getvisualpage();

/* draw an ellipse on page 0 */setactivepage(0);setvisualpage(0);ellipse(GFILLINTERIOR,100,50,540,150);
/* draw a rectangle on page 1 */setactivepage(1);rectangle(GFILLINTERIOR,100,50,540,150);
getch();
/* display page 1 */setvisualpage(1);
getch();setactivepage(oldapage);setvisualpage(oldvpage);setvideomode(DEFAULTMODE);

}

Classification: PC Graphics

Systems: DOS, QNX

 753

_setwindow

Synopsis: #include <graph.h>shortFARsetwindow(shortinvert,
double x1, double y1,
double x2, double y2);

Description: Thesetwindow function defines a window for the window coordinate system. Window
coordinates are specified as a user-defined range of values. This allows for consistent
pictures regardless of the video mode.

The window is defined as the region with opposite corners established by the points
(x1,y1) and (x2,y2). The argument invert specifies the direction of the y-axis. If the
value is non-zero, the y values increase from the bottom of the screen to the top, otherwise,
the y values increase as you move down the screen.

The window defined by thesetwindow function is displayed in the current viewport. A
viewport is defined by thesetviewport function.

By default, the window coordinate system is defined with the point (0.0,0.0) located at
the lower left corner of the screen, and the point (1.0,1.0) at the upper right corner.

Returns: Thesetwindow function returns a non-zero value when the window is set successfully;
otherwise, zero is returned.

See Also: setviewport

754

_setwindow

Example: #include <conio.h>
#include <graph.h>

main()
{ setvideomode(MAXRESMODE);drawhouse("Defaultwindow");setwindow(1,�0.5,�0.5,1.5,1.5);drawhouse("Largerwindow");setwindow(1,0.0,0.0,0.5,1.0);drawhouse("Leftside");setvideomode(DEFAULTMODE);
}drawhouse(char*msg)
{ clearscreen(GCLEARSCREEN);outtext(msg);rectanglew(GBORDER,0.2,0.1,0.8,0.6);movetow(0.1,0.5);linetow(0.5,0.9);linetow(0.9,0.5);arcw(0.4,0.5,0.6,0.3,0.6,0.4,0.4,0.4);rectanglew(GBORDER,0.4,0.1,0.6,0.4);

getch();
}

Classification: PC Graphics

Systems: DOS, QNX

 755

signal

Synopsis: #include <signal.h>
void (*signal(int sig, void (*func)(int)))(int);

Description: The signal function is used to specify an action to take place when certain conditions are
detected while a program executes. See the <signal.h> header file for definitions of
these conditions, and also refer to the System Architecture manual.

There are three types of actions that can be associated with a signal:
SIGDFL,SIGIGN, or a pointer to a function. Initially, all signals are set to
SIGDFL or
SIGIGN

prior to entry of the main() routine. An action can be specified for each of the conditions,
depending upon the value of the func argument:

function When func is a function name, that function will be called equivalently to the
following code sequence.

 /*"signo"isconditionbeingsignalled*/signal(signo,SIGDFL);(*func)(signo);
The func function may terminate the program by calling the exit or abort
functions or call the longjmp function. Because the next signal will be
handled with default handling, the program must again call signal if it is
desired to handle the next condition of the type that has been signalled.

If you use longjmp to return from a signal handler, the signal will remain
masked. You can use siglongjmp to restore the mask to the state saved in
a previous call to sigsetjmp.

After returning from the signal-catching function, the receiving process will
resume execution at the point at which it was interrupted.

The signal catching function is described as follows:
 voidfunc(intsigno)

{

/* body of function */

}

It is not possible to catch the signals SIGKILL and SIGSTOP.

Since signal-catching functions are invoked asynchronously with process
execution, the typesigatomict may be used to define variables on

756

signal

which an atomic operation (e.g., incrementation, decrementation) may be
performed.

SIG_DFL This value causes the default action for the condition to occur.

If the default action is to stop the process, the execution of that process is
temporarily suspended. When a process stops, a SIGCHLD signal is
generated for its parent process, unless the parent process has set theSANOCLDSTOP flag (see sigaction). While a process is stopped, any
additional signals that are sent to the process are not delivered until the
process is continued, except SIGKILL, which always terminates the
receiving process.

Setting a signal action to
SIGDFL for a signal that is pending, and whose

default action is to ignore the signal (e.g., SIGCHLD), will cause the pending
signal to be discarded, whether or not it is blocked.

SIG_IGN This value causes the indicated condition to be ignored.

The action for the signals SIGKILL or SIGSTOP cannot be set toSIGIGN.
Setting a signal action to
SIGIGN

 for a signal that is pending will cause the
pending signal to be discarded, whether or not it is blocked.

If a process sets the action for the SIGCHLD signal to
SIGIGN, the

behaviour is unspecified.

When a condition is detected, it may be handled by a program, it may be ignored, or it may
be handled by the usual default action (often causing an error message to be printed upon the
stderr stream followed by program termination).

A condition can be generated by a program using the raise function.

Returns: A return value of
SIGERR

 indicates that the request could not be handled, and errno is
set to the value EINVAL.

Otherwise, the previous value of func for the indicated condition is returned.

See Also: raise

 757

signal

Example: #include <stdio.h>
#include <signal.h>
#include <i86.h>

/* SIGINT Test */sigatomictsignalcount;sigatomictsignalnumber;
void MyIntHandler(int signo)
{signalcount++;signalnumber=signo;
}

void MyBreakHandler(int signo)
{signalcount++;signalnumber=signo;
}

int main(void)
{

int i;signalcount=0;signalnumber=0;
signal(SIGINT, MyIntHandler);
signal(SIGBREAK, MyBreakHandler);
printf("Press Ctrl/C or Ctrl/Break\n");
for(i = 0; i < 50; i++) {

printf("Iteration # %d\n", i);
delay(500); /* sleep for 1/2 second */if(signalcount>0)break;

}
printf("SIGINT count %d number %d\n",signalcount,signalnumber);

758

signalsignalcount=0;signalnumber=0;signal(SIGINT,SIGDFL);/*Defaultaction*/signal(SIGBREAK,SIGDFL);/*Defaultaction*/
printf("Default signal handling\n");
for(i = 0; i < 50; i++) {

printf("Iteration # %d\n", i);
delay(500); /* sleep for 1/2 second */if(signalcount>0)break;/*Won’thappen*/

}return(signalcount);
}

Classification: ANSI

Systems: All, Netware

 759

signbit

Synopsis: #include <math.h>
int signbit(x);

Description: The signbit macro determines whether the sign of its argument value is negative.

The argument x must be an expression of real floating type.

Returns: The signbit macro returns a nonzero value if and only if the sign of its argument has
value is negative.

See Also: fpclassify, isfinite, isinf, isnan, isnormal

Example: #include <math.h>
#include <stdio.h>

void main(void)
{

printf("-4.5 %s negative\n",
signbit(-4.5) ? "is" : "is not");

}

produces the following:

-4.5 is negative

Classification: ANSI

Systems: MACRO

760

sin

Synopsis: #include <math.h>
double sin(double x);

Description: The sin function computes the sine of x (measured in radians). A large magnitude
argument may yield a result with little or no significance.

Returns: The sin function returns the sine value.

See Also: acos, asin, atan, atan2, cos, tan

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", sin(.5));
}

produces the following:

0.479426

Classification: ANSI

Systems: Math

 761

sinh

Synopsis: #include <math.h>
double sinh(double x);

Description: The sinh function computes the hyperbolic sine of x. A range error occurs if the magnitude
of x is too large.

Returns: The sinh function returns the hyperbolic sine value. When the argument is outside the
permissible range, the matherr function is called. Unless the default matherr function is
replaced, it will set the global variable errno to ERANGE, and print a "RANGE error"
diagnostic message using the stderr stream.

See Also: cosh, tanh, matherr

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", sinh(.5));
}

produces the following:

0.521095

Classification: ANSI

Systems: Math

762

sleep

Synopsis: #include <unistd.h>
unsigned int sleep(unsigned int seconds);

Description: The sleep function suspends the calling process until the number of real time seconds
specified by the seconds argument have elapsed, or a signal whose action is to either
terminate the process or call a signal handler is received. The suspension time may be
greater than the requested amount due to the scheduling of other, higher priority activity by
the system.

Returns: The sleep function returns zero if the full time specified was completed; otherwise it
returns the number of seconds unslept if interrupted by a signal. If an error occurs, an
(unsigned)(-1) is returned and errno will be set.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

EAGAIN No timer resources available to satisfy the request.

See Also: delay

Example: /*
* The following program sleeps for the
* number of seconds specified in argv[1].
*/

#include <stdlib.h>
#include <unistd.h>

void main(int argc, char *argv[])
{

unsigned seconds;

seconds = (unsigned) strtol(argv[1], NULL, 0);
sleep(seconds);

}

Classification: POSIX 1003.1

Systems: All, Netware

 763

_snprintf, _snwprintf

Synopsis: #include <stdio.h>intsnprintf(char*buf,sizetcount,
const char *format, ...);

#include <wchar.h>intsnwprintf(wchart*buf,sizetcount,constwchart*format,...);
Description: Thesnprintf function is equivalent to the fprintf function, except that the argument

buf specifies a character array into which the generated output is placed, rather than to a file.
The maximum number of characters to store is specified by count. A null character is placed
at the end of the generated character string if fewer than count characters were stored. The
format string is described under the description of the printf function.

Thesnwprintf function is identical tosnprintf except that the argument buf
specifies an array of wide characters into which the generated output is to be written, rather
than converted to multibyte characters and written to a stream. The maximum number of
wide characters to store is specified by count. A null wide character is placed at the end of
the generated wide character string if fewer than count wide characters were stored. Thesnwprintf function accepts a wide-character string argument for format

Returns: Thesnprintf function returns the number of characters written into the array, not
counting the terminating null character, or a negative value if more than count characters
were requested to be generated. An error can occur while converting a value for output. Thesnwprintf function returns the number of wide characters written into the array, not
counting the terminating null wide character, or a negative value if more than count wide
characters were requested to be generated. When an error has occurred, errno contains a
value indicating the type of error that has been detected.

See Also:
bprintf, cprintf, fprintf, printf, sprintf,vbprintf, vcprintf,

vfprintf, vprintf, vsprintf

Example: #include <stdio.h>

/* Create temporary file names using a counter */

char namebuf[13];
int TempCount = 0;

764

_snprintf, _snwprintfchar*maketempname()
{snprintf(namebuf,13,"ZZ%.6o.TMP",TempCount++);

return(namebuf);
}

void main()
{

FILE *tf1, *tf2;tf1=fopen(maketempname(),"w");tf2=fopen(maketempname(),"w");
fputs("temp file 1", tf1);
fputs("temp file 2", tf2);
fclose(tf1);
fclose(tf2);

}

Classification: WATCOM

Systems: snprintf�All,Netwaresnwprintf�All

 765

snprintf, snwprintf

Synopsis: #include <stdio.h>
int snprintf(char *buf,sizetcount,

const char *format, ...);
#include <wchar.h>intsnwprintf(wchart*buf,sizetcount,constwchart*format,...);

Safer C: The Safer C Library extension provides thesnprintfs function which is a safer
alternative to snprintf. This newersnprintfs function is recommended to be used
instead of the traditional "unsafe" snprintf function.

Description: The snprintf function is equivalent to the fprintf function, except that the argument
buf specifies a character array into which the generated output is placed, rather than to a file.
A null character is placed at the end of the generated character string. The maximum number
of characters to store, including a terminating null character, is specified by count. The
format string is described under the description of the printf function.

The snwprintf function is identical to snprintf except that the argument buf specifies
an array of wide characters into which the generated output is to be written, rather than
converted to multibyte characters and written to a stream. The maximum number of wide
characters to store, including a terminating null wide character, is specified by count. The
snwprintf function accepts a wide-character string argument for format

Returns: The snprintf function returns the number of characters that would have been written had
count been sufficiently large, not counting the terminating null character, or a negative value
if an encoding error occurred. Thus, the null-terminated output has been completely written
if and only if the returned value is nonnegative and less than count. The snwprintf
function returns the number of wide characters that would have been written had count been
sufficiently large, not counting the terminating null wide character, or a negative value if an
encoding error occurred. Thus, the null-terminated output has been completely written if and
only if the returned value is nonnegative and less than count. When an error has occurred,
errno contains a value indicating the type of error that has been detected.

See Also:
bprintf, cprintf, fprintf, printf, sprintf,vbprintf, vcprintf,

vfprintf, vprintf, vsprintf

766

snprintf, snwprintf

Example: #include <stdio.h>
#include <stdlib.h>

/* Format output into a buffer after determining its size */

void main(void)
{

int bufsize;
char *buffer;

bufsize = snprintf(NULL, 0, "%3d %P", 42, 42);
buffer = malloc(bufsize + 1);
snprintf(buffer, bufsize + 1, "%3d %P", 42, 42);
free(buffer);

}

Classification: snprintf is ANSI, snwprintf is ANSI

Systems: snprintf - All, Netware
snwprintf - All

 767

snprintf_s, snwprintf_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdio.h>intsnprintfs(char*restricts,rsizetn

const char * restrict format, ...);
#include <wchar.h>intsnwprintfs(char*restricts,rsizetn,constwchart*restrictformat,...);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked andsnprintfs will return a non-zero value
to indicate an error, or the runtime-constraint handler aborts the program.

Neither s nor format shall be a null pointer. The n argument shall neither equal zero nor be
greater than
RSIZEMAX. The number of characters (including the trailing null) required

for the result to be written to the array pointed to by s shall not be greater than n. The %n
specifier (modified or not by flags, field width, or precision) shall not appear in the string
pointed to by format. Any argument tosnprintfs corresponding to a %s specifier shall
not be a null pointer. No encoding error shall occur.

If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than
zero and less than
RSIZEMAX, then thesnprintfs function sets s[0] to the null

character.

Description: Thesnprintfs function is equivalent to the snprintf function except for the explicit
runtime-constraints listed above.

Thesnprintfs function, unlikesprintfs, will truncate the result to fit within the
array pointed to by s.

Thesnwprintfs function is identical tosnprintfs except that it accepts a
wide-character string argument for format and produces wide character output.

Returns: Thesnprintfs function returns the number of characters that would have been written
had n been sufficiently large, not counting the terminating null character, or a negative value
if a runtime-constraint violation occurred. Thus, the null-terminated output has been
completely written if and only if the returned value is nonnegative and less than n.

Thesnprintfs function returns the number of wide characters that would have been
written had n been sufficiently large, not counting the terminating wide null character, or a
negative value if a runtime-constraint violation occurred. Thus, the null-terminated output
has been completely written if and only if the returned value is nonnegative and less than n.

768

snprintf_s, snwprintf_s

See Also:
bprintf, cprintf, fprintf, printf, sprintf,vbprintf, vcprintf,

vfprintf, vprintf, vsprintf

Example:
#defineSTDCWANTLIBEXT11
#include <stdio.h>
#include <stdlib.h>

/* Format output into a buffer after determining its size */

void main(void)
{

int bufsize;
char *buffer;

bufsize = snprintf(NULL, 0, "%3d %P", 42, 42) + 1;
buffer = malloc(bufsize);snprintfs(buffer,bufsize,"%3d%P",42,42);
free(buffer);

}

Classification: snprintf_s is TR 24731, snwprintf_s is TR 24731

Systems:snprintfs�All,Netwaresnwprintfs�All

 769

sopen

Synopsis: #include <unistd.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <share.h>
int sopen(const char *filename,

int access, int share, ...);

Description: The sopen function opens a file at the operating system level for shared access. The name
of the file to be opened is given by filename. The file will be accessed according to the
access mode specified by access. When the file is to be created, the optional argument must
be given which establishes the future access permissions for the file. Additionally, the
sharing mode of the file is given by the share argument. The optional argument is the file
permissions to be used when
OCREAT

 flag is on in the access mode.

The access mode is established by a combination of the bits defined in the <fcntl.h>
header file. The following bits may be set:

Mode Meaning

O_RDONLY permit the file to be only read.

O_WRONLY permit the file to be only written.

O_RDWR permit the file to be both read and written.

O_APPEND causes each record that is written to be written at the end of the
file.

O_CREAT has no effect when the file indicated by filename already exists;
otherwise, the file is created;

O_TRUNC causes the file to be truncated to contain no data when the file
exists; has no effect when the file does not exist.

O_TEMP indicates that this file is to be treated as "temporary". It is a
request to keep the data in cache, if possible, for fast access to
temporary files.

O_EXCL indicates that this file is to be opened for exclusive access. If the
file exists and
OCREAT

 was also specified then the open will fail
(i.e., use
OEXCL

 to ensure that the file does not already exist).

770

sopenOCREAT
 must be specified when the file does not exist and it is to be written.

When the file is to be created (
OCREAT

 is specified), an additional argument must be
passed which contains the file permissions to be used for the new file. The access
permissions for the file or directory are specified as a combination of bits (defined in the
<sys/stat.h> header file).

The following bits define permissions for the owner.

Permission Meaning

S_IRWXU Read, write, execute/search
S_IRUSR Read permission
S_IWUSR Write permission
S_IXUSR Execute/search permission

The following bits define permissions for the group.

Permission Meaning

S_IRWXG Read, write, execute/search
S_IRGRP Read permission
S_IWGRP Write permission
S_IXGRP Execute/search permission

The following bits define permissions for others.

Permission Meaning

S_IRWXO Read, write, execute/search
S_IROTH Read permission
S_IWOTH Write permission
S_IXOTH Execute/search permission

The following bits define miscellaneous permissions used by other implementations.

Permission Meaning

S_IREAD is equivalent to S_IRUSR (read permission)
S_IWRITE is equivalent to S_IWUSR (write permission)
S_IEXEC is equivalent to S_IXUSR (execute/search permission)

The sopen function applies the current file permission mask to the specified permissions
(see umask).

 771

sopen

The shared access for the file, share, is established by a combination of bits defined in the
<share.h> header file. The following values may be set:

Value Meaning

SH_COMPAT Set compatibility mode.
SH_DENYRW Prevent read or write access to the file.
SH_DENYWR Prevent write access of the file.
SH_DENYRD Prevent read access to the file.
SH_DENYNO Permit both read and write access to the file.

Note that

open(path, oflag, ...);

is the same as:
 sopen(path,oflag,SHCOMPAT,...);

Note that the sopen function call ignores advisory locks which may have been set by the
fcntl, lock, or locking functions.

Returns: If successful, sopen returns a descriptor for the file. When an error occurs while opening
the file, -1 is returned. When an error has occurred, errno contains a value indicating the
type of error that has been detected.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

EACCES Access denied because path specifies a directory or a volume ID, or
sharing mode denied due to a conflicting open.

EMFILE No more descriptors available (too many open files)

ENOENT Path or file not found

See Also: chsize, close, creat, dup, dup2, eof, exec Functions, fdopen, filelength,
fileno, fstat, lseek, open, read, setmode, stat, tell, write, umask

772

sopen

Example: #include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <share.h>

void main()
{

int fildes;

/* open a file for output */
/* replace existing file if it exists */

fildes = sopen("file",OWRONLY|OCREAT|OTRUNC,SHDENYWR,SIRUSR|SIWUSR|SIRGRP|SIWGRP);
/* read a file which is assumed to exist */fildes=sopen("file",ORDONLY,SHDENYWR);
/* append to the end of an existing file */
/* write a new file if file does not exist */

fildes = sopen("file",OWRONLY|OCREAT|OAPPEND,SHDENYWR,SIRUSR|SIWUSR|SIRGRP|SIWGRP);
}

Classification: WATCOM

Systems: All, Netware

 773

sound

Synopsis: #include <i86.h>
void sound(unsigned frequency);

Description: The sound function turns on the PC’s speaker at the specified frequency. The frequency is
in Hertz (cycles per second). The speaker can be turned off by calling the nosound
function after an appropriate amount of time.

When you use the sound function, your program must be linked for privity level 1 and the
process must be run by the superuser. See the Watcom C/C++ User’s Guide discussion of
privity levels and the documentation of the Watcom Linker PRIVILEGE option.
WARNING: The sound function only works if either the program is owned by root and
is setuid, or if the invoking user is root.

Returns: The sound function has no return value.

See Also: delay, nosound

Example: #include <i86.h>

/*
The numbers in this table are the timer divisors
necessary to produce the pitch indicated in the
lowest octave that is supported by the "sound"
function.

To raise the pitch by N octaves, simply divide the
number in the table by 2**N since a pitch which is
an octave above another has double the frequency of
the original pitch.

The frequency obtained by these numbers is given by
1193180 / X where X is the number obtained in the
table.

*/

774

sound

unsigned short Notes[] = {
19327 , /* C b */
18242 , /* C */
17218 , /* C # (D b) */
16252 , /* D */
15340 , /* D # (E b) */
14479 , /* E (F b) */
13666 , /* F (E #) */
12899 , /* F # (G b) */
12175 , /* G */
11492 , /* G # (A b) */
10847 , /* A */
10238 , /* A # (B b) */
9664 , /* B (C b) */
9121 , /* B # */
0

};

#define FACTOR 1193180
#define OCTAVE 4

void main() /* play the scale */
{

int i;
for(i = 0; Notes[i]; ++i) {

sound(FACTOR / (Notes[i] / (1 << OCTAVE)));
delay(200);
nosound();

}
}

Classification: Intel

Systems: DOS, Windows, Win386, QNX

 775

spawn Functions

Synopsis: #include <process.h>
int spawnl(mode, path, arg0, arg1..., argn, NULL);
int spawnle(mode, path, arg0, arg1..., argn, NULL, envp);
int spawnlp(mode, file, arg0, arg1..., argn, NULL);
int spawnlpe(mode, file, arg0, arg1..., argn, NULL, envp);
int spawnv(mode, path, argv);
int spawnve(mode, path, argv, envp);
int spawnvp(mode, file, argv);
int spawnvpe(mode, file, argv, envp);

int mode; /* mode for parent */
const char *path; /* file name incl. path */
const char *file; /* file name */
const char *arg0, ..., *argn; /* arguments */
const char *const argv[]; /* array of arguments */
const char *const envp[]; /* environment strings */intwspawnl(mode,path,arg0,arg1...,argn,NULL);intwspawnle(mode,path,arg0,arg1...,argn,NULL,envp);intwspawnlp(mode,file,arg0,arg1...,argn,NULL);intwspawnlpe(mode,file,arg0,arg1...,argn,NULL,envp);intwspawnv(mode,path,argv);intwspawnve(mode,path,argv,envp);intwspawnvp(mode,file,argv);intwspawnvpe(mode,file,argv,envp);
int mode; /* mode for parent */constwchart*path;/*filenameincl.path*/constwchart*file;/*filename*/constwchart*arg0,...,*argn;/*arguments*/constwchart*constargv[];/*arrayofarguments*/constwchart*constenvp[];/*environmentstrings*/

Description: The spawn functions create and execute a new child process, named by pgm. The value of
mode determines how the program is loaded and how the invoking program will behave after
the invoked program is initiated:

Mode Meaning

P_WAIT The invoked program is loaded into available memory, is executed,
and then the original program resumes execution.

P_NOWAIT Causes the current program to execute concurrently with the new
child process.

P_NOWAITO Causes the current program to execute concurrently with the new
child process. The wait function cannot be used to obtain the exit
code.

776

spawn Functions

P_OVERLAY The invoked program replaces the original program in memory and
is executed. No return is made to the original program. This is
equivalent to calling the appropriate exec function.

1. The "l" form of the spawn functions (spawnl...) contain an argument list
terminated by a NULL pointer. The argument arg0 should point to a filename that
is associated with the program being loaded.

2. The "v" form of the spawn functions (spawnv...) contain a pointer to an argument
vector. The value in argv[0] should point to a filename that is associated with the
program being loaded. The last member of argv must be a NULL pointer. The
value of argv cannot be NULL, but argv[0] can be a NULL pointer if no argument
strings are passed.

3. The "p" form of the spawn functions (spawnlp..., spawnvp...) use paths listed in
the "PATH" environment variable to locate the program to be loaded provided that
the following conditions are met. The argument file identifies the name of
program to be loaded. If no path character (/) is included in the name, an attempt
is made to load the program from one of the paths in the "PATH" environment
variable. If "PATH" is not defined, the current working directory is used. If a
path character (/) is included in the name, the program is loaded as in the
following point.

4. If a "p" form of the spawn functions is not used, path must identify the program to
be loaded, including a path if required. Unlike the "p" form of the spawn
functions, only one attempt is made to locate and load the program.

5. The "e" form of the spawn functions (spawn...e) pass a pointer to a new
environment for the program being loaded. The argument envp is an array of
character pointers to null-terminated strings. The array of pointers is terminated
by a NULL pointer. The value of envp cannot be NULL, but envp[0] can be a
NULL pointer if no environment strings are passed.

An error is detected when the program cannot be found.

Arguments are passed to the child process by supplying one or more pointers to character
strings as arguments in the spawn call.

The arguments may be passed as a list of arguments (spawnl, spawnle, spawnlp and
spawnlpe) or as a vector of pointers (spawnv, spawnve, spawnvp, and spawnvpe).
At least one argument, arg0 or argv[0], must be passed to the child process. By convention,
this first argument is a pointer to the name of the program.

 777

spawn Functions

If the arguments are passed as a list, there must be a NULL pointer to mark the end of the
argument list. Similarly, if a pointer to an argument vector is passed, the argument vector
must be terminated by a NULL pointer.

The environment for the invoked program is inherited from the parent process when you use
the spawnl, spawnlp, spawnv and spawnvp functions. The spawnle, spawnlpe,
spawnve and spawnvpe functions allow a different environment to be passed to the child
process through the envp argument. The argument envp is a pointer to an array of character
pointers, each of which points to a string defining an environment variable. The array is
terminated with a NULL pointer. Each pointer locates a character string of the form

variable=value

that is used to define an environment variable. If the value of envp is NULL, then the child
process inherits the environment of the parent process.

The environment is the collection of environment variables whose values that have been
defined with the QNX export command or by the successful execution of the putenv or
setenv functions. A program may read these values with the getenv function. The
wide-characterwspawnl,wspawnle,wspawnlp,wspawnlpe,wspawnv,wspawnve,wspawnvp andwspawnvpe functions are similar to their counterparts
but operate on wide-character strings.

The following example invokes "myprog" as if myprog ARG1 ARG2 had been entered as
a command to QNX.

 spawnl(PWAIT,"myprog",
"myprog", "ARG1", "ARG2", NULL);

The program will be found if "myprog" is found in the current working directory.

The following example includes a new environment for "myprog".
 char*envlist[]={"SOURCE=MYDATA",

"TARGET=OUTPUT",
"lines=65",
NULL

};spawnle(PWAIT,"myprog",
"myprog", "ARG1", "ARG2", NULL,envlist);

The environment for the invoked program will consist of the three environment variables
SOURCE, TARGET and lines.

778

spawn Functions

The following example is another variation on the first example.
 char*arglist[]={"myprog","ARG1","ARG2",NULL};spawnv(PWAIT,"myprog",arglist);

Returns: When the value of mode is:

Mode Meaning

P_WAIT then the return value from spawn is the exit status of the child
process.

P_NOWAIT then the return value from spawn is the process id (or process
handle under Win32) of the child process. To obtain the exit code
for a process spawned withPNOWAIT, you must call the wait
(under OS/2 or QNX) function specifying the process id/handle. If
the child process terminated normally, then the low order byte of the
returned status word will be set to 0, and the high order byte will
contain the low order byte of the return code that the child process
passed to the DOSEXIT function.

P_NOWAITO then the return value from spawn is the process id of the child
process. The exit code cannot be obtained for a process spawned
withPNOWAITO.

When an error is detected while invoking the indicated program, spawn returns -1 and
errno is set to indicate the error.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected. See theqnxspawn function for a description of possible errno values.

See Also: abort, atexit, exec Functions, exit,exit, getcmd, getenv, main, putenv,
system, wait

Example:

 779

spawn Functions

#include <stdio.h>
#include <stdlib.h>
#include <process.h>
#include <errno.h>
#include <string.h>

void main()
{intprocessid;#ifdefined(OS2)||defined(NT)

int status, rc;
#endifprocessid=spawnl(PNOWAIT,"child.exe",

"child", "5", NULL);if(processid==�1){
printf("spawn failed - %s\n", strerror(errno));exit(EXITFAILURE);

}printf("Processid=%d\n",processid);#ifdefined(OS2)||defined(NT)rc=cwait(&status,processid,WAITCHILD);
if(rc == -1) {

printf("wait failed - %s\n", strerror(errno));
} else {

printf("wait succeeded - %x\n", status);
switch(status & 0xff) {
case 0:

printf("Normal termination exit code = %d\n",
status >> 8);

break;
case 1:

printf("Hard-error abort\n");
break;

case 2:
printf("Trap operation\n");
break;

case 3:
printf("SIGTERM signal not intercepted\n");
break;

default:
printf("Bogus return status\n");

}
}

#endif
printf("spawn completed\n");

}

780

spawn Functions

/*
[child.c]
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>

void main(int argc, char *argv[])
{

int delay;

if(argc <= 1)exit(EXITFAILURE);
delay = atoi(argv[1]);
printf("I am a child going to sleep "

"for %d seconds\n", delay);
sleep(delay);
printf("I am a child awakening\n");
exit(123);

}
*/

Classification: WATCOM

Systems: spawnl - DOS, Win32, QNX, OS/2 1.x(all), OS/2-32
spawnle - DOS, Win32, QNX, OS/2 1.x(all), OS/2-32
spawnlp - DOS, Win32, QNX, OS/2 1.x(all), OS/2-32, Netware
spawnlpe - DOS, Win32, QNX, OS/2 1.x(all), OS/2-32
spawnv - DOS, Win32, QNX, OS/2 1.x(all), OS/2-32
spawnve - DOS, Win32, QNX, OS/2 1.x(all), OS/2-32
spawnvp - DOS, Win32, QNX, OS/2 1.x(all), OS/2-32, Netware
spawnvpe - DOS, Win32, QNX, OS/2 1.x(all), OS/2-32

 781

_splitpath, _wsplitpath

Synopsis: #include <stdlib.h>voidsplitpath(constchar*path,
char *node,
char *dir,
char *fname,
char *ext);voidwsplitpath(constwchart*path,wchart*node,wchart*dir,wchart*fname,wchart*ext);

Description: Thesplitpath function splits up a full pathname into four components consisting of a
node specification (e.g., //2), directory path (e.g., /home/fred), file name (e.g., myfile) and
file name extension or suffix (e.g., .dat). The argument path points to a buffer containing the
full pathname to be split up.

Thewsplitpath function is a wide-character version ofsplitpath that operates
with wide-character strings.

The maximum size required for each buffer is specified by the manifest constantsMAXPATH,MAXNODE,MAXDIR,MAXFNAME, and
MAXEXT

 which are
defined in <stdlib.h>.

node The node argument points to a buffer that will be filled in with the node
specification (e.g., //0, //1, etc.) if a node is specified in the full pathname.

dir The dir argument points to a buffer that will be filled in with the pathname
including the trailing slash.

fname The fname argument points to a buffer that will be filled in with the base name
of the file without any extension (suffix) if a file name is specified in the full
pathname (filled in bysplitpath).

ext The ext argument points to a buffer that will be filled in with the filename
extension (suffix) including the leading period if an extension is specified in
the full pathname (filled in bysplitpath). If more than one period
appears in the filename, the suffix consists of the final period and characters
following it. If ext is a NULL pointer then the extension or suffix is included
with the file name.

The arguments node, dir, fname and ext will not be filled in if they are NULL pointers.

782

_splitpath, _wsplitpath

For each component of the full pathname that is not present, its corresponding buffer will be
set to an empty string.

Returns: Thesplitpath function returns no value.

See Also:
fullpath,makepath,splitpath2

Example: #include <stdio.h>
#include <stdlib.h>

void main()
{charfullpath[MAXPATH];charnode[MAXNODE];chardir[MAXDIR];charfname[MAXFNAME];charext[MAXEXT];makepath(fullpath,"//0","/home/fred/h","stdio","h");printf("Fullpathis:%s\n\n",fullpath);splitpath(fullpath,node,dir,fname,ext);printf("Componentsaftersplitpath\n");

printf("node: %s\n", node);
printf("dir: %s\n", dir);
printf("fname: %s\n", fname);
printf("ext: %s\n", ext);

}

produces the following:

Full path is: //0/home/fred/h/stdio.hComponentsaftersplitpath
node: //0
dir: /home/fred/h/
fname: stdio
ext: .h

Classification: WATCOM

Systems: splitpath�All,Netwarewsplitpath�All
 783

_splitpath2, _wsplitpath2

Synopsis: #include <stdlib.h>voidsplitpath2(constchar*inp,
char *outp,
char **node,
char **dir,
char **fname,
char **ext);voidwsplitpath2(constwchart*inp,wchart*outp,wchart**node,wchart**dir,wchart**fname,wchart**ext);

Description: Thesplitpath2 function splits up a full pathname into four components consisting of a
node specification (e.g., //2), directory path (e.g., /home/fred), file name (e.g., myfile) and
file name extension or suffix (e.g., dat).

inp The argument inp points to a buffer containing the full pathname to be split up.

outp The argument outp points to a buffer that will contain all the components of
the path, each separated by a null character. The maximum size required for
this buffer is specified by the manifest constant

MAXPATH2 which is
defined in <stdlib.h>.

node The node argument is the location that is to contain the pointer to the node
specification (e.g., //0, //1, etc.) if a node is specified in the full pathname
(filled in bysplitpath2).

dir The dir argument is the location that is to contain the pointer to the directory
path including the trailing slash if a directory path is specified in the full
pathname (filled in bysplitpath2).

fname The fname argument is the location that is to contain the pointer to the base
name of the file without any extension (suffix) if a file name is specified in the
full pathname (filled in bysplitpath2).

ext The ext argument is the location that is to contain the pointer to the filename
extension (suffix) including the leading period if an extension is specified in
the full pathname (filled in bysplitpath2). If more than one period
appears in the filename, the suffix consists of the final period and characters
following it. If ext is a NULL pointer then the extension or suffix is included
with the file name.

784

_splitpath2, _wsplitpath2

The arguments node, dir, fname and ext will not be filled in if they are NULL pointers.

For each component of the full pathname that is not present, its corresponding pointer will be
set to point at a NULL string (’\0’).

This function reduces the amount of memory space required when compared to the
splitpath function.

Thewsplitpath2 function is a wide-character version ofsplitpath2 that operates
with wide-character strings.

Returns: Thesplitpath2 function returns no value.

See Also:
fullpath,makepath,splitpath

Example: #include <stdio.h>
#include <stdlib.h>

void main()
{charfullpath[MAXPATH];chartmppath[MAXPATH2];

char *node;
char *dir;
char *fname;
char *ext;makepath(fullpath,"c","watcomc\\h","stdio","h");printf("Fullpathis:%s\n\n",fullpath);splitpath2(fullpath,tmppath,

&node, &dir, &fname, &ext);printf("Componentsaftersplitpath2\n");
printf("node: %s\n", node);
printf("dir: %s\n", dir);
printf("fname: %s\n", fname);
printf("ext: %s\n", ext);

}

produces the following:

 785

_splitpath2, _wsplitpath2

Full path is: //0/home/fred/h/stdio.hComponentsaftersplitpath2
node: //0
dir: /home/fred/h/
fname: stdio
ext: .h

Classification: WATCOM

Systems: splitpath2�Allwsplitpath2�All

786

sprintf, swprintf

Synopsis: #include <stdio.h>
int sprintf(char *buf, const char *format, ...);
#include <wchar.h>intswprintf(wchart*buf,sizetn,constwchart*format,...);

Safer C: The Safer C Library extension provides thesprintfs function which is a safer
alternative to sprintf. This newersprintfs function is recommended to be used
instead of the traditional "unsafe" sprintf function.

Description: The sprintf function is equivalent to the fprintf function, except that the argument buf
specifies a character array into which the generated output is placed, rather than to a file. A
null character is placed at the end of the generated character string. The format string is
described under the description of the printf function.

The swprintf function is identical to sprintf except that the argument buf specifies an
array of wide characters into which the generated output is to be written, rather than
converted to multibyte characters and written to a stream. The maximum number of wide
characters to write, including a terminating null wide character, is specified by n. The
swprintf function accepts a wide-character string argument for format

Returns: The sprintf function returns the number of characters written into the array, not counting
the terminating null character. An error can occur while converting a value for output. The
swprintf function returns the number of wide characters written into the array, not
counting the terminating null wide character, or a negative value if n or more wide characters
were requested to be generated. When an error has occurred, errno contains a value
indicating the type of error that has been detected.

See Also:
bprintf, cprintf, fprintf, printf,vbprintf, vcprintf, vfprintf,

vprintf, vsprintf

Example: #include <stdio.h>

/* Create temporary file names using a counter */

char namebuf[13];
int TempCount = 0;

 787

sprintf, swprintfchar*maketempname(void)
{

sprintf(namebuf, "zz%.6o.tmp", TempCount++);
return(namebuf);

}

void main(void)
{

FILE *tf1, *tf2;tf1=fopen(maketempname(),"w");tf2=fopen(maketempname(),"w");
fputs("temp file 1", tf1);
fputs("temp file 2", tf2);
fclose(tf1);
fclose(tf2);

}

Classification: sprintf is ANSI, swprintf is ANSI

Systems: sprintf - All, Netware
swprintf - All

788

sprintf_s, swprintf_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdio.h>intsprintfs(char*restricts,rsizetn

const char * restrict format, ...);
#include <wchar.h>intswprintfs(char*restricts,rsizetn,constwchart*restrictformat,...);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked andsprintfs will return a non-zero value to
indicate an error, or the runtime-constraint handler aborts the program.

Neither s nor format shall be a null pointer. The n argument shall neither equal zero nor be
greater than
RSIZEMAX. The number of characters (including the trailing null) required

for the result to be written to the array pointed to by s shall not be greater than n. The %n
specifier (modified or not by flags, field width, or precision) shall not appear in the string
pointed to by format. Any argument tosprintfs corresponding to a %s specifier shall
not be a null pointer. No encoding error shall occur.

If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than
zero and less than
RSIZEMAX, then thesprintfs function sets s[0] to the null

character.

Description: Thesprintfs function is equivalent to the sprintf function except for the explicit
runtime-constraints listed above.

Thesprintfs function, unlikesnprintfs, treats a result too big for the array
pointed to by s as a runtime-constraint violation.

Theswprintfs function is identical tosprintfs except that it accepts a
wide-character string argument for format and produces wide character output.

Returns: If no runtime-constraint violation occurred, thesprintfs function returns the number of
characters written in the array, not counting the terminating null character. If an encoding
error occurred,sprintfs returns a negative value. If any other runtime-constraint
violation occurred,sprintfs returns zero.

If no runtime-constraint violation occurred, theswprintfs function returns the number
of wide characters written in the array, not counting the terminating null wide character. If
an encoding error occurred or if n or more wide characters are requested to be written,swprintfs returns a negative value. If any other runtime-constraint violation occurred,swprintfs returns zero.

 789

sprintf_s, swprintf_s

See Also:
bprintf, cprintf, fprintf, printf, sprintf,vbprintf, vcprintf,

vfprintf, vprintf, vsprintf

Example:
#defineSTDCWANTLIBEXT11
#include <stdio.h>

/* Create temporary file names using a counter */

char namebuf[13];
int TempCount = 0;char*maketempname(void)
{sprintfs(namebuf,sizeof(namebuf),

"zz%.6o.tmp", TempCount++);
return(namebuf);

}

void main(void)
{

FILE *tf1, *tf2;tf1=fopen(maketempname(),"w");tf2=fopen(maketempname(),"w");
fputs("temp file 1", tf1);
fputs("temp file 2", tf2);
fclose(tf1);
fclose(tf2);

}

Classification: sprintf_s is TR 24731, swprintf_s is TR 24731

Systems:sprintfs�All,Netwareswprintfs�All

790

sqrt

Synopsis: #include <math.h>
double sqrt(double x);

Description: The sqrt function computes the non-negative square root of x. A domain error occurs if
the argument is negative.

Returns: The sqrt function returns the value of the square root. When the argument is outside the
permissible range, the matherr function is called. Unless the default matherr function is
replaced, it will set the global variable errno to EDOM, and print a "DOMAIN error"
diagnostic message using the stderr stream.

See Also: exp, log, pow, matherr

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", sqrt(.5));
}

produces the following:

0.707107

Classification: ANSI

Systems: Math

 791

srand

Synopsis: #include <stdlib.h>
void srand(unsigned int seed);

Description: The srand function uses the argument seed to start a new sequence of pseudo-random
integers to be returned by subsequent calls to rand. A particular sequence of
pseudo-random integers can be repeated by calling srand with the same seed value. The
default sequence of pseudo-random integers is selected with a seed value of 1.

Returns: The srand function returns no value.

See Also: rand

Example: #include <stdio.h>
#include <stdlib.h>

void main()
{

int i;

srand(982);
for(i = 1; i < 10; ++i) {

printf("%d\n", rand());
}
srand(982); /* start sequence over again */
for(i = 1; i < 10; ++i) {

printf("%d\n", rand());
}

}

Classification: ANSI

Systems: All, Netware

792

sscanf, swscanf

Synopsis: #include <stdio.h>intsscanf(constchar*instring,
const char *format, ...);

#include <wchar.h>intswscanf(constwchart*instring,constwchart*format,...);
Safer C: The Safer C Library extension provides thesscanfs function which is a safer alternative

to sscanf. This newersscanfs function is recommended to be used instead of the
traditional "unsafe" sscanf function.

Description: The sscanf function scans input from the character string in_string under control of the
argument format. Following the format string is the list of addresses of items to receive
values.

The format string is described under the description of the scanf function.

The swscanf function is identical to sscanf except that it accepts a wide-character string
argument for format and the input string in_string consists of wide characters.

Returns: The sscanf function returns EOF if the end of the input string was reached before any
input conversion. Otherwise, the number of input arguments for which values were
successfully scanned and stored is returned.

See Also: cscanf, fscanf, scanf, vcscanf, vfscanf, vscanf, vsscanf

Example: #include <stdio.h>

/* Scan a date in the form "Saturday April 18 1987" */

void main(void)
{

int day, year;
char weekday[10], month[10];

sscanf("Friday August 0014 1987",
"%s %s %d %d",
weekday, month, &day, &year);

printf("%s %s %d %d\n",
weekday, month, day, year);

}

produces the following:

 793

sscanf, swscanf

Friday August 14 1987

Classification: sscanf is ISO C90, swscanf is ISO C95

Systems: sscanf - All, Netware
swscanf - All

794

sscanf_s, swscanf_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdio.h>intsscanfs(constchar*restricts,

const char * restrict format, ...);
#include <wchar.h>intswscanfs(constwchart*restricts,constwchart*restrictformat,...);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked andsscanfs will return a non-zero value to
indicate an error, or the runtime-constraint handler aborts the program.

Neither s not format shall be a null pointer. Any argument indirected through in order to
store converted input shall not be a null pointer.

If there is a runtime-constraint violation, thesscanfs function does not attempt to
perform further input, and it is unspecified to what extentsscanfs performed input
before discovering the runtime-constraint violation.

Description: Thesscanfs function is equivalent to
fscanfs, except that input is obtained from a

string (specified by the argument s) rather than from a stream. Reaching the end of the string
is equivalent to encountering end-of-file for the

fscanfs function. If copying takes place
between objects that overlap, the objects take on unspecified values.

Theswscanfs function is identical tosscanfs except that it accepts wide-character
string arguments for s and format.

Returns: Thesscanfs function returns EOF if an input failure occurred before any conversion or if
there was a runtime-constraint violation. Otherwise, thesscanfs function returns the
number of input items successfully assigned, which can be fewer than provided for, or even
zero.

When a file input error occurs, the errno global variable may be set.

See Also: cscanf, fscanf, scanf, sscanf, vcscanf, vfscanf, vscanf, vsscanf

Example:
#defineSTDCWANTLIBEXT11
#include <stdio.h>

void main(void)
{

int day, year;
char weekday[10], month[10];

 795

sscanf_s, swscanf_ssscanfs("FridayAugust00132004",
"%s %s %d %d",
weekday, sizeof(weekday),
month, sizeof(month),
&day, &year);printfs("%s%s%d%d\n",
weekday, month, day, year);

}

produces the following:

Friday August 13 2004

Classification: sscanf_s is TR 24731, swscanf_s is TR 24731

Systems:sscanfs�All,Netwareswscanfs�All

796

stackavail

Synopsis: #include <malloc.h>sizetstackavail(void);
Description: The stackavail function returns the number of bytes currently available in the stack.

This value is usually used to determine an appropriate amount to allocate using alloca.

Returns: The stackavail function returns the number of bytes currently available in the stack.

See Also: alloca, calloc Functions, malloc Functions

Example: #include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <fcntl.h>
#include <unistd.h>longcharcount(FILE*fp)

{
char *buffer;sizetbufsiz;
long count;

/* allocate half of stack for temp buffer */
bufsiz = stackavail() >> 1;
buffer = (char *) alloca(bufsiz);setvbuf(fp,buffer,IOFBF,bufsiz);
count = 0L;
while(fgetc(fp) != EOF) ++count;
fclose(fp);
return(count);

}

void main()
{

FILE *fp;

fp = fopen("file", "rb");
if(fp != NULL) {setmode(fileno(fp),OBINARY);

printf("File contains %lu characters\n",charcount(fp));
fclose(fp);

}
}

 797

stackavail

Classification: WATCOM

Systems: All, Netware

798

stat

Synopsis: #include <sys/stat.h>
int stat(const char *path, struct stat *buf);intstati64(constchar*path,structstati64*buf);intwstati64(constwchart*path,structstati64*buf);
int lstat(const char *path, struct stat *buf);

Description: The stat functions obtain information about the file or directory referenced in path. This
information is placed in the structure located at the address indicated by buf.

The file <sys/stat.h> contains definitions for the structure stat.

At least the following macros are defined in the <sys/stat.h> header file.

Macro Meaning

S_ISFIFO(m) Test for FIFO.

S_ISCHR(m) Test for character special file.

S_ISDIR(m) Test for directory file.

S_ISBLK(m) Test for block special file.

S_ISREG(m) Test for regular file.

S_ISLNK(m) Test for symbolic link.

The value m supplied to the macros is the value of thestmode field of a stat structure.
The macro evaluates to a non-zero value if the test is true and zero if the test is false.

The following bits are encoded within thestmode field of a stat structure.

Mask Owner Permissions

S_IRWXU Read, write, search (if a directory), or execute (otherwise)
S_IRUSR Read permission bit
S_IWUSR Write permission bit
S_IXUSR Search/execute permission bit
S_IREAD ==
SIRUSR

 (for Microsoft compatibility)
S_IWRITE ==
SIWUSR

 (for Microsoft compatibility)
S_IEXEC ==
SIXUSR

 (for Microsoft compatibility)SIRWXU
 is the bitwise inclusive OR of
SIRUSR,SIWUSR, and
SIXUSR.

 799

stat

Mask Group Permissions

S_IRWXG Read, write, search (if a directory), or execute (otherwise)
S_IRGRP Read permission bit
S_IWGRP Write permission bit
S_IXGRP Search/execute permission bitSIRWXG

 is the bitwise inclusive OR of
SIRGRP,SIWGRP, and
SIXGRP.

Mask Other Permissions

S_IRWXO Read, write, search (if a directory), or execute (otherwise)
S_IROTH Read permission bit
S_IWOTH Write permission bit
S_IXOTH Search/execute permission bitSIRWXO

 is the bitwise inclusive OR of
SIROTH,SIWOTH, and
SIXOTH.

Mask Meaning

S_ISUID Set user ID on execution. The process’s effective user ID shall be set to
that of the owner of the file when the file is run as a program. On a
regular file, this bit should be cleared on any write.

S_ISGID Set group ID on execution. Set effective group ID on the process to the
file’s group when the file is run as a program. On a regular file, this bit
should be cleared on any write.

The
fstati64,wfstat, andwfstati64 functions differ from stat in the type

of structure that they are asked to fill in. Thewfstat andwfstati64 functions deal
with wide character strings. The differences in the structures are described above. The
lstat function is identical to stat on non-UNIX platforms.

Returns: All forms of the stat function return zero when the information is successfully obtained.
Otherwise, -1 is returned.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

EACCES Search permission is denied for a component of path.

EIO A physical error occurred on the block device.

ENAMETOOLONG The argument path exceeds {PATH_MAX} in length, or a pathname
component is longer than {NAME_MAX}.

800

stat

ENOENT The named file does not exist or path is an empty string.

ENOTDIR A component of path is not a directory.

See Also: fstat

Example: #include <stdio.h>
#include <sys/stat.h>

void main()
{

struct stat buf;

if(stat("file", &buf) != -1) {printf("Filesize=%d\n",buf.stsize);
}

}

Classification: POSIX

Systems: All, Netware

 801

_status87

Synopsis: #include <float.h>unsignedintstatus87(void);
Description: Thestatus87 function returns the floating-point status word which is used to record the

status of 8087/80287/80387/80486 floating-point operations.

Returns: Thestatus87 function returns the floating-point status word which is used to record the
status of 8087/80287/80387/80486 floating-point operations. The description of this status is
found in the <float.h> header file.

See Also: clear87,control87,controlfp,finite,fpreset
Example: #include <stdio.h>

#include <float.h>#defineTESTFPU(x,y)printf("\t%s"y"\n",\((fpstatus&x)?"":"No"))
void main()

{unsignedintfpstatus;fpstatus=status87();
printf("80x87 status\n");TESTFPU(SWINVALID,"invalidoperation");TESTFPU(SWDENORMAL,"denormalizedoperand");TESTFPU(SWZERODIVIDE,"dividebyzero");TESTFPU(SWOVERFLOW,"overflow");TESTFPU(SWUNDERFLOW,"underflow");TESTFPU(SWINEXACT,"inexactresult");

}

Classification: Intel

Systems: Math

802

strcasecmp

Synopsis: #include <strings.h>
int strcasecmp(const char *s1, const char *s2);

Description: The strcasecmp function compares, with case insensitivity, the string pointed to by s1 to
the string pointed to by s2. All uppercase characters from s1 and s2 are mapped to lowercase
for the purposes of doing the comparison.

The strcasecmp function is identical to the stricmp function.

Returns: The strcasecmp function returns an integer less than, equal to, or greater than zero,
indicating that the string pointed to by s1 is, ignoring case, less than, equal to, or greater than
the string pointed to by s2.

See Also: strcmp, strcmpi, stricmp, strncmp, strnicmp, strncasecmp

Example: #include <stdio.h>
#include <strings.h>

int main(void)
{

printf("%d\n", strcasecmp("AbCDEF", "abcdef"));
printf("%d\n", strcasecmp("abcdef", "ABC"));
printf("%d\n", strcasecmp("abc", "ABCdef"));
printf("%d\n", strcasecmp("Abcdef", "mnopqr"));
printf("%d\n", strcasecmp("Mnopqr", "abcdef"));
return(0);

}

produces the following:

0
100
-100
-12
12

Classification: POSIX

Systems: All, Netware

 803

strcat, _fstrcat, wcscat

Synopsis: #include <string.h>
char *strcat(char *dst, const char *src);charfar*fstrcat(charfar*dst,constcharfar*src);
#include <wchar.h>wchart*wcscat(wchart*dst,constwchart*src);

Safer C: The Safer C Library extension provides the function which is a safer alternative to strcat.
This newerstrcats function is recommended to be used instead of the traditional
"unsafe" strcat function.

Description: The strcat function appends a copy of the string pointed to by src (including the
terminating null character) to the end of the string pointed to by dst. The first character of
src overwrites the null character at the end of dst.

The
fstrcat function is a data model independent form of the strcat function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

The wcscat function is a wide-character version of strcat that operates with
wide-character strings.

Returns: The value of dst is returned.

See Also: strncat

Example: #include <stdio.h>
#include <string.h>

void main()
{

char buffer[80];

strcpy(buffer, "Hello ");
strcat(buffer, "world");
printf("%s\n", buffer);

}

produces the following:

Hello world

Classification: strcat is ANSI, _fstrcat is not ANSI, wcscat is ANSI

804

strcat, _fstrcat, wcscat

Systems: strcat - All, Netwarefstrcat�All
wcscat - All

 805

strchr, _fstrchr, wcschr

Synopsis: #include <string.h>
char *strchr(const char *s, int c);charfar*fstrchr(constcharfar*s,intc);
#include <wchar.h>wchart*wcschr(constwchart*s,intc);

Description: The strchr function locates the first occurrence of c (converted to a char) in the string
pointed to by s. The terminating null character is considered to be part of the string.

The
fstrchr function is a data model independent form of the strchr function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

The wcschr function is a wide-character version of strchr that operates with
wide-character strings.

Returns: The strchr function returns a pointer to the located character, or NULL if the character
does not occur in the string.

See Also: memchr, strcspn, strrchr, strspn, strstr, strtok

Example: #include <stdio.h>
#include <string.h>

void main()
{

char buffer[80];
char *where;

strcpy(buffer, "video x-rays");
where = strchr(buffer, ’x’);
if(where == NULL) {

printf("’x’ not found\n");
}

}

Classification: strchr is ANSI, _fstrchr is not ANSI, wcschr is ANSI

Systems: strchr - All, Netwarefstrchr�All
wcschr - All

806

strcmp, _fstrcmp, wcscmp

Synopsis: #include <string.h>
int strcmp(const char *s1, const char *s2);intfstrcmp(constcharfar*s1,constcharfar*s2);
#include <wchar.h>intwcscmp(constwchart*s1,constwchart*s2);

Description: The strcmp function compares the string pointed to by s1 to the string pointed to by s2.

The
fstrcmp function is a data model independent form of the strcmp function that

accepts far pointer arguments. It is most useful in mixed memory model applications.

The wcscmp function is a wide-character version of strcmp that operates with
wide-character strings.

Returns: The strcmp function returns an integer less than, equal to, or greater than zero, indicating
that the string pointed to by s1 is less than, equal to, or greater than the string pointed to by
s2.

See Also: strcmpi, stricmp, strncmp, strnicmp

Example: #include <stdio.h>
#include <string.h>

void main()
{

printf("%d\n", strcmp("abcdef", "abcdef"));
printf("%d\n", strcmp("abcdef", "abc"));
printf("%d\n", strcmp("abc", "abcdef"));
printf("%d\n", strcmp("abcdef", "mnopqr"));
printf("%d\n", strcmp("mnopqr", "abcdef"));

}

produces the following:

0
1
-1
-1
1

Classification: strcmp is ANSI, _fstrcmp is not ANSI, wcscmp is ANSI

Systems: strcmp - All, Netware

 807

strcmp, _fstrcmp, wcscmpfstrcmp�All
wcscmp - All

808

strcmpi, wcscmpi

Synopsis: #include <string.h>
int strcmpi(const char *s1, const char *s2);intwcscmpi(constwchart*s1,constwchart*s2);

Description: The strcmpi function compares, with case insensitivity, the string pointed to by s1 to the
string pointed to by s2. All uppercase characters from s1 and s2 are mapped to lowercase for
the purposes of doing the comparison. The strcmpi function is identical to the stricmp
function.

The wcscmpi function is a wide-character version of strcmpi that operates with
wide-character strings.

Returns: The strcmpi function returns an integer less than, equal to, or greater than zero, indicating
that the string pointed to by s1 is less than, equal to, or greater than the string pointed to by
s2.

See Also: strcmp, stricmp, strncmp, strnicmp

Example: #include <stdio.h>
#include <string.h>

void main()
{

printf("%d\n", strcmpi("AbCDEF", "abcdef"));
printf("%d\n", strcmpi("abcdef", "ABC"));
printf("%d\n", strcmpi("abc", "ABCdef"));
printf("%d\n", strcmpi("Abcdef", "mnopqr"));
printf("%d\n", strcmpi("Mnopqr", "abcdef"));

}

produces the following:

0
100
-100
-12
12

Classification: WATCOM

Systems: strcmpi - All, Netware
wcscmpi - All

 809

strcoll, wcscoll

Synopsis: #include <string.h>
int strcoll(const char *s1, const char *s2);
#include <wchar.h>intwcscoll(constwchart*s1,constwchart*s2);

Description: The strcoll function compares the string pointed to by s1 to the string pointed to by s2.
The comparison uses the collating sequence selected by the setlocale function. The
function will be equivalent to the strcmp function when the collating sequence is selected
from the "C" locale.

The wcscoll function is a wide-character version of strcoll that operates with
wide-character strings.

Returns: The strcoll function returns an integer less than, equal to, or greater than zero, indicating
that the string pointed to by s1 is less than, equal to, or greater than the string pointed to by
s2, according to the collating sequence selected.

See Also: setlocale, strcmp, strncmp

Example: #include <stdio.h>
#include <string.h>

char buffer[80] = "world";

void main()
{

if(strcoll(buffer, "Hello") < 0) {
printf("Less than\n");

}
}

Classification: strcoll is ANSI, wcscoll is ANSI

Systems: strcoll - All, Netware
wcscoll - All

810

strcpy, _fstrcpy, wcscpy

Synopsis: #include <string.h>
char *strcpy(char *dst, const char *src);charfar*fstrcpy(charfar*dst,constcharfar*src);
#include <wchar.h>wchart*wcscpy(wchart*dst,constwchart*src);

Safer C: The Safer C Library extension provides the function which is a safer alternative to strcpy.
This newerstrcpys function is recommended to be used instead of the traditional
"unsafe" strcpy function.

Description: The strcpy function copies the string pointed to by src (including the terminating null
character) into the array pointed to by dst. Copying of overlapping objects is not guaranteed
to work properly. See the description for the memmove function to copy objects that
overlap.

The
fstrcpy function is a data model independent form of the strcpy function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

The wcscpy function is a wide-character version of strcpy that operates with
wide-character strings.

Returns: The value of dst is returned.

See Also: strdup, strncpy

Example: #include <stdio.h>
#include <string.h>

void main()
{

auto char buffer[80];

strcpy(buffer, "Hello ");
strcat(buffer, "world");
printf("%s\n", buffer);

}

produces the following:

Hello world

 811

strcpy, _fstrcpy, wcscpy

Classification: strcpy is ANSI, _fstrcpy is not ANSI, wcscpy is ANSI

Systems: strcpy - All, Netwarefstrcpy�All
wcscpy - All

812

strcspn, _fstrcspn, wcscspn

Synopsis: #include <string.h>sizetstrcspn(constchar*str,
const char *charset);sizetfstrcspn(constcharfar*str,constcharfar*charset);

#include <wchar.h>sizetwcscspn(constwchart*str,constwchart*charset);
Description: The strcspn function computes the length, in bytes, of the initial segment of the string

pointed to by str which consists entirely of characters not from the string pointed to by
charset. The terminating null character is not considered part of str.

The
fstrcspn function is a data model independent form of the strcspn function that

accepts far pointer arguments. It is most useful in mixed memory model applications.

The wcscspn function is a wide-character version of strcspn that operates with
wide-character strings.

Returns: The length, in bytes, of the initial segment is returned.

See Also: strspn

Example: #include <stdio.h>
#include <string.h>

void main()
{

printf("%d\n", strcspn("abcbcadef", "cba"));
printf("%d\n", strcspn("xxxbcadef", "cba"));
printf("%d\n", strcspn("123456789", "cba"));

}

produces the following:

0
3
9

Classification: strcspn is ANSI, _fstrcspn is not ANSI, wcscspn is ANSI

Systems: strcspn - All, Netwarefstrcspn�All
wcscspn - All

 813

_strdate, _wstrdate

Synopsis: #include <time.h>char*strdate(char*datestr)wchartwstrdate(wchart*datestr);
Description: Thestrdate function copies the current date to the buffer pointed to by datestr. The

date is formatted as "MM/DD/YY" where "MM" is two digits representing the month, where
"DD" is two digits representing the day, and where "YY" is two digits representing the year.
The buffer must be at least 9 bytes long.

Thewstrdate function is a wide-character version ofstrdate that operates with
wide-character strings.

Returns: Thestrdate function returns a pointer to the resulting text string datestr.

See Also: asctime, ctime, gmtime, localtime, mktime,strtime, time, tzset

Example: #include <stdio.h>
#include <time.h>

void main()
{

char datebuff[9];printf("%s\n",strdate(datebuff));
}

Classification: WATCOM

Systems: strdate�Allwstrdate�All

814

_strdec, _wcsdec

Synopsis: #include <tchar.h>char*strdec(constchar*start,constchar*current);wchart*wcsdec(constwchart*start,constwchart*current);
Description: Thestrdec function returns a pointer to the previous character (single-byte, wide, or

multibyte) in the string pointed to by start which must precede current. The current
character in the string is pointed to by current. You must ensure that current does not point
into the middle of a multibyte or wide character.

The function is a data model independent form of thestrdec function that accepts far
pointer arguments. It is most useful in mixed memory model applications.

Thewcsdec function is a wide-character version ofstrdec that operates with
wide-character strings.

Returns: Thestrdec function returns a pointer to the previous character (single-byte, wide, or
multibyte depending on the function used).

See Also: strinc,strninc
Example: #include <stdio.h>

#include <mbctype.h>
#include <mbstring.h>

const unsigned char chars[] = {
’ ’,
’.’,
’1’,
’A’,
0x81,0x40, /* double-byte space */
0x82,0x60, /* double-byte A */
0x82,0xA6, /* double-byte Hiragana */
0x83,0x42, /* double-byte Katakana */
0xA1, /* single-byte Katakana punctuation */
0xA6, /* single-byte Katakana alphabetic */
0xDF, /* single-byte Katakana alphabetic */
0xE0,0xA1, /* double-byte Kanji */
0x00

};

#define SIZE sizeof(chars) / sizeof(unsigned char)

 815

_strdec, _wcsdec

void main()
{

int j, k;
const unsigned char *prev;setmbcp(932);
prev = &chars[SIZE - 1];
do {prev=mbsdec(chars,prev);j=mblen(prev,MBCURMAX);

if(j == 0) {
k = 0;

} else if (j == 1) {
k = *prev;

} else if(j == 2) {
k = *(prev)<<8 | *(prev+1);

}
printf("Previous character %#6.4x\n", k);

} while(prev != chars);
}

produces the following:

Previous character 0xe0a1
Previous character 0x00df
Previous character 0x00a6
Previous character 0x00a1
Previous character 0x8342
Previous character 0x82a6
Previous character 0x8260
Previous character 0x8140
Previous character 0x0041
Previous character 0x0031
Previous character 0x002e
Previous character 0x0020

Classification: WATCOM

Systems: strdec�MACROwcsdec�MACRO
816

strdup, _strdup, _fstrdup, _wcsdup

Synopsis: #include <string.h>
char *strdup(const char *src);char*strdup(constchar*src);charfar*fstrdup(constcharfar*src);
#include <wchar.h>wchart*wcsdup(constwchart*src);

Description: The strdup function creates a duplicate copy of the string pointed to by src and returns a
pointer to the new copy. For strdup, the memory for the new string is obtained by using
the malloc function and can be freed using the free function. For

fstrdup, the
memory for the new string is obtained by using the

fmalloc function and can be freed
using the
ffree function.

Thestrdup function is identical to strdup. Usestrdup for ANSI/ISO naming
conventions.

The
fstrdup function is a data model independent form of the strdup function that

accepts far pointer arguments. It is most useful in mixed memory model applications.

Thewcsdup function is a wide-character version of strdup that operates with
wide-character strings.

Returns: The strdup function returns the pointer to the new copy of the string if successful,
otherwise it returns NULL.

See Also: free, malloc, strcpy, strncpy

Example: #include <stdio.h>
#include <string.h>

void main()
{

char *dup;

dup = strdup("Make a copy");
printf("%s\n", dup);

}

Classification: WATCOM

_strdup conforms to ANSI/ISO naming conventions

Systems: strdup - All, Netware

 817

strdup, _strdup, _fstrdup, _wcsdupstrdup�All,Netwarefstrdup�Allwcsdup�All

818

strerror

Synopsis: #include <string.h>
char *strerror(int errnum);

Safer C: The Safer C Library extension provides the function which is a safer alternative to
strerror. This newerstrerrors function is recommended to be used instead of the
traditional "unsafe" strerror function.

Description: The strerror function maps the error number contained in errnum to an error message.

Returns: The strerror function returns a pointer to the error message. The array containing the
error string should not be modified by the program. This array may be overwritten by a
subsequent call to the strerror function.

See Also: clearerr, feof, ferror, perror

Example: #include <stdio.h>
#include <string.h>
#include <errno.h>

void main()
{

FILE *fp;

fp = fopen("file.nam", "r");
if(fp == NULL) {

printf("Unable to open file: %s\n",
strerror(errno));

}
}

Classification: ANSI

Systems: All, Netware

 819

strftime, wcsftime, _wstrftime_ms

Synopsis: #include <time.h>sizetstrftime(char*s,sizetmaxsize,
const char *format,
const struct tm *timeptr);

#include <wchar.h>sizetwcsftime(wchart*s,sizetmaxsize,constwchart*format,
const struct tm *timeptr);

#include <time.h>sizetwstrftimems(wchart*s,sizetmaxsize,
const char *format,
const struct tm *timeptr);

struct tm {inttmsec;/*secondsaftertheminute��[0,61]*/inttmmin;/*minutesafterthehour��[0,59]*/inttmhour;/*hoursaftermidnight��[0,23]*/inttmmday;/*dayofthemonth��[1,31]*/inttmmon;/*monthssinceJanuary��[0,11]*/inttmyear;/*yearssince1900 */inttmwday;/*dayssinceSunday��[0,6]*/inttmyday;/*dayssinceJanuary1��[0,365]*/inttmisdst;/*DaylightSavingsTimeflag*/
};

Description: The strftime function formats the time in the argument timeptr into the array pointed to
by the argument s according to the format argument.

The wcsftime function is a wide-character version of strftime that operates with
wide-character strings.

Thewstrftimems function is identical to wcsftime except that the format is not a
wide-character string.

The format string consists of zero or more directives and ordinary characters. A directive
consists of a ’%’ character followed by a character that determines the substitution that is to
take place. All ordinary characters are copied unchanged into the array. No more than
maxsize characters are placed in the array. The format directives %D, %h, %n, %r, %t, and
%T are from POSIX.

820

strftime, wcsftime, _wstrftime_ms

Directive Meaning

%a locale’s abbreviated weekday name

%A locale’s full weekday name

%b locale’s abbreviated month name

%B locale’s full month name

%c locale’s appropriate date and time representation

%d day of the month as a decimal number (01-31)

%D date in the format mm/dd/yy (POSIX)

%h locale’s abbreviated month name (POSIX)

%H hour (24-hour clock) as a decimal number (00-23)

%I hour (12-hour clock) as a decimal number (01-12)

%j day of the year as a decimal number (001-366)

%m month as a decimal number (01-12)

%M minute as a decimal number (00-59)

%n newline character (POSIX)

%p locale’s equivalent of either AM or PM

%r 12-hour clock time (01-12) using the AM/PM notation in the format
HH:MM:SS (AM|PM) (POSIX)

%S second as a decimal number (00-59)

%t tab character (POSIX)

%T 24-hour clock time in the format HH:MM:SS (POSIX)

%U week number of the year as a decimal number (00-52) where Sunday is the first
day of the week

 821

strftime, wcsftime, _wstrftime_ms

%w weekday as a decimal number (0-6) where 0 is Sunday

%W week number of the year as a decimal number (00-52) where Monday is the
first day of the week

%x locale’s appropriate date representation

%X locale’s appropriate time representation

%y year without century as a decimal number (00-99)

%Y year with century as a decimal number

%Z, %z timezone name, or by no characters if no timezone exists (%z is an extension to
ANSI/POSIX)

%% character %

When the %Z or %z directive is specified, the tzset function is called.

Returns: If the number of characters to be placed into the array is less than maxsize, the strftime
function returns the number of characters placed into the array pointed to by s not including
the terminating null character. Otherwise, zero is returned. When an error has occurred,
errno contains a value indicating the type of error that has been detected.

See Also: setlocale, asctime, clock, ctime, difftime, gmtime, localtime, mktime,
time, tzset

Example: #include <stdio.h>
#include <time.h>

void main()
{timettimeofday;

char buffer[80];timeofday=time(NULL);
strftime(buffer, 80, "Today is %A %B %d, %Y",localtime(&timeofday));
printf("%s\n", buffer);

}

produces the following:

822

strftime, wcsftime, _wstrftime_ms

Today is Friday December 25, 1987

Classification: strftime is ANSI, POSIX, wcsftime is ANSI, _wstrftime_ms is not ANSI

Systems: strftime - All, Netware
wcsftime - Allwstrftimems�All

 823

stricmp, _stricmp, _fstricmp, _wcsicmp

Synopsis: #include <string.h>
int stricmp(const char *s1, const char *s2);intstricmp(constchar*s1,constchar*s2);intfstricmp(constcharfar*s1,constcharfar*s2);
#include <wchar.h>intwcsicmp(constwchart*s1,constwchart*s2);

Description: The stricmp function compares, with case insensitivity, the string pointed to by s1 to the
string pointed to by s2. All uppercase characters from s1 and s2 are mapped to lowercase for
the purposes of doing the comparison.

Thestricmp function is identical to stricmp. Usestricmp for ANSI/ISO naming
conventions.

The
fstricmp function is a data model independent form of the stricmp function that

accepts far pointer arguments. It is most useful in mixed memory model applications.

Thewcsicmp function is a wide-character version of stricmp that operates with
wide-character strings.

Returns: The stricmp function returns an integer less than, equal to, or greater than zero, indicating
that the string pointed to by s1 is less than, equal to, or greater than the string pointed to by
s2.

See Also: strcmp, strcmpi, strncmp, strnicmp

Example: #include <stdio.h>
#include <string.h>

void main()
{

printf("%d\n", stricmp("AbCDEF", "abcdef"));
printf("%d\n", stricmp("abcdef", "ABC"));
printf("%d\n", stricmp("abc", "ABCdef"));
printf("%d\n", stricmp("Abcdef", "mnopqr"));
printf("%d\n", stricmp("Mnopqr", "abcdef"));

}

produces the following:

824

stricmp, _stricmp, _fstricmp, _wcsicmp

0
100
-100
-12
12

Classification: WATCOM

_stricmp conforms to ANSI/ISO naming conventions

Systems: stricmp - All, Netwarestricmp�All,Netwarefstricmp�Allwcsicmp�All

 825

_stricoll, _wcsicoll

Synopsis: #include <string.h>intstricoll(constchar*s1,constchar*s2);
#include <wchar.h>intwcsicoll(constwchart*s1,constwchart*s2);

Description: Thestricoll function performs a case insensitive comparison of the string pointed to
by s1 to the string pointed to by s2. The comparison uses the current code page which can be
selected by thesetmbcp function.

Thewcsicoll function is a wide-character version ofstricoll that operates with
wide-character strings.

Returns: These functions return an integer less than, equal to, or greater than zero, indicating that the
string pointed to by s1 is less than, equal to, or greater than the string pointed to by s2,
according to the collating sequence selected.

See Also: strcoll, stricmp, strncmp,strncoll, strnicmp,strnicoll
Example: #include <stdio.h>

#include <string.h>

char buffer[80] = "world";

void main()
{

int test;test=stricoll(buffer,"world2");
if(test < 0) {

printf("Less than\n");
} else if(test == 0) {

printf("Equal\n");
} else {

printf("Greater than\n");
}

}

Classification: WATCOM

Systems: stricoll�All,Netwarewcsicoll�All
826

_strinc, _wcsinc

Synopsis: #include <tchar.h>char*strinc(constchar*current);wchart*wcsinc(constwchart*current);
Description: Thestrinc function returns a pointer to the next character (single-byte, wide, or

multibyte) in the string pointed to by current. You must ensure that current does not point
into the middle of a multibyte or wide character.

The function is a data model independent form of thestrinc function that accepts far
pointer arguments. It is most useful in mixed memory model applications.

Thewcsinc function is a wide-character version ofstrinc that operates with
wide-character strings.

Returns: Thestrinc function returns a pointer to the next character (single-byte, wide, or
multibyte depending on the function used).

See Also: strdec,strninc
Example:

 827

_strinc, _wcsinc

#include <stdio.h>
#include <mbctype.h>
#include <mbstring.h>

const unsigned char chars[] = {
’ ’,
’.’,
’1’,
’A’,
0x81,0x40, /* double-byte space */
0x82,0x60, /* double-byte A */
0x82,0xA6, /* double-byte Hiragana */
0x83,0x42, /* double-byte Katakana */
0xA1, /* single-byte Katakana punctuation */
0xA6, /* single-byte Katakana alphabetic */
0xDF, /* single-byte Katakana alphabetic */
0xE0,0xA1, /* double-byte Kanji */
0x00

};

#define SIZE sizeof(chars) / sizeof(unsigned char)

void main()
{

int j, k;
const unsigned char *next;setmbcp(932);
next = chars;
do {next=mbsinc(next);j=mblen(next,MBCURMAX);

if(j == 0) {
k = 0;

} else if (j == 1) {
k = *next;

} else if(j == 2) {
k = *(next)<<8 | *(next+1);

}
printf("Next character %#6.4x\n", k);

} while(next != &chars[SIZE - 1]);
}

produces the following:

828

_strinc, _wcsinc

Next character 0x002e
Next character 0x0031
Next character 0x0041
Next character 0x8140
Next character 0x8260
Next character 0x82a6
Next character 0x8342
Next character 0x00a1
Next character 0x00a6
Next character 0x00df
Next character 0xe0a1
Next character 0000

Classification: WATCOM

Systems: strinc�MACROwcsinc�MACRO

 829

strlcat, wcslcat

Synopsis: #include <string.h>sizetstrlcat(char*dst,constchar*src,sizetn);sizet*wcslcat(wchart*dst,constwchart*src,sizetn);
Description: The strlcat function appends characters of the string pointed to by src to the end of the

string in a buffer pointed to by dst that can hold up to n characters. The first character of src
overwrites the null character at the end of dst. A terminating null character is always
appended to the result, unless n characters of dst are scanned and no null character is found.

The wcslcat function is a wide-character version of strlcat that operates with
wide-character strings.

Returns: The strlcat function returns the total length of string it tried to create, that is the number
of characters in both src and dst strings, not counting the terminating null characters. If n
characters of dst were scanned without finding a null character, n is returned.

See Also: strlcpy, strncat, strcat

Example: #include <stdio.h>
#include <string.h>

char buffer[80];

void main(void)
{

strcpy(buffer, "Hello ");
strlcat(buffer, "world", 12);
printf("%s\n", buffer);
strlcat(buffer, "*************", 16);
printf("%s\n", buffer);

}

produces the following:

Hello world
Hello world****

Classification: WATCOM

Systems: strlcat - All, Netware
wcslcat - All

830

strlcpy, wcslcpy

Synopsis: #include <string.h>sizetstrlcpy(char*dst,
const char *src,sizetn);sizetwcslcpy(wchart*dst,constwchart*src,sizetn);

Description: The strlcpy function copies no more than n characters from the string pointed to by src
into the array pointed to by dst. Copying of overlapping objects is not guaranteed to work
properly. See the memmove function if you wish to copy objects that overlap.

If the string pointed to by src is longer than n characters, then only n - 1 characters will be
copied and the result will be null terminated.

The wcslcpy function is a wide-character version of strlcpy that operates with
wide-character strings.

Returns: The strlcpy function returns the number of characters in the src string, not including the
terminating null character.

See Also: strlcat, strncpy, strcpy

Example: #include <stdio.h>
#include <string.h>

void main(void)
{

char buffer[10];

printf("%d:’%s’\n", strlcpy(buffer,
"Buffer overflow", sizeof(buffer)), buffer);

}

produces the following:

15:’Buffer ov’

Classification: WATCOM

Systems: strlcpy - All, Netware
wcslcpy - All

 831

strlen, _fstrlen, wcslen

Synopsis: #include <string.h>sizetstrlen(constchar*s);sizetfstrlen(constcharfar*s);
#include <wchar.h>sizetwcslen(constwchart*s);

Safer C: The Safer C Library extension provides the function which is a safer alternative to strlen.
This newerstrlens function is recommended to be used instead of the traditional
"unsafe" strlen function.

Description: The strlen function computes the length of the string pointed to by s.

The
fstrlen function is a data model independent form of the strlen function that

accepts far pointer arguments. It is most useful in mixed memory model applications.

The wcslen function is a wide-character version of strlen that operates with
wide-character strings.

Returns: The strlen function returns the number of characters that precede the terminating null
character.

See Also:

Example: #include <stdio.h>
#include <string.h>

void main()
{

printf("%d\n", strlen("Howdy"));
printf("%d\n", strlen("Hello world\n"));
printf("%d\n", strlen(""));

}

produces the following:

5
12
0

Classification: strlen is ANSI, _fstrlen is not ANSI, wcslen is ANSI

Systems: strlen - All, Netwarefstrlen�All
832

strlen, _fstrlen, wcslen

wcslen - All

 833

strlwr, _strlwr, _fstrlwr, _wcslwr

Synopsis: #include <string.h>
char *strlwr(char *s1);char*strlwr(char*s1);charfar*fstrlwr(charfar*s1);
#include <wchar.h>wchart*wcslwr(wchart*s1);

Description: The strlwr function replaces the string s1 with lowercase characters by invoking the
tolower function for each character in the string.

Thestrlwr function is identical to strlwr. Usestrlwr for ANSI/ISO naming
conventions.

The
fstrlwr function is a data model independent form of the strlwr function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

Thewcslwr function is a wide-character version of strlwr that operates with
wide-character strings.

Returns: The address of the original string s1 is returned.

See Also: strupr

Example: #include <stdio.h>
#include <string.h>

char source[] = { "A mixed-case STRING" };

void main()
{

printf("%s\n", source);
printf("%s\n", strlwr(source));
printf("%s\n", source);

}

produces the following:

A mixed-case STRING
a mixed-case string
a mixed-case string

Classification: WATCOM

834

strlwr, _strlwr, _fstrlwr, _wcslwr

_strlwr conforms to ANSI/ISO naming conventions

Systems: strlwr - All, Netwarestrlwr�All,Netwarefstrlwr�Allwcslwr�All

 835

strncasecmp

Synopsis: #include <strings.h>
int strncasecmp(const char *s1,

const char *s2,sizetlen);
Description: The strncasecmp function compares, without case sensitivity, the string pointed to by s1

to the string pointed to by s2, for at most len characters.

The strncasecmp function is identical to the strnicmp function.

Returns: The strncasecmp function returns an integer less than, equal to, or greater than zero,
indicating that the string pointed to by s1 is, ignoring case, less than, equal to, or greater than
the string pointed to by s2.

See Also: strcmp, stricmp, strncmp, strcasecmp

Example: #include <stdio.h>
#include <strings.h>

int main(void)
{

printf("%d\n", strncasecmp("abcdef", "ABCXXX", 10));
printf("%d\n", strncasecmp("abcdef", "ABCXXX", 6));
printf("%d\n", strncasecmp("abcdef", "ABCXXX", 3));
printf("%d\n", strncasecmp("abcdef", "ABCXXX", 0));
return(0);

}

produces the following:

-20
-20
0
0

Classification: POSIX

Systems: All, Netware

836

strncat, _fstrncat, wcsncat

Synopsis: #include <string.h>char*strncat(char*dst,constchar*src,sizetn);charfar*fstrncat(charfar*dst,constcharfar*src,sizetn);
#include <wchar.h>wchart*wcsncat(wchart*dst,constwchart*src,sizetn);

Safer C: The Safer C Library extension provides the function which is a safer alternative to
strncat. This newerstrncats function is recommended to be used instead of the
traditional "unsafe" strncat function.

Description: The strncat function appends not more than n characters of the string pointed to by src to
the end of the string pointed to by dst. The first character of src overwrites the null character
at the end of dst. A terminating null character is always appended to the result.

The
fstrncat function is a data model independent form of the strncat function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

The wcsncat function is a wide-character version of strncat that operates with
wide-character strings.

Returns: The strncat function returns the value of dst.

See Also: strcat, strlcat

Example: #include <stdio.h>
#include <string.h>

char buffer[80];

void main(void)
{

strcpy(buffer, "Hello ");
strncat(buffer, "world", 8);
printf("%s\n", buffer);
strncat(buffer, "*************", 4);
printf("%s\n", buffer);

}

produces the following:

 837

strncat, _fstrncat, wcsncat

Hello world
Hello world****

Classification: strncat is ANSI, _fstrncat is not ANSI, wcsncat is ANSI

Systems: strncat - All, Netwarefstrncat�All
wcsncat - All

838

strncmp, _fstrncmp, wcsncmp

Synopsis: #include <string.h>
int strncmp(const char *s1,

const char *s2,sizetn);intfstrncmp(constcharfar*s1,constcharfar*s2,sizetn);
#include <wchar.h>intwcsncmp(constwchart*s1,constwchart*s2,sizetn);

Description: The strncmp compares not more than n characters from the string pointed to by s1 to the
string pointed to by s2.

The
fstrncmp function is a data model independent form of the strncmp function that

accepts far pointer arguments. It is most useful in mixed memory model applications.

The wcsncmp function is a wide-character version of strncmp that operates with
wide-character strings.

Returns: The strncmp function returns an integer less than, equal to, or greater than zero, indicating
that the string pointed to by s1 is less than, equal to, or greater than the string pointed to by
s2.

See Also: strcmp, stricmp, strnicmp

Example: #include <stdio.h>
#include <string.h>

void main()
{

printf("%d\n", strncmp("abcdef", "abcDEF", 10));
printf("%d\n", strncmp("abcdef", "abcDEF", 6));
printf("%d\n", strncmp("abcdef", "abcDEF", 3));
printf("%d\n", strncmp("abcdef", "abcDEF", 0));

}

produces the following:

1
1
0
0

 839

strncmp, _fstrncmp, wcsncmp

Classification: strncmp is ANSI, _fstrncmp is not ANSI, wcsncmp is ANSI

Systems: strncmp - All, Netwarefstrncmp�All
wcsncmp - All

840

_strncoll, _wcsncoll

Synopsis: #include <string.h>intstrncoll(constchar*s1,
const char *s2,sizetcount);

#include <wchar.h>intwcsncoll(constwchart*s1,constwchart*s2,sizetcount);
Description: These functions compare the first count characters of the string pointed to by s1 to the string

pointed to by s2. The comparison uses the current code page which can be selected by thesetmbcp function.

Thewcsncoll function is a wide-character version ofstrncoll that operates with
wide-character strings.

Returns: These functions return an integer less than, equal to, or greater than zero, indicating that the
string pointed to by s1 is less than, equal to, or greater than the string pointed to by s2,
according to the collating sequence selected.

See Also: strcoll, stricmp,stricoll, strncmp, strnicmp,strnicoll
Example: #include <stdio.h>

#include <string.h>

char buffer[80] = "world";

void main()
{

int test;test=strncoll(buffer,"world2",5);
if(test < 0) {

printf("Less than\n");
} else if(test == 0) {

printf("Equal\n");
} else {

printf("Greater than\n");
}

}

Classification: WATCOM

Systems: strncoll�All,Netware
 841

_strncoll, _wcsncollwcsncoll�All

842

strncpy, _fstrncpy, wcsncpy

Synopsis: #include <string.h>
char *strncpy(char *dst,

const char *src,sizetn);charfar*fstrncpy(charfar*dst,constcharfar*src,sizetn);
#include <wchar.h>wchart*wcsncpy(wchart*dst,constwchart*src,sizetn);

Safer C: The Safer C Library extension provides the function which is a safer alternative to
strncpy. This newerstrncpys function is recommended to be used instead of the
traditional "unsafe" strncpy function.

Description: The strncpy function copies no more than n characters from the string pointed to by src
into the array pointed to by dst. Copying of overlapping objects is not guaranteed to work
properly. See the memmove function if you wish to copy objects that overlap.

If the string pointed to by src is shorter than n characters, null characters are appended to the
copy in the array pointed to by dst, until n characters in all have been written. If the string
pointed to by src is longer than n characters, then the result will not be terminated by a null
character.

The
fstrncpy function is a data model independent form of the strncpy function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

The wcsncpy function is a wide-character version of strncpy that operates with
wide-character strings.

Returns: The strncpy function returns the value of dst.

See Also: strlcpy, strcpy, strdup

Example: #include <stdio.h>
#include <string.h>

void main(void)
{

char buffer[15];

 843

strncpy, _fstrncpy, wcsncpy

printf("%s\n", strncpy(buffer, "abcdefg", 10));
printf("%s\n", strncpy(buffer, "1234567", 6));
printf("%s\n", strncpy(buffer, "abcdefg", 3));
printf("%s\n", strncpy(buffer, "*******", 0));

}

produces the following:

abcdefg
123456g
abc456g
abc456g

Classification: strncpy is ANSI, _fstrncpy is not ANSI, wcsncpy is ANSI

Systems: strncpy - All, Netwarefstrncpy�All
wcsncpy - All

844

strnicmp, _strnicmp, _fstrnicmp, _wcsnicmp

Synopsis: #include <string.h>
int strnicmp(const char *s1,

const char *s2,sizetlen);intstrnicmp(constchar*s1,
const char *s2,sizetlen);intfstrnicmp(constcharfar*s1,constcharfar*s2,sizetlen);

#include <wchar.h>intwcsnicmp(constwchart*s1,constwchart*s2,sizetlen);
Description: The strnicmp function compares, without case sensitivity, the string pointed to by s1 to

the string pointed to by s2, for at most len characters.

Thestrnicmp function is identical to strnicmp. Usestrnicmp for ANSI/ISO
naming conventions.

The
fstrnicmp function is a data model independent form of the strnicmp function

that accepts far pointer arguments. It is most useful in mixed memory model applications.

Thewcsnicmp function is a wide-character version of strnicmp that operates with
wide-character strings.

Returns: The strnicmp function returns an integer less than, equal to, or greater than zero,
indicating that the string pointed to by s1 is less than, equal to, or greater than the string
pointed to by s2.

See Also: strcmp, stricmp, strncmp

Example: #include <stdio.h>
#include <string.h>

void main()
{

printf("%d\n", strnicmp("abcdef", "ABCXXX", 10));
printf("%d\n", strnicmp("abcdef", "ABCXXX", 6));
printf("%d\n", strnicmp("abcdef", "ABCXXX", 3));
printf("%d\n", strnicmp("abcdef", "ABCXXX", 0));

}

 845

strnicmp, _strnicmp, _fstrnicmp, _wcsnicmp

produces the following:

-20
-20
0
0

Classification: WATCOM

_strnicmp conforms to ANSI/ISO naming conventions

Systems: strnicmp - All, Netwarestrnicmp�All,Netwarefstrnicmp�Allwcsnicmp�All

846

_strnicoll, _wcsnicoll

Synopsis: #include <string.h>intstrnicoll(constchar*s1,
const char *s2,sizetcount);

#include <wchar.h>intwcsnicoll(constwchart*s1,constwchart*s2,sizetcount);
Description: These functions perform a case insensitive comparison of the first count characters of the

string pointed to by s1 to the string pointed to by s2. The comparison uses the current code
page which can be selected by thesetmbcp function.

Thewcsnicoll function is a wide-character version ofstrnicoll that operates with
wide-character strings.

Returns: These functions return an integer less than, equal to, or greater than zero, indicating that the
string pointed to by s1 is less than, equal to, or greater than the string pointed to by s2,
according to the collating sequence selected.

See Also: strcoll, stricmp,stricoll, strncmp,strncoll, strnicmp
Example: #include <stdio.h>

#include <string.h>

char buffer[80] = "world";

void main()
{

int test;test=strnicoll(buffer,"World2",5);
if(test < 0) {

printf("Less than\n");
} else if(test == 0) {

printf("Equal\n");
} else {

printf("Greater than\n");
}

}

Classification: WATCOM

Systems: strnicoll�All,Netware
 847

_strnicoll, _wcsnicollwcsnicoll�All

848

_strninc, _wcsninc

Synopsis: #ninclude <tchar.h>char*strninc(constchar*str,sizetcount);wchart*wcsninc(constwchart*str,sizetcount);
Description: The function increments str by count multibyte characters. recognizes multibyte-character

sequences according to the multibyte code page currently in use. The header file
<tchar.h> defines the generic-text routine

tcsninc. This macro maps to if
MBCS

has been defined, or towcsninc ifUNICODE has been defined. Otherwise
tcsninc

maps tostrninc.strninc andwcsninc are single-byte-character string and
wide-character string versions of .wcsninc andstrninc are provided only for this
mapping and should not be used otherwise.

Returns: Thestrninc function returns a pointer to str after it has been incremented by count
characters or NULL if str was NULL. If count exceeds the number of characters remaining
in the string, the result is undefined.

See Also: strdec,strinc
Example:

 849

_strninc, _wcsninc

#ninclude <stdio.h>
#ninclude <mbctype.h>
#ninclude <mbstring.h>

const unsigned char chars[] = {
’ ’,
’.’,
’1’,
’A’,
0x81,0x40, /* double-byte space */
0x82,0x60, /* double-byte A */
0x82,0xA6, /* double-byte Hiragana */
0x83,0x42, /* double-byte Katakana */
0xA1, /* single-byte Katakana punctuation */
0xA6, /* single-byte Katakana alphabetic */
0xDF, /* single-byte Katakana alphabetic */
0xE0,0xA1, /* double-byte Kanji */
0x00

};

#define SIZE sizeof(chars) / sizeof(unsigned char)

void main()
{

int j, k;
const unsigned char *next;setmbcp(932);
next = chars;
do {next=mbsninc(next,1);j=mblen(next,MBCURMAX);

if(j == 0) {
k = 0;

} else if (j == 1) {
k = *next;

} else if(j == 2) {
k = *(next)<<8 | *(next+1);

}
printf("Next character %#6.4x\n", k);

} while(next != &chars[SIZE - 1]);
}

produces the following:

850

_strninc, _wcsninc

Next character 0x002e
Next character 0x0031
Next character 0x0041
Next character 0x8140
Next character 0x8260
Next character 0x82a6
Next character 0x8342
Next character 0x00a1
Next character 0x00a6
Next character 0x00df
Next character 0xe0a1
Next character 0000

Classification: WATCOM

Systems: strninc�MACROwcsninc�MACRO

 851

strnset, _strnset, _fstrnset, _wcsnset

Synopsis: #include <string.h>char*strnset(char*str,intfill,sizetcount);char*strnset(char*str,intfill,sizetcount);charfar*fstrnset(charfar*str,
int fill,sizetcount);

#include <wchar.h>wchart*wcsnset(wchart*str,intfill,sizetcount);
Description: The strnset function fills the string str with the value of the argument fill, converted to be

a character value. When the value of count is greater than the length of the string, the entire
string is filled. Otherwise, that number of characters at the start of the string are set to the fill
character.

Thestrnset function is identical to strnset. Usestrnset for ANSI naming
conventions.

The
fstrnset function is a data model independent form of the strnset function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

Thewcsnset function is a wide-character version of strnset that operates with
wide-character strings. Forwcsnset, the value of count is the number of wide characters
to fill. This is half the number of bytes.

For , the value of count is the number of multibyte characters to fill. If the number of bytes
to be filled is odd and fill is a double-byte character, the partial byte at the end is filled with
an ASCII space character.

Returns: The address of the original string str is returned.

See Also: strset

Example:

852

strnset, _strnset, _fstrnset, _wcsnset

#include <stdio.h>
#include <string.h>

char source[] = { "A sample STRING" };

void main()
{

printf("%s\n", source);
printf("%s\n", strnset(source, ’=’, 100));
printf("%s\n", strnset(source, ’*’, 7));

}

produces the following:

A sample STRING
===============
*******========

Classification: WATCOM

Systems: strnset - All, Netwarestrnset�All,Netwarefstrnset�Allwcsnset�All

 853

strpbrk, _fstrpbrk, wcspbrk

Synopsis: #include <string.h>
char *strpbrk(const char *str, const char *charset);charfar*fstrpbrk(constcharfar*str,constcharfar*charset);
#include <wchar.h>wchart*wcspbrk(constwchart*str,constwchart*charset);

Description: The strpbrk function locates the first occurrence in the string pointed to by str of any
character from the string pointed to by charset.

The
fstrpbrk function is a data model independent form of the strpbrk function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

The wcspbrk function is a wide-character version of strpbrk that operates with
wide-character strings.

Returns: The strpbrk function returns a pointer to the located character, or NULL if no character
from charset occurs in str.

See Also: strchr, strrchr, strtok

Example: #include <stdio.h>
#include <string.h>

void main()
{

char *p = "Find all vowels";

while(p != NULL) {
printf("%s\n", p);
p = strpbrk(p+1, "aeiouAEIOU");

}
}

produces the following:

Find all vowels
ind all vowels
all vowels
owels
els

854

strpbrk, _fstrpbrk, wcspbrk

Classification: strpbrk is ANSI, _fstrpbrk is not ANSI, wcspbrk is ANSI

Systems: strpbrk - All, Netwarefstrpbrk�All
wcspbrk - All

 855

strrchr, _fstrrchr, wcsrchr

Synopsis: #include <string.h>
char *strrchr(const char *s, int c);charfar*fstrrchr(constcharfar*s,intc);
#include <wchar.h>wchart*wcsrchr(constwchart*s,winttc);

Description: The strrchr function locates the last occurrence of c (converted to a char) in the string
pointed to by s. The terminating null character is considered to be part of the string.

The
fstrrchr function is a data model independent form of the strrchr function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

The wcsrchr function is a wide-character version of strrchr that operates with
wide-character strings.

Returns: The strrchr function returns a pointer to the located character, or a NULL pointer if the
character does not occur in the string.

See Also: strchr, strpbrk

Example: #include <stdio.h>
#include <string.h>

void main()
{

printf("%s\n", strrchr("abcdeaaklmn", ’a’));
if(strrchr("abcdeaaklmn", ’x’) == NULL)

printf("NULL\n");
}

produces the following:

aklmn
NULL

Classification: strrchr is ANSI, _fstrrchr is not ANSI, wcsrchr is ANSI

Systems: strrchr - All, Netwarefstrrchr�All
wcsrchr - All

856

strrev, _strrev, _fstrrev, _wcsrev

Synopsis: #include <string.h>
char *strrev(char *s1);char*strrev(char*s1);charfar*fstrrev(charfar*s1);
#include <wchar.h>wchart*wcsrev(wchart*s1);

Description: The strrev function replaces the string s1 with a string whose characters are in the reverse
order.

Thestrrev function is identical to strrev. Usestrrev for ANSI/ISO naming
conventions.

The
fstrrev function is a data model independent form of the strrev function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

Thewcsrev function is a wide-character version of strrev that operates with
wide-character strings.

Returns: The address of the original string s1 is returned.

Example: #include <stdio.h>
#include <string.h>

char source[] = { "A sample STRING" };

void main()
{

printf("%s\n", source);
printf("%s\n", strrev(source));
printf("%s\n", strrev(source));

}

produces the following:

A sample STRING
GNIRTS elpmas A
A sample STRING

Classification: WATCOM

_strrev conforms to ANSI/ISO naming conventions

 857

strrev, _strrev, _fstrrev, _wcsrev

Systems: strrev - All, Netwarestrrev�All,Netwarefstrrev�Allwcsrev�All

858

strset, _strset, _fstrset, _wcsset

Synopsis: #include <string.h>
char *strset(char *s1, int fill);char*strset(char*s1,intfill);charfar*fstrset(charfar*s1,intfill);
#include <wchar.h>wchart*wcsset(wchart*s1,intfill);

Description: The strset function fills the string pointed to by s1 with the character fill. The
terminating null character in the original string remains unchanged.

Thestrset function is identical to strset. Usestrset for ANSI naming
conventions.

The
fstrset function is a data model independent form of the strset function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

Thewcsset function is a wide-character version of strset that operates with
wide-character strings.

Returns: The address of the original string s1 is returned.

See Also: strnset

Example: #include <stdio.h>
#include <string.h>

char source[] = { "A sample STRING" };

void main()
{

printf("%s\n", source);
printf("%s\n", strset(source, ’=’));
printf("%s\n", strset(source, ’*’));

}

produces the following:

A sample STRING
===============

Classification: WATCOM

 859

strset, _strset, _fstrset, _wcsset

Systems: strset - All, Netwarestrset�All,Netwarefstrset�Allwcsset�All

860

strspn, _fstrspn, wcsspn

Synopsis: #include <string.h>sizetstrspn(constchar*str,
const char *charset);sizetfstrspn(constcharfar*str,constcharfar*charset);

#include <wchar.h>sizetwcsspn(constwchart*str,constwchart*charset);
Description: The strspn function computes the length, in bytes, of the initial segment of the string

pointed to by str which consists of characters from the string pointed to by charset. The
terminating null character is not considered to be part of charset.

The
fstrspn function is a data model independent form of the strspn function that

accepts far pointer arguments. It is most useful in mixed memory model applications.

The wcsspn function is a wide-character version of strspn that operates with
wide-character strings.

Returns: The length, in bytes, of the initial segment is returned.

See Also: strcspn, strspnp

Example: #include <stdio.h>
#include <string.h>

void main()
{

printf("%d\n", strspn("out to lunch", "aeiou"));
printf("%d\n", strspn("out to lunch", "xyz"));

}

produces the following:

2
0

Classification: strspn is ANSI, _fstrspn is not ANSI, wcsspn is ANSI

Systems: strspn - All, Netwarefstrspn�All
wcsspn - All

 861

strspnp, _strspnp, _fstrspnp, _wcsspnp

Synopsis: #include <string.h>
char *strspnp(const char *str,

const char *charset);char*strspnp(constchar*str,
const char *charset);charfar*fstrspnp(constcharfar*str,constcharfar*charset);

#include <tchar.h>wchart*wcsspnp(constwchart*str,constwchart*charset);
Description: The strspnp function returns a pointer to the first character in str that does not belong to

the set of characters in charset. The terminating null character is not considered to be part of
charset.

Thestrspnp function is identical to strspnp. Usestrspnp for ANSI/ISO naming
conventions.

The
fstrspnp function is a data model independent form of the strspnp function that

accepts far pointer arguments. It is most useful in mixed memory model applications.

Thewcsspnp function is a wide-character version of strspnp that operates with
wide-character strings.

Returns: The strspnp function returns NULL if str consists entirely of characters from charset.

See Also: strcspn, strspn

Example: #include <stdio.h>
#include <string.h>

void main()
{

printf("%s\n", strspnp("out to lunch", "aeiou"));
printf("%s\n", strspnp("out to lunch", "xyz"));

}

produces the following:

t to lunch
out to lunch

Classification: WATCOM

862

strspnp, _strspnp, _fstrspnp, _wcsspnp

_strspnp conforms to ANSI/ISO naming conventions

Systems: strspnp - All, Netwarestrspnp�All,Netwarefstrspnp�Allwcsspnp�All

 863

strstr, _fstrstr, wcsstr

Synopsis: #include <string.h>
char *strstr(const char *str,

const char *substr);charfar*fstrstr(constcharfar*str,constcharfar*substr);
#include <wchar.h>wchart*wcsstr(constwchart*str,constwchart*substr);

Description: The strstr function locates the first occurrence in the string pointed to by str of the
sequence of characters (excluding the terminating null character) in the string pointed to by
substr.

The
fstrstr function is a data model independent form of the strstr function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

The wcsstr function is a wide-character version of strstr that operates with
wide-character strings.

Returns: The strstr function returns a pointer to the located string, or NULL if the string is not
found.

See Also: strcspn

Example: #include <stdio.h>
#include <string.h>

void main()
{

printf("%s\n", strstr("This is an example", "is"));
}

produces the following:

is is an example

Classification: strstr is ANSI, _fstrstr is not ANSI, wcsstr is ANSI

Systems: strstr - All, Netwarefstrstr�All
wcsstr - All

864

_strtime, _wstrtime

Synopsis: #include <time.h>char*strtime(char*timestr)wchartwstrtime(wchart*timestr);
Description: Thestrtime function copies the current time to the buffer pointed to by timestr. The

time is formatted as "HH:MM:SS" where "HH" is two digits representing the hour in 24-hour
notation, where "MM" is two digits representing the minutes past the hour, and where "SS" is
two digits representing seconds. The buffer must be at least 9 bytes long.

Thewstrtime function is a wide-character version ofstrtime that operates with
wide-character strings.

Returns: Thestrtime function returns a pointer to the resulting text string timestr.

See Also: asctime, ctime, gmtime, localtime, mktime,strdate, time, tzset

Example: #include <stdio.h>
#include <time.h>

void main()
{

char timebuff[9];printf("%s\n",strtime(timebuff));
}

Classification: WATCOM

Systems: strtime�Allwstrtime�All

 865

strtod, wcstod

Synopsis: #include <stdlib.h>
double strtod(const char *ptr, char **endptr);
#include <wchar.h>doublewcstod(constwchart*ptr,wchart**endptr);

Description: The strtod function converts the string pointed to by ptr to double representation. First,
it decompose the input string into three parts: an initial, possibly empty, sequence of
white-space characters (as specified by the isspace function), a subject sequence
resembling a floating-point constant or representing an infinity or NaN; and a final string of
one or more unrecognized characters, including the terminating null character of the input
string. Then, it attempts to convert the subject sequence to a floating-point number, and
return the result.

The expected form of the subject sequence is an optional plus or minus sign, then one of the
following:

• a decimal floating-point number
• a hexadecimal floating-point number
• INF or INFINITY, ignoring case
• NAN, ignoring case, optionally followed by a sequence of digits and nondigits (upper-
or lowercase characters or underscore) enclosed in parentheses.

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-whitespace character, that is of the expected form. The subject sequence
contains no characters if the input string is not of the expected form.

A decimal floating-point number recognized by strtod (after optional sign was processed)
is a string containing:

• a sequence of digits containing an optional decimal point,
• an optional ’e’ or ’E’ followed by an optionally signed sequence of digits.

A hexadecimal floating-point number recognized by strtod (after optional sign was
processed) is a string containing:

• a 0X prefix, ignoring case,
• a sequence of hexadecimal digits containing an optional decimal point,
• an optional ’p’ or ’P’ followed by an optionally signed sequence of decimal digits.

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character, that is of the expected form. The subject sequence
contains no characters if the input string is not of the expected form.

866

strtod, wcstod

If the subject sequence contains NAN, a NaN (with appropriate sign) will be returned the
optional digit-nondigit sequence is ignored. If the subject sequence contains INF, the value
of infinity (with appropriate sign) will be returned. This case can be distinguished from
overflow by checking errno.

For a hexadecimal floating-point number, the optional exponent is binary (that is, denotes a
power of two), not decimal.

A pointer to the final string (following the subject sequence) will be stored in the object to
which endptr points if endptr is not NULL. By comparing the "end" pointer with ptr, it can
be determined how much of the string, if any, was scanned by the strtod function.

The wcstod function is a wide-character version of strtod that operates with
wide-character strings.

Returns: The strtod function returns the converted value, if any. If no conversion could be
performed, zero is returned. If the correct value would cause overflow, plus or minusHUGEVAL

 is returned according to the sign, and errno is set to ERANGE. If the correct
value would cause underflow, then zero is returned, and errno is set to ERANGE. Zero is
returned when the input string cannot be converted. In this case, errno is not set. When an
error has occurred, errno contains a value indicating the type of error that has been
detected.

See Also: atof

Example: #include <stdio.h>
#include <stdlib.h>

void main(void)
{

double pi;

pi = strtod("3.141592653589793", NULL);
printf("pi=%17.15f\n",pi);

}

Classification: strtod is ISO C90, wcstod is ISO C95

Systems: strtod - Math
wcstod - Math

 867

strtok, _fstrtok, wcstok

Synopsis: #include <string.h>
char *strtok(char *s1, const char *s2);charfar*fstrtok(charfar*s1,constcharfar*s2);
#include <wchar.h>wchart*wcstok(wchart*s1,constwchart*s2,wchart**ptr);

Safer C: The Safer C Library extension provides the function which is a safer alternative to strtok.
This newerstrtoks function is recommended to be used instead of the traditional
"unsafe" strtok function.

Description: The strtok function is used to break the string pointed to by s1 into a sequence of tokens,
each of which is delimited by a character from the string pointed to by s2. The first call to
strtok will return a pointer to the first token in the string pointed to by s1. Subsequent
calls to strtok must pass a NULL pointer as the first argument, in order to get the next
token in the string. The set of delimiters used in each of these calls to strtok can be
different from one call to the next.

The first call in the sequence searches s1 for the first character that is not contained in the
current delimiter string s2. If no such character is found, then there are no tokens in s1 and
the strtok function returns a NULL pointer. If such a character is found, it is the start of
the first token.

The strtok function then searches from there for a character that is contained in the
current delimiter string. If no such character is found, the current token extends to the end of
the string pointed to by s1. If such a character is found, it is overwritten by a null character,
which terminates the current token. The strtok function saves a pointer to the following
character, from which the next search for a token will start when the first argument is a
NULL pointer.

Because strtok may modify the original string, that string should be duplicated if the
string is to be re-used.

The
fstrtok function is a data model independent form of the strtok function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

The wcstok function is a wide-character version of strtok that operates with
wide-character strings. The third argument ptr points to a caller-providedwchart pointer
into which the wcstok function stores information necessary for it to continue scanning the
same wide string.

868

strtok, _fstrtok, wcstok

On the first call in the sequence of calls to wcstok, s1 points to a wide string. In
subsequent calls for the same string, s1 must be NULL. If s1 is NULL, the value pointed to
by ptr matches that set by the previous call to wcstok for the same wide string. Otherwise,
the value of ptr is ignored. The list of delimiters pointed to by s2 may be different from one
call to the next. The tokenization of s1 is similar to that for the strtok function.

Returns: The strtok function returns a pointer to the first character of a token or NULL if there is no
token found.

See Also: strcspn, strpbrk

Example: #include <stdio.h>
#include <string.h>

void main()
{

char *p;
char *buffer;
char *delims = { " .," };

buffer = strdup("Find words, all of them.");
printf("%s\n", buffer);
p = strtok(buffer, delims);
while(p != NULL) {

printf("word: %s\n", p);
p = strtok(NULL, delims);

}
printf("%s\n", buffer);

}

produces the following:

Find words, all of them.
word: Find
word: words
word: all
word: of
word: them
Find

Classification: strtok is ANSI, _fstrtok is not ANSI, wcstok is ANSI

Systems: strtok - All, Netwarefstrtok�All
wcstok - All

 869

strtol, wcstol

Synopsis: #include <stdlib.h>
long int strtol(const char *ptr,

char **endptr,
int base);

#include <wchar.h>longintwcstol(constwchart*ptr,wchart**endptr,
int base);

Description: The strtol function converts the string pointed to by ptr to an object of type long int.
The strtol function recognizes a string containing:

• optional white space,
• an optional plus or minus sign,
• a sequence of digits and letters.

The conversion ends at the first unrecognized character. A pointer to that character will be
stored in the object to which endptr points if endptr is not NULL.

If base is zero, the first characters after the optional sign determine the base used for the
conversion. If the first characters are "0x" or "0X" the digits are treated as hexadecimal. If
the first character is ’0’, the digits are treated as octal. Otherwise the digits are treated as
decimal.

If base is not zero, it must have a value between 2 and 36. The letters a-z and A-Z represent
the values 10 through 35. Only those letters whose designated values are less than base are
permitted. If the value of base is 16, the characters "0x" or "0X" may optionally precede the
sequence of letters and digits.

The wcstol function is a wide-character version of strtol that operates with
wide-character strings.

Returns: The strtol function returns the converted value. If the correct value would cause
overflow,
LONGMAX

 or
LONGMIN

 is returned according to the sign, and errno is set to
ERANGE. If base is out of range, zero is returned and errno is set to EDOM.

See Also: atoi, atol, atoll, itoa, ltoa, lltoa, sscanf, strtoll, strtoul, strtoull,
strtoimax, strtoumax, ultoa, ulltoa, utoa

870

strtol, wcstol

Example: #include <stdlib.h>

void main()
{

long int v;

v = strtol("12345678", NULL, 10);
}

Classification: strtol is ANSI, wcstol is ANSI

Systems: strtol - All, Netware
wcstol - All

 871

strtoll, wcstoll

Synopsis: #include <stdlib.h>
long long int strtoll(const char *ptr,

char **endptr,
int base);

#include <wchar.h>longlongintwcstoll(constwchart*ptr,wchart**endptr,
int base);

Description: The strtoll function converts the string pointed to by ptr to an object of type long
long int. The strtoll function recognizes a string containing:

• optional white space,
• an optional plus or minus sign,
• a sequence of digits and letters.

The conversion ends at the first unrecognized character. A pointer to that character will be
stored in the object to which endptr points if endptr is not NULL.

If base is zero, the first characters after the optional sign determine the base used for the
conversion. If the first characters are "0x" or "0X" the digits are treated as hexadecimal. If
the first character is ’0’, the digits are treated as octal. Otherwise the digits are treated as
decimal.

If base is not zero, it must have a value between 2 and 36. The letters a-z and A-Z represent
the values 10 through 35. Only those letters whose designated values are less than base are
permitted. If the value of base is 16, the characters "0x" or "0X" may optionally precede the
sequence of letters and digits.

The wcstoll function is a wide-character version of strtoll that operates with
wide-character strings.

Returns: The strtoll function returns the converted value. If the correct value would cause
overflow,
LLONGMAX

 or
LLONGMIN

 is returned according to the sign, and errno is set
to ERANGE. If base is out of range, zero is returned and errno is set to EDOM.

See Also: atoi, atol, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoul, strtoull,
strtoimax, strtoumax, ultoa, ulltoa, utoa

872

strtoll, wcstoll

Example: #include <stdlib.h>

void main()
{

long long int v;

v = strtol("12345678909876", NULL, 10);
}

Classification: strtoll is ANSI, wcstoll is ANSI

Systems: strtoll - All, Netware
wcstoll - All

 873

strtoimax, wcstoimax

Synopsis: #include <stdint.h>intmaxtstrtoimax(constchar*ptr,
char **endptr,
int base);

#include <stdint.h>intmaxtwcstoimax(constwchart*ptr,wchart**endptr,
int base);

Description: The strtoimax function converts the string pointed to by ptr to an object of typeintmaxt. The strtoimax function recognizes a string containing:

• optional white space,
• an optional plus or minus sign,
• a sequence of digits and letters.

The conversion ends at the first unrecognized character. A pointer to that character will be
stored in the object to which endptr points if endptr is not NULL.

If base is zero, the first characters after the optional sign determine the base used for the
conversion. If the first characters are "0x" or "0X" the digits are treated as hexadecimal. If
the first character is ’0’, the digits are treated as octal. Otherwise the digits are treated as
decimal.

If base is not zero, it must have a value between 2 and 36. The letters a-z and A-Z represent
the values 10 through 35. Only those letters whose designated values are less than base are
permitted. If the value of base is 16, the characters "0x" or "0X" may optionally precede the
sequence of letters and digits.

The wcstoimax function is a wide-character version of strtoimax that operates with
wide-character strings.

Returns: The strtoimax function returns the converted value. If the correct value would cause
overflow,
INTMAXMAX

 or
INTMAXMIN

 is returned according to the sign, and errno is
set to ERANGE. If base is out of range, zero is returned and errno is set to EDOM.

See Also: atoi, atol, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoul,
strtoull, strtoumax, ultoa, ulltoa, utoa

874

strtoimax, wcstoimax

Example: #include <stdint.h>
#include <stdlib.h>

void main()
{intmaxtv;

v = strtoimax("12345678909876", NULL, 10);
}

Classification: strtoimax is ANSI, wcstoimax is ANSI

Systems: strtoimax - All, Netware
wcstoimax - All

 875

strtoul, wcstoul

Synopsis: #include <stdlib.h>
unsigned long int strtoul(const char *ptr,

char **endptr,
int base);

#include <wchar.h>unsignedlongintwcstoul(constwchart*ptr,wchart**endptr,
int base);

Description: The strtoul function converts the string pointed to by ptr to an unsigned long. The
function recognizes a string containing optional white space, an optional sign (+ or -),
followed by a sequence of digits and letters. The conversion ends at the first unrecognized
character. A pointer to that character will be stored in the object endptr points to if endptr is
not NULL.

If base is zero, the first characters determine the base used for the conversion. If the first
characters are "0x" or "0X" the digits are treated as hexadecimal. If the first character is ’0’,
the digits are treated as octal. Otherwise the digits are treated as decimal.

If base is not zero, it must have a value of between 2 and 36. The letters a-z and A-Z
represent the values 10 through 35. Only those letters whose designated values are less than
base are permitted. If the value of base is 16, the characters "0x" or "0X" may optionally
precede the sequence of letters and digits.

If there is a leading minus sign in the string, the value is negated.

The wcstoul function is a wide-character version of strtoul that operates with
wide-character strings.

Returns: The strtoul function returns the converted value. If the correct value would cause
overflow,
ULONGMAX

 is returned and errno is set to ERANGE. If base is out of range,
zero is returned and errno is set to EDOM.

See Also: atoi, atol, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoull,
strtoimax, strtoumax, ultoa, ulltoa, utoa

Example: #include <stdlib.h>

void main()
{

unsigned long int v;

876

strtoul, wcstoul

v = strtoul("12345678", NULL, 10);
}

Classification: strtoul is ANSI, wcstoul is ANSI

Systems: strtoul - All, Netware
wcstoul - All

 877

strtoull, wcstoull

Synopsis: #include <stdlib.h>
unsigned long long int strtoull(const char *ptr,

char **endptr,
int base);

#include <wchar.h>unsignedlonglongintwcstoull(constwchart*ptr,wchart**endptr,
int base);

Description: The strtoull function converts the string pointed to by ptr to an unsigned long
long. The function recognizes a string containing optional white space, an optional sign (+
or -), followed by a sequence of digits and letters. The conversion ends at the first
unrecognized character. A pointer to that character will be stored in the object endptr points
to if endptr is not NULL.

If base is zero, the first characters determine the base used for the conversion. If the first
characters are "0x" or "0X" the digits are treated as hexadecimal. If the first character is ’0’,
the digits are treated as octal. Otherwise the digits are treated as decimal.

If base is not zero, it must have a value of between 2 and 36. The letters a-z and A-Z
represent the values 10 through 35. Only those letters whose designated values are less than
base are permitted. If the value of base is 16, the characters "0x" or "0X" may optionally
precede the sequence of letters and digits.

If there is a leading minus sign in the string, the value is negated.

The wcstoull function is a wide-character version of strtoull that operates with
wide-character strings.

Returns: The strtoull function returns the converted value. If the correct value would cause
overflow,
ULLONGMAX

 is returned and errno is set to ERANGE. If base is out of range,
zero is returned and errno is set to EDOM.

See Also: atoi, atol, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoul,
strtoimax, strtoumax, ultoa, ulltoa, utoa

Example: #include <stdlib.h>

void main()
{

unsigned long long int v;

878

strtoull, wcstoull

v = strtoul("12345678909876", NULL, 10);
}

Classification: strtoull is ANSI, wcstoull is ANSI

Systems: strtoull - All, Netware
wcstoull - All

 879

strtoumax, wcstoumax

Synopsis: #include <inttypes.h>uintmaxtstrtoumax(constchar*ptr,
char **endptr,
int base);

#include <inttypes.h>uintmaxtwcstoumax(constwchart*ptr,wchart**endptr,
int base);

Description: The strtoumax function converts the string pointed to by ptr to anuintmaxt. The
function recognizes a string containing optional white space, an optional sign (+ or -),
followed by a sequence of digits and letters. The conversion ends at the first unrecognized
character. A pointer to that character will be stored in the object endptr points to if endptr is
not NULL.

If base is zero, the first characters determine the base used for the conversion. If the first
characters are "0x" or "0X" the digits are treated as hexadecimal. If the first character is ’0’,
the digits are treated as octal. Otherwise the digits are treated as decimal.

If base is not zero, it must have a value of between 2 and 36. The letters a-z and A-Z
represent the values 10 through 35. Only those letters whose designated values are less than
base are permitted. If the value of base is 16, the characters "0x" or "0X" may optionally
precede the sequence of letters and digits.

If there is a leading minus sign in the string, the value is negated.

The wcstoumax function is a wide-character version of strtoumax that operates with
wide-character strings.

Returns: The strtoumax function returns the converted value. If the correct value would cause
overflow,
UINTMAXMAX

 is returned and errno is set to ERANGE. If base is out of range,
zero is returned and errno is set to EDOM.

See Also: atoi, atol, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoul,
strtoull, strtoimax, ultoa, ulltoa, utoa

Example: #include <inttypes.h>
#include <stdlib.h>

void main()
{uintmaxtv;

880

strtoumax, wcstoumax

v = strtoumax("12345678909876", NULL, 10);
}

Classification: strtoumax is ANSI, wcstoumax is ANSI

Systems: strtoumax - All, Netware
wcstoumax - All

 881

strupr, _strupr, _fstrupr, _wcsupr

Synopsis: #include <string.h>
char *strupr(char *s);char*strupr(char*s);charfar*fstrupr(charfar*s);
#include <wchar.h>wchart*wcsupr(wchart*s);

Description: The strupr function replaces the string s with uppercase characters by invoking the
toupper function for each character in the string.

Thestrupr function is identical to strupr. Usestrupr for ANSI/ISO naming
conventions.

The
fstrupr function is a data model independent form of the strupr function. It

accepts far pointer arguments and returns a far pointer. It is most useful in mixed memory
model applications.

Thewcsupr function is a wide-character version of strupr that operates with
wide-character strings.

Returns: The address of the original string s is returned.

See Also: strlwr

Example: #include <stdio.h>
#include <string.h>

char source[] = { "A mixed-case STRING" };

void main()
{

printf("%s\n", source);
printf("%s\n", strupr(source));
printf("%s\n", source);

}

produces the following:

A mixed-case STRING
A MIXED-CASE STRING
A MIXED-CASE STRING

Classification: WATCOM

882

strupr, _strupr, _fstrupr, _wcsupr

_strupr conforms to ANSI/ISO naming conventions

Systems: strupr - All, Netwarestrupr�All,Netwarefstrupr�Allwcsupr�All

 883

strxfrm, wcsxfrm

Synopsis: #include <string.h>sizetstrxfrm(char*dst,
const char *src,sizetn);

#include <wchar.h>sizetwcsxfrm(wchart*dst,constwchart*src,sizetn);
Description: The strxfrm function transforms, for no more than n characters, the string pointed to by

src to the buffer pointed to by dst. The transformation uses the collating sequence selected
by the setlocale function so that two transformed strings will compare identically (using
the strncmp function) to a comparison of the original two strings using the strcoll
function. The function will be equivalent to the strncpy function (except there is no
padding of the dst argument with null characters when the argument src is shorter than n
characters) when the collating sequence is selected from the "C" locale.

The wcsxfrm function is a wide-character version of strxfrm that operates with
wide-character strings. For wcsxfrm, after the string transformation, a call to wcscmp
with the two transformed strings yields results identical to those of a call to wcscoll
applied to the original two strings. wcsxfrm and strxfrm behave identically otherwise.

Returns: The strxfrm function returns the length of the transformed string. If this length is more
than n, the contents of the array pointed to by dst are indeterminate.

See Also: setlocale, strcoll

Example: #include <stdio.h>
#include <string.h>
#include <locale.h>

char src[] = { "A sample STRING" };
char dst[20];

void main()
{sizetlen;setlocale(LCALL,"C");

printf("%s\n", src);
len = strxfrm(dst, src, 20);
printf("%s (%u)\n", dst, len);

}

884

strxfrm, wcsxfrm

produces the following:

A sample STRING
A sample STRING (15)

Classification: strxfrm is ANSI, wcsxfrm is ANSI

Systems: strxfrm - All, Netware
wcsxfrm - All

 885

swab

Synopsis: #include <stdlib.h>
void swab(char *src, char *dest, int num);

Description: The swab function copies num bytes (which should be even) from src to dest swapping
every pair of characters. This is useful for preparing binary data to be transferred to another
machine that has a different byte ordering.

Returns: The swab function has no return value.

Example: #include <stdio.h>
#include <string.h>
#include <stdlib.h>

char *msg = "hTsim seasegi swspaep.d";
#define NBYTES 24

void main()
{

auto char buffer[80];

printf("%s\n", msg);
memset(buffer, ’\0’, 80);
swab(msg, buffer, NBYTES);
printf("%s\n", buffer);

}

produces the following:

hTsim seasegi swspaep.d
This message is swapped.

Classification: WATCOM

Systems: All, Netware

886

system

Synopsis: #include <stdlib.h>
int system(const char *command);

Description: If the value of command is NULL, then the system function determines whether or not a
shell is present. On a POSIX 1003.2 system (e.g., QNX), the shell is always assumed present
and system(NULL) always returns a non-zero value.

Otherwise, the system function invokes a copy of the shell, and passes the string command
to it for processing. This function uses spawnlp to load a copy of the shell.

Note that the shell used is always /bin/sh, regardless of the setting of the SHELL
environment variable. This is so because applications may rely on features of the standard
shell and may fail as a result of running a different shell.

This means that any command that can be entered to QNX can be executed, including
programs, QNX commands and shell scripts. The exec... and spawn... functions can
only cause programs to be executed.

Returns: If the value of command is NULL, then the system function returns zero if the shell is not
present, a non-zero value if the shell is present. This implementation always returns a
non-zero value.

Otherwise, the system function returns the result of invoking a copy of the shell. A -1 is
returned if the shell could not be loaded; otherwise, the status of the specified command is
returned. Assume that "status" is the value returned by system. If WEXITSTATUS(
status) == 255, this indicates that the specified command could not be run.
WEXITSTATUS is defined in <sys/wait.h> When an error has occurred, errno
contains a value indicating the type of error that has been detected.

See Also: abort, atexit,
bgetcmd, close, exec Functions, exit,

Exit,exit, getcmd,
getenv, main, onexit, putenv, signal, spawn Functions, wait

Example: #include <stdlib.h>
#include <stdio.h>
#include <sys/wait.h>

void main()
{

int rc;

 887

system

rc = system("ls");
if(rc == -1) {

printf("shell could not be run\n");
} else {

printf("result of running command is %d\n",
WEXITSTATUS(rc));

}
}

Classification: ANSI, POSIX 1003.2

Systems: All, Netware

888

tan

Synopsis: #include <math.h>
double tan(double x);

Description: The tan function computes the tangent of x (measured in radians). A large magnitude
argument may yield a result with little or no significance.

Returns: The tan function returns the tangent value. When an error has occurred, errno contains a
value indicating the type of error that has been detected.

See Also: atan, atan2, cos, sin, tanh

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", tan(.5));
}

produces the following:

0.546302

Classification: ANSI

Systems: Math

 889

tanh

Synopsis: #include <math.h>
double tanh(double x);

Description: The tanh function computes the hyperbolic tangent of x.

When the x argument is large, partial or total loss of significance may occur. The matherr
function will be invoked in this case.

Returns: The tanh function returns the hyperbolic tangent value. When an error has occurred,
errno contains a value indicating the type of error that has been detected.

See Also: cosh, sinh, matherr

Example: #include <stdio.h>
#include <math.h>

void main()
{

printf("%f\n", tanh(.5));
}

produces the following:

0.462117

Classification: ANSI

Systems: Math

890

tell

Synopsis: #include <unistd.h>
long tell(int fildes);int64telli64(intfildes);

Description: The tell function reports the current file position at the operating system level. The fildes
value is the file descriptor returned by a successful execution of the open function.

The returned value may be used in conjunction with the lseek function to reset the current
file position.

The _ telli64 function is similar to the tell function but returns a 64-bit file position.
This value may be used in conjunction with the

lseeki64 function to reset the current
file position.

Returns: If an error occurs in tell, (-1L) is returned.

If an error occurs in _ telli64, (-1I64) is returned.

When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Otherwise, the current file position is returned in a system-dependent manner. A value of 0
indicates the start of the file.

See Also: chsize, close, creat, dup, dup2, eof, exec Functions, fdopen, filelength,
fileno, fstat, lseek, open, read, setmode, sopen, stat, write, umask

Example: #include <stdio.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>

char buffer[]
= { "A text record to be written" };

 891

tell

void main()
{

int fildes;intsizewritten;
/* open a file for output */
/* replace existing file if it exists */
fildes = open("file",OWRONLY|OCREAT|OTRUNC,SIRUSR|SIWUSR|SIRGRP|SIWGRP);
if(fildes != -1) {

/* print file position */
printf("%ld\n", tell(fildes));

/* write the text */sizewritten=write(fildes,buffer,
sizeof(buffer));

/* print file position */
printf("%ld\n", tell(fildes));

/* close the file */
close(fildes);

}
}

produces the following:

0
28

Classification: WATCOM

Systems: All, Netware

892

time

Synopsis: #include <time.h>timettime(timet*tloc);
Description: The time function determines the current calendar time and encodes it into the typetimet.

The time represents the time since January 1, 1970 Coordinated Universal Time (UTC)
(formerly known as Greenwich Mean Time (GMT)).

The time set on the computer with the QNX date command reflects Coordinated Universal
Time (UTC). The environment variable TZ is used to establish the local time zone. See the
section The TZ Environment Variable for a discussion of how to set the time zone.

Returns: The time function returns the current calendar time. If tloc is not NULL, the current
calendar time is also stored in the object pointed to by tloc.

See Also: asctime, clock, ctime, difftime, gmtime, localtime, mktime, strftime,
tzset

Example: #include <stdio.h>
#include <time.h>

void main()
{timettimeofday;timeofday=time(NULL);printf("Itisnow:%s",ctime(&timeofday));
}

produces the following:

It is now: Fri Dec 25 15:58:42 1987

Classification: ANSI, POSIX 1003.1

Systems: All, Netware

 893

tmpfile

Synopsis: #include <stdio.h>
FILE *tmpfile(void);

Safer C: The Safer C Library extension provides the
tmpfiles function which is a safer

alternative to tmpfile. This newer
tmpfiles function is recommended to be used

instead of the traditional "unsafe" tmpfile function.

Description: The tmpfile function creates a temporary binary file that will automatically be removed
when it is closed or at program termination. The file is opened for update.

Returns: The tmpfile function returns a pointer to the stream of the file that it created. If the file
cannot be created, the tmpfile function returns NULL. When an error has occurred,
errno contains a value indicating the type of error that has been detected.

See Also: fopen,
fopens, freopen,
freopens, mkstemp,
tmpfiles, tmpnam,tmpnams

Example: #include <stdio.h>

static FILE *TempFile;

void main()
{

TempFile = tmpfile();
/* . */
/* . */
/* . */
fclose(TempFile);

}

Classification: ANSI

Systems: All, Netware

894

tmpfile_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdio.h>errnottmpfiles(FILE*restrict*restrictstreamptr);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked and

tmpfiles will return a non-zero value to
indicate an error, or the runtime-constraint handler aborts the program.

streamptr shall not be a null pointer. If there is a runtime-constraint violation,
tmpfiles

does not attempt to create a file.

Description: The
tmpfiles function creates a temporary binary file that is different from any other

existing file and that will automatically be removed when it is closed or at program
termination. If the program terminates abnormally, whether an open temporary file is
removed is implementation-defined. The file is opened for update with "wb+" mode with the
meaning that mode has in the fopen_s function (including the mode’s effect on exclusive
access and file permissions). If the file was created successfully, then the pointer to FILE
pointed to by streamptr will be set to the pointer to the object controlling the opened file.
Otherwise, the pointer to FILE pointed to by streamptr will be set to a null pointer.

Returns: The
tmpfiles function returns zero if there was no runtime-constraint violation.

Otherwise, a non-zero value is returned.

See Also: fopen,
fopens, freopen,
freopens, mkstemp, tmpfile, tmpnam,

tmpnams
Example:
#defineSTDCWANTLIBEXT11
#include <stdio.h>

void main()
{errnotrc;

FILE *TempFile;rc=tmpfiles(&TempFile);
if(rc == 0) {

/* . */
/* . */
/* . */
fclose(TempFile);

}
}

Classification: TR 24731

 895

tmpfile_s

Systems: All, Netware

896

tmpnam_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdio.h>errnottmpnams(char*s,rsizetmaxsize);
#include <wchar.h>errnotwtmpnams(wchart*s,rsizetmaxsize);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked and

tmpnams will return a non-zero value to
indicate an error, or the runtime-constraint handler aborts the program.

s shall not be a null pointer. maxsize shall be less than or equal to
RSIZEMAX. maxsize

shall be greater than the length of the generated file name string.

Description: The
tmpnams function generates a string that is a valid file name and that is not the same

as the name of an existing file. The function is potentially capable of generatingTMPMAXS different strings, but any or all of them may already be in use by existing files
and thus not be suitable return values. The lengths of these strings shall be less than the
value of the
Ltmpnams macro. The
tmpnams function generates a different string

each time it is called.

Thewtmpnams function is identical to
tmpnams except that it generates a unique

wide-character string for the file name.

Returns: If no suitable string can be generated, or if there is a runtime-constraint violation, thetmpnams function writes a null character to s[0] (only if s is not null and maxsize is
greater than zero) and returns a non-zero value. Otherwise, the

tmpnams function writes
the string in the array pointed to by s and returns zero.

See Also: fopen,
fopens, freopen,
freopens, mkstemp, tmpfile,

tmpfiles,
tmpnam

Example:
#defineSTDCWANTLIBEXT11
#include <stdio.h>

void main()
{charfilename[Ltmpnams];

FILE *fp;errnotrc;
 897

tmpnam_s

rc = tmpnam(filename, sizeof(filename));
if(rc == 0) {

fp = fopen(filename, "w+b");
/* . */
/* . */
/* . */
fclose(fp);
remove(filename);

}
}

Classification: tmpnam_s is TR 24371

Systems: All, Netware

898

tmpnam

Synopsis: #include <stdio.h>
char *tmpnam(char *buffer);

Safer C: The Safer C Library extension provides the
tmpnams function which is a safer alternative

to tmpnam. This newer
tmpnams function is recommended to be used instead of the

traditional "unsafe" tmpnam function.

Description: The tmpnam function generates a unique string for use as a valid file name.

If the TMPDIR environment variable is defined, the environment string is used once to
initialize a prefix for the temporary file name. If the TMPDIR environment variable is not
defined, the path "/tmp" is used as a prefix for the temporary file name. In either case, if the
path does not exist then the current directory (".") will be used. The filename component has
the following format:

UUUPPPP.NNNN.TMP

where:

UUU are unique filename letters for the process (starts with "AAA", then "AAB",
etc.),

PPPP is a variable-length string incorporating the process-id (pid), followed by a ".",

NNNN is a variable-length string incorporating the network-id (nid), followed by a ".",
and

TMP is the suffix "TMP".

For example, if the process-id is 0x0056 and the network-id is 0x0234 then the first
temporary file name produced resembles one of the following:

 {TMPDIRstring}/AAAFG.BCD.TMP
/tmp/AAAFG.BCD.TMP

./AAAFG.BCD.TMP

Subsequent calls to tmpnam reuse the internal buffer.

The function generates unique filenames for up to
TMPMAX calls.

Returns: If the argument buffer is a NULL pointer, tmpnam returns a pointer to an internal buffer
containing the temporary file name. If the argument buffer is not a NULL pointer, tmpnam
copies the temporary file name from the internal buffer to the specified buffer and returns a

 899

tmpnam

pointer to the specified buffer. It is assumed that the specified buffer is an array of at leastLtmpnam characters.

If the argument buffer is a NULL pointer, you may wish to duplicate the resulting string
since subsequent calls to tmpnam reuse the internal buffer.

char *name1, *name2;

name1 = strdup(tmpnam(NULL));
name2 = strdup(tmpnam(NULL));

See Also: fopen,
fopens, freopen,
freopens, mkstemp, tmpfile,

tmpfiles,tmpnams
Example: #include <stdio.h>

void main()
{charfilename[Ltmpnam];

FILE *fp;

tmpnam(filename);
fp = fopen(filename, "w+b");
/* . */
/* . */
/* . */
fclose(fp);
remove(filename);

}

Classification: ANSI

Systems: All, Netware

900

tolower, _tolower, towlower

Synopsis: #include <ctype.h>
int tolower(int c);inttolower(intc);
#include <wctype.h>wintttowlower(winttc);

Description: The tolower function converts c to a lowercase letter if c represents an uppercase letter.

The
tolower function is a version of tolower to be used only when c is known to be

uppercase.

The towlower function is similar to tolower except that it accepts a wide-character
argument.

Returns: The tolower function returns the corresponding lowercase letter when the argument is an
uppercase letter; otherwise, the original character is returned. The towlower function
returns the corresponding wide-character lowercase letter when the argument is a
wide-character uppercase letter; otherwise, the original wide character is returned.

The result of
tolower is undefined if c is not an uppercase letter.

See Also: isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, iswctype, isxdigit, toupper, towctrans,
strlwr, strupr, toupper

Example: #include <stdio.h>
#include <ctype.h>

char chars[] = {
’A’,
’5’,
’$’,
’Z’

};

#define SIZE sizeof(chars) / sizeof(char)

void main()
{

int i;

 901

tolower, _tolower, towlower

for(i = 0; i < SIZE; i++) {
printf("%c ", tolower(chars[i]));

}
printf("\n");

}

produces the following:

a 5 $ z

Classification: tolower is ANSI, _tolower is not ANSI, towlower is ANSI

Systems: tolower - All, Netwaretolower�All,Netware
towlower - All, Netware

902

toupper, _toupper, towupper

Synopsis: #include <ctype.h>
int toupper(int c);inttoupper(intc);
#include <wctype.h>wintttowupper(winttc);

Description: The toupper function converts c to a uppercase letter if c represents a lowercase letter.

The
toupper function is a version of toupper to be used only when c is known to be

lowercase.

The towupper function is similar to toupper except that it accepts a wide-character
argument.

Returns: The toupper function returns the corresponding uppercase letter when the argument is a
lowercase letter; otherwise, the original character is returned. The towupper function
returns the corresponding wide-character uppercase letter when the argument is a
wide-character lowercase letter; otherwise, the original wide character is returned.

The result of
toupper is undefined if c is not a lowercase letter.

See Also: isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, iswctype, isxdigit, tolower, towctrans,
strlwr, strupr, tolower

Example: #include <stdio.h>
#include <ctype.h>

char chars[] = {
’a’,
’5’,
’$’,
’z’

};

#define SIZE sizeof(chars) / sizeof(char)

void main()
{

int i;

 903

toupper, _toupper, towupper

for(i = 0; i < SIZE; i++) {
printf("%c ", toupper(chars[i]));

}
printf("\n");

}

produces the following:

A 5 $ Z

Classification: toupper is ANSI, _toupper is not ANSI, towupper is ANSI

Systems: toupper - All, Netwaretoupper�All,Netware
towupper - All, Netware

904

towctrans

Synopsis: #include <wctype.h>wintttowctrans(winttwc,wctranstdesc);
Description: The towctrans function maps the wide character wc using the mapping described by desc.

Valid values of desc are defined by the use of the wctrans function.

The two expressions listed below behave the same as a call to the wide character case
mapping function shown.

Expression Equivalent

towctrans(wc, wctrans("tolower")) towlower(wc)

towctrans(wc, wctrans("toupper")) towupper(wc)

Returns: The towctrans function returns the mapped value of wc using the mapping described by
desc.

See Also: isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, iswctype, isxdigit, tolower, toupper

Example: #include <stdio.h>
#include <wctype.h>

char *translations[2] = {
"tolower",
"toupper"

};

void main(void)
{

int i;winttwc=’A’;wintttwc;
for(i = 0; i < 2; i++) {

twc = towctrans(wc, wctrans(translations[i]));
printf("%s(%lc): %lc\n", translations[i], wc, twc);

}
}

produces the following:

 905

towctrans

tolower(A): a
toupper(A): A

Classification: ANSI

Systems: All, Netware

906

tzset

Synopsis: #include <time.h>
void tzset(void);

Description: The tzset function sets the global variables daylight, timezone and tzname
according to the value of the TZ environment variable. The section The TZ Environment
Variable describes how to set this variable.

The global variables have the following values after tzset is executed:

daylight Zero indicates that daylight saving time is not supported in the locale; a
non-zero value indicates that daylight saving time is supported in the
locale. This variable is cleared/set after a call to the tzset function
depending on whether a daylight saving time abbreviation is specified
in the TZ environment variable.

timezone Contains the number of seconds that the local time zone is earlier than
Coordinated Universal Time (UTC) (formerly known as Greenwich
Mean Time (GMT)).

tzname Two-element array pointing to strings giving the abbreviations for the
name of the time zone when standard and daylight saving time are in
effect.

The time set on the computer with the QNX date command reflects Coordinated Universal
Time (UTC). The environment variable TZ is used to establish the local time zone. See the
section The TZ Environment Variable for a discussion of how to set the time zone.

Returns: The tzset function does not return a value.

See Also: ctime, localtime, mktime, strftime

Example: #include <stdio.h>
#include <env.h>
#include <time.h>voidprintzone()

{
char *tz;

 907

tzset

printf("TZ: %s\n", (tz = getenv("TZ"))
? tz : "default EST5EDT");

printf(" daylight: %d\n", daylight);
printf(" timezone: %ld\n", timezone);
printf(" time zone names: %s %s\n",

tzname[0], tzname[1]);
}

void main()
{printzone();

setenv("TZ", "PST8PDT", 1);
tzset();printzone();

}

produces the following:

TZ: default EST5EDT
daylight: 1
timezone: 18000
time zone names: EST EDT

TZ: PST8PDT
daylight: 1
timezone: 28800
time zone names: PST PDT

Classification: POSIX 1003.1

Systems: All, Netware

908

ulltoa, _ulltoa, _ulltow

Synopsis: #include <stdlib.h>
char *ulltoa(unsigned long long int value,

char *buffer,
int radix);char*ulltoa(unsignedlonglongintvalue,
char *buffer,
int radix);wchart*ulltow(unsignedlonglongintvalue,wchart*buffer,

int radix);wchart*ulltou(unsignedlonglongintvalue,wchart*buffer,
int radix);

Description: The ulltoa function converts the unsigned binary integer value into the equivalent string
in base radix notation storing the result in the character array pointed to by buffer. A null
character is appended to the result. The size of buffer must be at least 65 bytes when
converting values in base 2. The value of radix must satisfy the condition:

2 <= radix <= 36

Theulltoa function is identical to ulltoa. Useulltoa for ANSI/ISO naming
conventions.

Theulltow function is identical to ulltoa except that it produces a wide-character
string (which is twice as long).

Theulltow Unicode function is identical to ulltoa except that it produces a Unicode
character string (which is twice as long).

Returns: The ulltoa function returns the pointer to the result.

See Also: atoi, atol, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoul,
strtoull, strtoimax, strtoumax, ultoa, utoa

Example:

 909

ulltoa, _ulltoa, _ulltow

#include <stdio.h>
#include <stdlib.h>voidprintvalue(unsignedlonglongintvalue)
{

int base;
char buffer[65];

for(base = 2; base <= 16; base = base + 2)
printf("%2d %s\n", base,

ultoa(value, buffer, base));
}

void main()
{printvalue((unsignedlonglong)1234098765LL);
}

produces the following:

2 1001001100011101101101001001101
4 1021203231221031
6 322243004113
8 11143555115

10 1234098765
12 2a5369639
14 b9c8863b
16 498eda4d

Classification: WATCOM

_ulltoa conforms to ANSI/ISO naming conventions

Systems: ulltoa - All, Netware

910

ultoa, _ultoa, _ultow

Synopsis: #include <stdlib.h>
char *ultoa(unsigned long int value,

char *buffer,
int radix);char*ultoa(unsignedlongintvalue,
char *buffer,
int radix);wchart*ultow(unsignedlongintvalue,wchart*buffer,

int radix);wchart*ultou(unsignedlongintvalue,wchart*buffer,
int radix);

Description: The ultoa function converts the unsigned binary integer value into the equivalent string in
base radix notation storing the result in the character array pointed to by buffer. A null
character is appended to the result. The size of buffer must be at least 33 bytes when
converting values in base 2. The value of radix must satisfy the condition:

2 <= radix <= 36

Theultoa function is identical to ultoa. Useultoa for ANSI/ISO naming
conventions.

Theultow function is identical to ultoa except that it produces a wide-character string
(which is twice as long).

Theultow Unicode function is identical to ultoa except that it produces a Unicode
character string (which is twice as long).

Returns: The ultoa function returns the pointer to the result.

See Also: atoi, atol, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoul,
strtoull, strtoimax, strtoumax, ulltoa, utoa

Example:

 911

ultoa, _ultoa, _ultow

#include <stdio.h>
#include <stdlib.h>voidprintvalue(unsignedlongintvalue)
{

int base;
char buffer[33];

for(base = 2; base <= 16; base = base + 2)
printf("%2d %s\n", base,

ultoa(value, buffer, base));
}

void main()
{printvalue((unsigned)12765L);
}

produces the following:

2 11000111011101
4 3013131
6 135033
8 30735

10 12765
12 7479
14 491b
16 31dd

Classification: WATCOM

_ultoa conforms to ANSI/ISO naming conventions

Systems: ultoa - All, Netwareultoa�All,Netwareultow�All

912

umask

Synopsis: #include <sys/types.h>
#include <sys/stat.h>modetumask(modetcmask);

Description: The umask function sets the process’s file mode creation mask to cmask. The process’s file
mode creation mask is used during creat, mkdir, mkfifo, open or sopen to turn off
permission bits in the permission argument supplied. In other words, if a bit in the mask is
on, then the corresponding bit in the file’s requested permission value is disallowed.

The argument cmask is a constant expression involving the constants described below. The
access permissions for the file or directory are specified as a combination of bits (defined in
the <sys/stat.h> header file).

The following bits define permissions for the owner.

Permission Meaning

S_IRWXU Read, write, execute/search
S_IRUSR Read permission
S_IWUSR Write permission
S_IXUSR Execute/search permission

The following bits define permissions for the group.

Permission Meaning

S_IRWXG Read, write, execute/search
S_IRGRP Read permission
S_IWGRP Write permission
S_IXGRP Execute/search permission

The following bits define permissions for others.

Permission Meaning

S_IRWXO Read, write, execute/search
S_IROTH Read permission
S_IWOTH Write permission
S_IXOTH Execute/search permission

The following bits define miscellaneous permissions used by other implementations.

 913

umask

Permission Meaning

S_IREAD is equivalent to S_IRUSR (read permission)
S_IWRITE is equivalent to S_IWUSR (write permission)
S_IEXEC is equivalent to S_IXUSR (execute/search permission)

For example, if
SIRUSR

 is specified, then reading is not allowed (i.e., the file is write
only). If
SIWUSR

 is specified, then writing is not allowed (i.e., the file is read only).

Returns: The umask function returns the previous value of cmask.

See Also: creat, mkdir, open, sopen

Example: #include <sys/types.h>
#include <sys/stat.h>

void main()
{modetoldmask;

/* set mask to create read-only files */oldmask=umask(SIWUSR|SIWGRP|SIWOTH|SIXUSR|SIXGRP|SIXOTH);
}

Classification: POSIX 1003.1

Systems: All, Netware

914

ungetc, ungetwc

Synopsis: #include <stdio.h>
int ungetc(int c, FILE *fp);
#include <stdio.h>
#include <wchar.h>winttungetwc(winttc,FILE*fp);

Description: The ungetc function pushes the character specified by c back onto the input stream pointed
to by fp. This character will be returned by the next read on the stream. The pushed-back
character will be discarded if a call is made to the fflush function or to a file positioning
function (fseek, fsetpos or rewind) before the next read operation is performed.

Only one character (the most recent one) of pushback is remembered.

The ungetc function clears the end-of-file indicator, unless the value of c is EOF.

The ungetwc function is identical to ungetc except that it pushes the wide character
specified by c back onto the input stream pointed to by fp.

The ungetwc function clears the end-of-file indicator, unless the value of c is WEOF.

Returns: The ungetc function returns the character pushed back.

See Also: fgetc, fgetchar, fgets, fopen, getc, getchar, gets

Example: #include <stdio.h>
#include <ctype.h>

void main()
{

FILE *fp;
int c;
long value;

fp = fopen("file", "r");
value = 0;
c = fgetc(fp);
while(isdigit(c)) {

value = value*10 + c - ’0’;
c = fgetc(fp);

}
ungetc(c, fp); /* put last character back */
printf("Value=%ld\n", value);
fclose(fp);

}

 915

ungetc, ungetwc

Classification: ungetc is ANSI, ungetwc is ANSI

Systems: ungetc - All, Netware
ungetwc - All

916

ungetch

Synopsis: #include <conio.h>
int ungetch(int c);

Description: The ungetch function pushes the character specified by c back onto the input stream for
the console. This character will be returned by the next read from the console (with getch
or getche functions) and will be detected by the function kbhit. Only the last character
returned in this way is remembered.

The ungetch function clears the end-of-file indicator, unless the value of c is EOF.

Returns: The ungetch function returns the character pushed back.

See Also: getch, getche, kbhit, putch

Example: #include <stdio.h>
#include <ctype.h>
#include <conio.h>

void main()
{

int c;
long value;

value = 0;
c = getche();
while(isdigit(c)) {

value = value*10 + c - ’0’;
c = getche();

}
ungetch(c);
printf("Value=%ld\n", value);

}

Classification: WATCOM

Systems: All, Netware

 917

unlink

Synopsis: #include <unistd.h>
int unlink(const char *path);

Description: The unlink function deletes the file whose name is the string pointed to by path. This
function is equivalent to the remove function.

Returns: The unlink function returns zero if the operation succeeds, non-zero if it fails.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

EACCES Search permission is denied for a component of path or write
permission is denied on the directory containing the link to be removed.

EBUSY The directory named by the path argument cannot be unlinked because
it is being used by the system or another process and the
implementation considers this to be an error.

ENAMETOOLONG The argument path exceeds {PATH_MAX} in length, or a pathname
component is longer than {NAME_MAX}.

ENOENT The named file does not exist or path is an empty string.

ENOTDIR A component of path is not a directory.

EPERM The file named by path is a directory and either the calling process does
not have the appropriate privileges, or the implementation prohibits
using unlink on directories.

EROFS The directory entry to be unlinked resides on a read-only file system.

See Also: chdir, close, getcwd, mkdir, open, remove, rename, rmdir, stat

Example: #include <unistd.h>

void main()
{

unlink("vm.tmp");
}

Classification: POSIX 1003.1

918

unlink

Systems: All, Netware

 919

unlock

Synopsis: #include <unistd.h>
int unlock(int fildes,

unsigned long offset,
unsigned long nbytes);

Description: The unlock function unlocks nbytes amount of previously locked data in the file
designated by fildes starting at byte offset in the file. This allows other processes to lock this
region of the file.

Multiple regions of a file can be locked, but no overlapping regions are allowed. You cannot
unlock multiple regions in the same call, even if the regions are contiguous. All locked
regions of a file should be unlocked before closing a file or exiting the program.

Returns: The unlock function returns zero if successful, and -1 when an error occurs. When an error
has occurred, errno contains a value indicating the type of error that has been detected.

See Also: lock, locking, open, sopen

Example: #include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

void main()
{

int fildes;
char buffer[20];fildes=open("file",ORDWR);
if(fildes != -1) {

if(lock(fildes, 0L, 20L)) {
printf("Lock failed\n");

} else {
read(fildes, buffer, 20);
/* update the buffer here */lseek(fildes,0L,SEEKSET);
write(fildes, buffer, 20);
unlock(fildes, 0L, 20L);

}
close(fildes);

}
}

Classification: WATCOM

920

unlock

Systems: All, Netware

 921

_unregisterfonts

Synopsis: #include <graph.h>voidFARunregisterfonts(void);
Description: Theunregisterfonts function frees the memory previously allocated by theregisterfonts function. The currently selected font is also unloaded.

Attempting to use thesetfont function after callingunregisterfonts will result
in an error.

Returns: Theunregisterfonts function does not return a value.

See Also: registerfonts,setfont,getfontinfo,outgtext,getgtextextent,setgtextvector,getgtextvector
Example: #include <conio.h>

#include <stdio.h>
#include <graph.h>

main()
{

int i, n;
char buf[10];setvideomode(VRES16COLOR);n=registerfonts("*.fon");
for(i = 0; i < n; ++i) {

sprintf(buf, "n%d", i);setfont(buf);moveto(100,100);outgtext("WATCOMGraphics");
getch();clearscreen(GCLEARSCREEN);

}unregisterfonts();setvideomode(DEFAULTMODE);
}

Classification: PC Graphics

Systems: DOS, QNX

922

utime

Synopsis: #include <sys/types.h>
#include <utime.h>
int utime(const char *path,

const struct utimbuf *times);

struct utimbuf {timetactime;/*accesstime*/timetmodtime;/*modificationtime*/
};

Description: The utime function records the access and modification times for the file or directory
identified by path.

If the times argument is NULL, the access and modification times of the file or directory are
set to the current time. The effective user ID of the process must match the owner of the file
or directory, or the process must have write permission to the file or directory, or appropriate
privileges in order to use the utime function in this way.

Returns: The utime function returns zero when the time was successfully recorded. A value of -1
indicates an error occurred.

Errors: When an error has occurred, errno contains a value indicating the type of error that has
been detected.

Constant Meaning

EACCES Search permission is denied for a component of path or the times
argument is NULL and the effective user ID of the process does not
match the owner of the file and write access is denied.

ENAMETOOLONG The argument path exceeds {PATH_MAX} in length, or a pathname
component is longer than {NAME_MAX}.

ENOENT The specified path does not exist or path is an empty string.

ENOTDIR A component of path is not a directory.

EPERM The times argument is not NULL and the calling process’s effective user
ID has write access to the file but does not match the owner of the file
and the calling process does not have the appropriate privileges.

EROFS The named file resides on a read-only file system.

 923

utime

Example: #include <stdio.h>
#include <sys/utime.h>

void main(int argc, char *argv[])
{

if((utime(argv[1], NULL) != 0) && (argc > 1)) {
printf("Unable to set time for %s\n", argv[1]);

}
}

Classification: POSIX 1003.1

Systems: All, Netware

924

utoa, _utoa, _utow

Synopsis: #include <stdlib.h>
char *utoa(unsigned int value,

char *buffer,
int radix);char*utoa(unsignedintvalue,
char *buffer,
int radix);wchart*utow(unsignedintvalue,wchart*buffer,

int radix);wchart*utou(unsignedintvalue,wchart*buffer,
int radix);

Description: The utoa function converts the unsigned binary integer value into the equivalent string in
base radix notation storing the result in the character array pointed to by buffer. A null
character is appended to the result. The size of buffer must be at least (8 * sizeof(int) + 1)
bytes when converting values in base 2. That makes the size 17 bytes on 16-bit machines,
and 33 bytes on 32-bit machines. The value of radix must satisfy the condition:

2 <= radix <= 36

Theutoa function is identical to utoa. Useutoa for ANSI/ISO naming conventions.

Theutow function is identical to utoa except that it produces a wide-character string
(which is twice as long).

Theutow Unicode function is identical to utoa except that it produces a Unicode
character string (which is twice as long).

Returns: The utoa function returns the pointer to the result.

See Also: atoi, atol, atoll, itoa, ltoa, lltoa, sscanf, strtol, strtoll, strtoul,
strtoull, strtoimax, strtoumax, ultoa, ulltoa

Example: #include <stdio.h>
#include <stdlib.h>

void main()
{

int base;
char buffer[18];

 925

utoa, _utoa, _utow

for(base = 2; base <= 16; base = base + 2)
printf("%2d %s\n", base,

utoa((unsigned) 12765, buffer, base));
}

produces the following:

2 11000111011101
4 3013131
6 135033
8 30735

10 12765
12 7479
14 491b
16 31dd

Classification: WATCOM

_utoa conforms to ANSI/ISO naming conventions

Systems: utoa - All, Netwareutoa�All,Netwareutow�All

926

va_arg

Synopsis: #include <stdarg.h>typevaarg(valistparam,type);
Description:vaarg is a macro that can be used to obtain the next argument in a list of variable

arguments. It must be used with the associated macrosvastart andvaend. A
sequence such as

void example(char *dst, ...)
{valistcurrarg;intnextarg;vastart(currarg,dst);nextarg=vaarg(currarg,int);

.

.

.

causesnextarg to be assigned the value of the next variable argument. The argument
type (which is int in the example) is the type of the argument originally passed to the
function.

The macrovastart must be executed first in order to properly initialize the variablecurrarg and the macrovaend should be executed after all arguments have been
obtained.

The data itemcurrarg is of typevalist which contains the information to permit
successive acquisitions of the arguments.

Returns: The macro returns the value of the next variable argument, according to type passed as the
second parameter.

See Also:vaend,vastart, vfprintf, vprintf, vsprintf

Example: #include <stdio.h>
#include <stdarg.h>voidtestfn(constchar*msg,

const char *types,
...);

 927

va_arg

void main()
{

printf("VA...TEST\n");testfn("PARAMETERS:1,\"abc\",546",
"isi", 1, "abc", 546);testfn("PARAMETERS:\"def\",789",
"si", "def", 789);

}staticvoidtestfn(
const char *msg, /* message to be printed */
const char *types, /* parameter types (i,s) */
...) /* variable arguments */
{valistargument;intargint;char*argstring;constchar*typesptr;typesptr=types;

printf("\n%s -- %s\n", msg, types);vastart(argument,types);while(*typesptr!=’\0’){if(*typesptr==’i’){argint=vaarg(argument,int);printf("integer:%d\n",argint);}elseif(*typesptr==’s’){argstring=vaarg(argument,char*);printf("string:%s\n",argstring);
}++typesptr;

}vaend(argument);
}

produces the following:

VA...TEST

PARAMETERS: 1, "abc", 546 -- isi
integer: 1
string: abc
integer: 546

PARAMETERS: "def", 789 -- si
string: def
integer: 789

928

va_arg

Classification: ANSI

Systems: MACRO

 929

va_end

Synopsis: #include <stdarg.h>voidvaend(valistparam);
Description:vaend is a macro used to complete the acquisition of arguments from a list of variable

arguments. It must be used with the associated macrosvastart andvaarg. See the
description forvaarg for complete documentation on these macros.

Returns: The macro does not return a value.

See Also:vaarg,vastart, vfprintf, vprintf, vsprintf

Example: #include <stdio.h>
#include <stdarg.h>
#include <time.h>

#define ESCAPE 27

void tprintf(int row, int col, char *fmt, ...)
{autovalistap;

char *p1, *p2;vastart(ap,fmt);p1=vaarg(ap,char*);p2=vaarg(ap,char*);
printf("%c[%2.2d;%2.2dH", ESCAPE, row, col);
printf(fmt, p1, p2);vaend(ap);

}

void main()
{structtmtimeofday;timetltime;

auto char buf[26];

time(<ime);localtime(<ime,&timeofday);
tprintf(12, 1, "Date and time is: %s\n",asctime(&timeofday,buf));

}

Classification: ANSI

930

va_end

Systems: MACRO

 931

va_start

Synopsis: #include <stdarg.h>voidvastart(valistparam,previous);
Description:vastart is a macro used to start the acquisition of arguments from a list of variable

arguments. The param argument is used by thevaarg macro to locate the current
acquired argument. The previous argument is the argument that immediately precedes the
"..." notation in the original function definition. It must be used with the associated
macrosvaarg andvaend. See the description ofvaarg for complete documentation
on these macros.

Returns: The macro does not return a value.

See Also:vaarg,vaend, vfprintf, vprintf, vsprintf

Example: #include <stdio.h>
#include <stdarg.h>
#include <time.h>

#define ESCAPE 27

void tprintf(int row, int col, char *fmt, ...)
{autovalistap;

char *p1, *p2;vastart(ap,fmt);p1=vaarg(ap,char*);p2=vaarg(ap,char*);
printf("%c[%2.2d;%2.2dH", ESCAPE, row, col);
printf(fmt, p1, p2);vaend(ap);

}

void main()
{structtmtimeofday;timetltime;

auto char buf[26];

time(<ime);localtime(<ime,&timeofday);
tprintf(12, 1, "Date and time is: %s\n",asctime(&timeofday,buf));

}

932

va_start

Classification: ANSI

Systems: MACRO

 933

_vbprintf, _vbwprintf

Synopsis: #include <stdio.h>
#include <stdarg.h>intvbprintf(char*buf,sizetbufsize,constchar*format,valistarg);intvbwprintf(wchart*buf,sizetbufsize,constwchart*format,valistarg);

Description: Thevbprintf function formats data under control of the format control string and writes
the result to buf. The argument bufsize specifies the size of the character array buf into which
the generated output is placed. The format string is described under the description of the
printf function. Thevbprintf function is equivalent to the

bprintf function,
with the variable argument list replaced with arg, which has been initialized by thevastart macro.

Thevbwprintf function is identical tovbprintf except that it accepts a
wide-character string argument for format and produces wide-character output.

Returns: Thevbprintf function returns the number of characters written, or a negative value if an
output error occurred.

See Also:
bprintf, cprintf, fprintf, printf, sprintf,vaarg,vaend,vastart,

vcprintf, vfprintf, vprintf, vsprintf

Example: The following shows the use ofvbprintf in a general error message routine.

#include <stdio.h>
#include <stdarg.h>
#include <string.h>

char msgbuf[80];

char *fmtmsg(char *format, ...)
{valistarglist;vastart(arglist,format);

strcpy(msgbuf, "Error: ");vbprintf(&msgbuf[7],73,format,arglist);vaend(arglist);
return(msgbuf);

}

934

_vbprintf, _vbwprintf

void main()
{

char *msg;

msg = fmtmsg("%s %d %s", "Failed", 100, "times");
printf("%s\n", msg);

}

Classification: WATCOM

Systems: vbprintf�All,Netwarevbwprintf�All

 935

vcprintf

Synopsis: #include <conio.h>
#include <stdarg.h>intvcprintf(constchar*format,valistarg);

Description: The vcprintf function writes output directly to the console under control of the argument
format. The putch function is used to output characters to the console. The format string is
described under the description of the printf function. The vcprintf function is
equivalent to the cprintf function, with the variable argument list replaced with arg,
which has been initialized by thevastart macro.

Returns: The vcprintf function returns the number of characters written, or a negative value if an
output error occurred. When an error has occurred, errno contains a value indicating the
type of error that has been detected.

See Also:
bprintf, cprintf, fprintf, printf, sprintf,vaarg,vaend,vastart,vbprintf, vfprintf, vprintf, vsprintf

Example: #include <conio.h>
#include <stdarg.h>
#include <time.h>

#define ESCAPE 27

void tprintf(int row, int col, char *format, ...)
{autovalistarglist;

cprintf("%c[%2.2d;%2.2dH", ESCAPE, row, col);vastart(arglist,format);
vcprintf(format, arglist);vaend(arglist);

}

void main()
{structtmtimeofday;timetltime;

auto char buf[26];

time(<ime);localtime(<ime,&timeofday);
tprintf(12, 1, "Date and time is: %s\n",asctime(&timeofday,buf));

}

936

vcprintf

Classification: WATCOM

Systems: All, Netware

 937

vcscanf

Synopsis: #include <conio.h>
#include <stdarg.h>intvcscanf(constchar*format,valistargs)

Description: The vcscanf function scans input from the console under control of the argument format.
The vcscanf function uses the function getche to read characters from the console. The
format string is described under the description of the scanf function.

The vcscanf function is equivalent to the cscanf function, with a variable argument list
replaced with arg, which has been initialized using thevastart macro.

Returns: The vcscanf function returns EOF when the scanning is terminated by reaching the end of
the input stream. Otherwise, the number of input arguments for which values were
successfully scanned and stored is returned. When a file input error occurs, the errno
global variable may be set.

See Also: cscanf, fscanf, scanf, sscanf,vaarg,vaend,vastart, vfscanf,
vscanf, vsscanf

Example: #include <conio.h>
#include <stdarg.h>

void cfind(char *format, ...)
{valistarglist;vastart(arglist,format);

vcscanf(format, arglist);vaend(arglist);
}

void main()
{

int day, year;
char weekday[10], month[10];

cfind("%s %s %d %d",
weekday, month, &day, &year);

cprintf("\n%s, %s %d, %d\n",
weekday, month, day, year);

}

Classification: WATCOM

938

vcscanf

Systems: All, Netware

 939

vfprintf, vfwprintf

Synopsis: #include <stdarg.h>
#include <stdio.h>
int vfprintf(FILE *fp,

const char *format,valistarg);
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwprintf(FILE *fp,constwchart*format,valistarg);

Safer C: The Safer C Library extension provides thevfprintfs function which is a safer
alternative to vfprintf. This newervfprintfs function is recommended to be used
instead of the traditional "unsafe" vfprintf function.

Description: The vfprintf function writes output to the file pointed to by fp under control of the
argument format. The format string is described under the description of the printf
function. The vfprintf function is equivalent to the fprintf function, with the variable
argument list replaced with arg, which has been initialized by thevastart macro.

The vfwprintf function is identical to vfprintf except that it accepts a wide-character
string argument for format.

Returns: The vfprintf function returns the number of characters written, or a negative value if an
output error occurred. The vfwprintf function returns the number of wide characters
written, or a negative value if an output error occurred. When an error has occurred, errno
contains a value indicating the type of error that has been detected.

See Also:
bprintf, cprintf, fprintf, printf, sprintf,vaarg,vaend,vastart,vbprintf, vcprintf, vprintf, vsprintf

Example: #include <stdio.h>
#include <stdarg.h>

FILE *LogFile;

/* a general error routine */

void errmsg(char *format, ...)
{valistarglist;

940

vfprintf, vfwprintf

fprintf(stderr, "Error: ");vastart(arglist,format);
vfprintf(stderr, format, arglist);vaend(arglist);
if(LogFile != NULL) {

fprintf(LogFile, "Error: ");vastart(arglist,format);
vfprintf(LogFile, format, arglist);vaend(arglist);

}
}

void main(void)
{

LogFile = fopen("error.log", "w");
errmsg("%s %d %s", "Failed", 100, "times");

}

Classification: vfprintf is ANSI, vfwprintf is ANSI

Systems: vfprintf - All, Netware
vfwprintf - All

 941

vfprintf_s, vfwprintf_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdarg.h>
#include <stdio.h>intvfprintfs(FILE*restrictstream,constchar*restrictformat,valistarg);
#include <stdarg.h>
#include <wchar.h>intvfwprintfs(FILE*restrictstream,constwchart*restrictformat,valistprg);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked andvfprintfs will return a non-zero value
to indicate an error, or the runtime-constraint handler aborts the program.

Neither stream nor format shall be a null pointer. The %n specifier (modified or not by flags,
field width, or precision) shall not appear in the string pointed to by format. Any argument
tovfprintfs corresponding to a %s specifier shall not be a null pointer.

If there is a runtime-constraint violation, thevfprintfs function does not attempt to
produce further output, and it is unspecified to what extentvfprintfs produced output
before discovering the runtime-constraint violation.

Description: Thevfprintfs function is equivalent to the vprintf function except for the explicit
runtime-constraints listed above.

Thevfwprintfs function is identical tovfprintfs except that it accepts a
wide-character string argument for format.

Returns: Thevfprintfs function returns the number of characters written, or a negative value if
an output error or runtime-constraint violation occurred.

Thevfwprintfs function returns the number of wide characters written, or a negative
value if an output error or runtime-constraint violation occurred.

See Also:
bprintf, cprintf, fprintf, printf, sprintf,vbprintf, vcprintf,

vfprintf, vprintf, vsprintf

942

vfprintf_s, vfwprintf_s

Example:
#defineSTDCWANTLIBEXT11
#include <stdio.h>
#include <stdarg.h>

FILE *LogFile;

/* a general error routine */

void errmsg(char *format, ...)
{valistarglist;fprintfs(stderr,"Error:");vastart(arglist,format);vfprintfs(stderr,format,arglist);vaend(arglist);

if(LogFile != NULL) {fprintfs(LogFile,"Error:");vastart(arglist,format);vfprintfs(LogFile,format,arglist);vaend(arglist);
}

}

void main(void)
{

errmsg("%s %d %s", "Failed", 100, "times");
}

produces the following:

Error: Failed 100 times

Classification: vfprintf_s is TR 24731, vfwprintf_s is TR 24731

Systems:vfprintfs�All,Netwarevfwprintfs�All

 943

vfscanf, vfwscanf

Synopsis: #include <stdio.h>
#include <stdarg.h>
int vfscanf(FILE *fp,

const char *format,valistarg);
int vfwscanf(FILE *fp,constwchart*format,valistarg);

Safer C: The Safer C Library extension provides thevfscanfs function which is a safer
alternative to vfscanf. This newervfscanfs function is recommended to be used
instead of the traditional "unsafe" vfscanf function.

Description: The vfscanf function scans input from the file designated by fp under control of the
argument format. The format string is described under the description of the scanf
function.

The vfscanf function is equivalent to the fscanf function, with a variable argument list
replaced with arg, which has been initialized using thevastart macro.

The vfwscanf function is identical to vfscanf except that it accepts a wide-character
string argument for format.

Returns: The vfscanf function returns EOF if an input failure occurred before any conversion.
Otherwise, the number of input arguments for which values were successfully scanned and
stored is returned. When a file input error occurs, the errno global variable may be set.

See Also: cscanf, fscanf, scanf, sscanf,vaarg,vaend,vastart, vcscanf,
vscanf, vsscanf

Example: #include <stdio.h>
#include <stdarg.h>

void ffind(FILE *fp, char *format, ...)
{valistarglist;vastart(arglist,format);

vfscanf(fp, format, arglist);vaend(arglist);
}

944

vfscanf, vfwscanf

void main(void)
{

int day, year;
char weekday[10], month[10];

ffind(stdin,
"%s %s %d %d",
weekday, month, &day, &year);

printf("\n%s, %s %d, %d\n",
weekday, month, day, year);

}

Classification: vfscanf is ISO C99, vfwscanf is ISO C99

Systems: vfscanf - All, Netware
vfwscanf - All

 945

vfscanf_s, vfwscanf_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdarg.h>
#include <stdio.h>intvfscanfs(FILE*restrictstream,constchar*restrictformat,valistarg);
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>intvfwscanfs(FILE*restrictstream,constwchart*restrictformat,valistarg);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked andvfscanfs will return a non-zero value to
indicate an error, or the runtime-constraint handler aborts the program.

Neither stream nor format shall be a null pointer. Any argument indirected through in order
to store converted input shall not be a null pointer.

If there is a runtime-constraint violation, thevfscanfs function does not attempt to
perform further input, and it is unspecified to what extentvfscanfs performed input
before discovering the runtime-constraint violation.

Description: Thevfscanfs function is equivalent to
fscanfs, with the variable argument list

replaced by arg, which shall have been initialized by thevastart macro (and possibly
subsequentvaarg calls). Thevfscanfs function does not invoke thevaend macro.

Thevfwscanfs function is identical tovfscanfs except that it accepts a
wide-character string argument for format.

Returns: Thevfscanfs function returns EOF if an input failure occurred before any conversion or
if there was a runtime-constraint violation. Otherwise, thevfscanfs function returns the
number of input items successfully assigned, which can be fewer than provided for, or even
zero.

When a file input error occurs, the errno global variable may be set.

See Also: cscanf, fscanf, scanf, sscanf,vaarg,vaend,vastart, vcscanf,
vfscanf, vscanf, vsscanf

946

vfscanf_s, vfwscanf_s

Example:
#defineSTDCWANTLIBEXT11
#include <stdio.h>
#include <stdarg.h>

void ffind(FILE *fp, char *format, ...)
{valistarglist;vastart(arglist,format);vfscanfs(fp,format,arglist);vaend(arglist);
}

void main(void)
{

int day, year;
char weekday[10], month[10];

ffind(stdin,
"%s %s %d %d",
weekday, sizeof(weekday),
month, sizeof(month),
&day, &year);printfs("\n%s,%s%d,%d\n",

weekday, month, day, year);
}

Classification: vfscanf_s is TR 24731, vfwscanf_s is TR 24731

Systems:vfscanfs�All,Netwarevfwscanfs�All

 947

vprintf, vwprintf

Synopsis: #include <stdarg.h>
#include <stdio.h>intvprintf(constchar*format,valistarg);
#include <stdarg.h>
#include <wchar.h>intvwprintf(constwchart*format,valistarg);

Safer C: The Safer C Library extension provides thevprintfs function which is a safer
alternative to vprintf. This newervprintfs function is recommended to be used
instead of the traditional "unsafe" vprintf function.

Description: The vprintf function writes output to the file stdout under control of the argument
format. The format string is described under the description of the printf function. The
vprintf function is equivalent to the printf function, with the variable argument list
replaced with arg, which has been initialized by thevastart macro.

The vwprintf function is identical to vprintf except that it accepts a wide-character
string argument for format.

Returns: The vprintf function returns the number of characters written, or a negative value if an
output error occurred. The vwprintf function returns the number of wide characters
written, or a negative value if an output error occurred. When an error has occurred, errno
contains a value indicating the type of error that has been detected.

See Also:
bprintf, cprintf, fprintf, printf, sprintf,vaarg,vaend,vastart,vbprintf, vcprintf, vfprintf, vsprintf

Example: The following shows the use of vprintf in a general error message routine.

#include <stdio.h>
#include <stdarg.h>

void errmsg(char *format, ...)
{valistarglist;

printf("Error: ");vastart(arglist,format);
vprintf(format, arglist);vaend(arglist);

}

948

vprintf, vwprintf

void main(void)
{

errmsg("%s %d %s", "Failed", 100, "times");
}

produces the following:

Error: Failed 100 times

Classification: vprintf is ANSI, vwprintf is ANSI

Systems: vprintf - All, Netware
vwprintf - All

 949

vprintf_s, vwprintf_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdarg.h>
#include <stdio.h>intvprintfs(constchar*restrictformat,valistarg);
#include <stdarg.h>
#include <wchar.h>intvwprintfs(constwchart*restrictformat,valistprg);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked andvprintfs will return a non-zero value to
indicate an error, or the runtime-constraint handler aborts the program.

The format argument shall not be a null pointer. The %n specifier (modified or not by flags,
field width, or precision) shall not appear in the string pointed to by format. Any argument
tovprintfs corresponding to a %s specifier shall not be a null pointer.

If there is a runtime-constraint violation, thevprintfs function does not attempt to
produce further output, and it is unspecified to what extentvprintfs produced output
before discovering the runtime-constraint violation.

Description: Thevprintfs function is equivalent to the vprintf function except for the explicit
runtime-constraints listed above.

Thevwprintfs function is identical tovprintfs except that it accepts a
wide-character string argument for format.

Returns: Thevprintfs function returns the number of characters written, or a negative value if an
output error or runtime-constraint violation occurred.

Thevwprintfs function returns the number of wide characters written, or a negative
value if an output error or runtime-constraint violation occurred.

See Also:
bprintf, cprintf, fprintf, printf, sprintf,vbprintf, vcprintf,

vfprintf, vprintf, vsprintf

950

vprintf_s, vwprintf_s

Example:
#defineSTDCWANTLIBEXT11
#include <stdio.h>
#include <stdarg.h>

void errmsg(char *format, ...)
{valistarglist;printfs("Error:");vastart(arglist,format);vprintfs(format,arglist);vaend(arglist);
}

void main(void)
{

errmsg("%s %d %s", "Failed", 100, "times");
}

produces the following:

Error: Failed 100 times

Classification: vprintf_s is TR 24731, vwprintf_s is TR 24731

Systems:vprintfs�All,Netwarevwprintfs�All

 951

vscanf, vwscanf

Synopsis: #include <stdarg.h>
#include <stdio.h>
int vscanf(const char *format,valistarg);
#include <stdarg.h>
#include <wchar.h>intvwscanf(constwchart*format,valistarg);

Safer C: The Safer C Library extension provides thevscanfs function which is a safer alternative
to vscanf. This newervscanfs function is recommended to be used instead of the
traditional "unsafe" vscanf function.

Description: The vscanf function scans input from the file designated by stdin under control of the
argument format. The format string is described under the description of the scanf
function.

The vscanf function is equivalent to the scanf function, with a variable argument list
replaced with arg, which has been initialized using thevastart macro.

The vwscanf function is identical to vscanf except that it accepts a wide-character string
argument for format.

Returns: The vscanf function returns EOF if an input failure occurred before any conversion.
values were successfully scanned and stored is returned.

See Also: cscanf, fscanf, scanf, sscanf,vaarg,vaend,vastart, vcscanf,
vfscanf, vsscanf

Example: #include <stdio.h>
#include <stdarg.h>

void find(char *format, ...)
{valistarglist;vastart(arglist,format);

vscanf(format, arglist);vaend(arglist);
}

952

vscanf, vwscanf

void main(void)
{

int day, year;
char weekday[10], month[10];

find("%s %s %d %d",
weekday, month, &day, &year);

printf("\n%s, %s %d, %d\n",
weekday, month, day, year);

}

Classification: vscanf is ISO C99, vwscanf is ISO C99

Systems: vscanf - All, Netware
vwscanf - All

 953

vscanf_s, vwscanf_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdarg.h>
#include <stdio.h>intvscanfs(constchar*restrictformat,valistarg);
#include <stdarg.h>
#include <wchar.h>intvwscanfs(constwchart*restrictformat,valistarg);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked andvscanfs will return a non-zero value to
indicate an error, or the runtime-constraint handler aborts the program.

The argument format shall not be a null pointer. Any argument indirected through in order
to store converted input shall not be a null pointer.

If there is a runtime-constraint violation, thevscanfs function does not attempt to
perform further input, and it is unspecified to what extentvscanfs performed input
before discovering the runtime-constraint violation.

Description: Thevscanfs function is equivalent toscanfs, with the variable argument list
replaced by arg, which shall have been initialized by thevastart macro (and possibly
subsequentvaarg calls). Thevscanfs function does not invoke thevaend macro.

Thevwscanfs function is identical tovscanfs except that it accepts a wide-character
string argument for format.

Returns: Thevscanfs function returns EOF if an input failure occurred before any conversion or if
there was a runtime-constraint violation. Otherwise, thevscanfs function returns the
number of input items successfully assigned, which can be fewer than provided for, or even
zero.

When a file input error occurs, the errno global variable may be set.

See Also: cscanf, fscanf, scanf, sscanf,vaarg,vaend,vastart, vcscanf,
vfscanf, vscanf, vsscanf

Example:
#defineSTDCWANTLIBEXT11
#include <stdio.h>
#include <stdarg.h>

void find(char *format, ...)
{valistarglist;

954

vscanf_s, vwscanf_svastart(arglist,format);vscanfs(format,arglist);vaend(arglist);
}

void main(void)
{

int day, year;
char weekday[10], month[10];

find("%s %s %d %d",
weekday, sizeof(weekday),
month, sizeof(month),
&day, &year);printfs("\n%s,%s%d,%d\n",
weekday, month, day, year);

}

Classification: vscanf_s is TR 24731, vwscanf_s is TR 24731

Systems:vscanfs�All,Netwarevwscanfs�All

 955

_vsnprintf, _vsnwprintf

Synopsis: #include <stdarg.h>
#include <stdio.h>intvsnprintf(char*buf,sizetcount,

const char *format,valistarg);
#include <stdarg.h>
#include <wchar.h>intvsnwprintf(wchart*buf,sizetcount,constwchart*format,valistarg);

Description: Thevsnprintf function formats data under control of the format control string and
stores the result in buf. The maximum number of characters to store is specified by count. A
null character is placed at the end of the generated character string if fewer than count
characters were stored. The format string is described under the description of the printf
function. Thevsnprintf function is equivalent to thesnprintf function, with the
variable argument list replaced with arg, which has been initialized by thevastart
macro.

Thevsnwprintf function is identical tovsnprintf except that the argument buf
specifies an array of wide characters into which the generated output is to be written, rather
than converted to multibyte characters and written to a stream. The maximum number of
wide characters to write is specified by count. A null wide character is placed at the end of
the generated wide character string if fewer than count wide characters were stored. Thevsnwprintf function accepts a wide-character string argument for format

Returns: Thevsnprintf function returns the number of characters written into the array, not
counting the terminating null character, or a negative value if more than count characters
were requested to be generated. An error can occur while converting a value for output. Thevsnwprintf function returns the number of wide characters written into the array, not
counting the terminating null wide character, or a negative value if more than count wide
characters were requested to be generated. When an error has occurred, errno contains a
value indicating the type of error that has been detected.

See Also:
bprintf, cprintf, fprintf, printf, sprintf,vaarg,vaend,vastart,vbprintf, vcprintf, vfprintf, vprintf, vsprintf

956

_vsnprintf, _vsnwprintf

Example: The following shows the use ofvsnprintf in a general error message routine.

#include <stdio.h>
#include <stdarg.h>
#include <string.h>

char msgbuf[80];

char *fmtmsg(char *format, ...)
{valistarglist;vastart(arglist,format);

strcpy(msgbuf, "Error: ");vsnprintf(&msgbuf[7],80�7,format,arglist);vaend(arglist);
return(msgbuf);

}

void main()
{

char *msg;

msg = fmtmsg("%s %d %s", "Failed", 100, "times");
printf("%s\n", msg);

}

Classification: WATCOM

Systems: vsnprintf�All,Netwarevsnwprintf�All

 957

vsnprintf, vsnwprintf

Synopsis: #include <stdarg.h>
#include <stdio.h>
int vsnprintf(char *buf,sizetcount,

const char *format,valistarg);
#include <stdarg.h>
#include <wchar.h>intvsnwprintf(wchart*buf,sizetcount,constwchart*format,valistarg);

Safer C: The Safer C Library extension provides thevsnprintfs function which is a safer
alternative to vsnprintf. This newervsnprintfs function is recommended to be
used instead of the traditional "unsafe" vsnprintf function.

Description: The vsnprintf function formats data under control of the format control string and stores
the result in buf. The maximum number of characters to store, including a terminating null
character, is specified by count. The format string is described under the description of the
printf function. The vsnprintf function is equivalent to thesnprintf function,
with the variable argument list replaced with arg, which has been initialized by thevastart macro.

The vsnwprintf function is identical to vsnprintf except that the argument buf
specifies an array of wide characters into which the generated output is to be written, rather
than converted to multibyte characters and written to a stream. The maximum number of
wide characters to write, including a terminating null wide character, is specified by count.
The vsnwprintf function accepts a wide-character string argument for format

Returns: The vsnprintf function returns the number of characters that would have been written
had count been sufficiently large, not counting the terminating null character, or a negative
value if an encoding error occurred. Thus, the null-terminated output has been completely
written if and only if the returned value is nonnegative and less than count. The
vsnwprintf function returns the number of wide characters that would have been written
had count been sufficiently large, not counting the terminating null wide character, or a
negative value if an encoding error occurred. Thus, the null-terminated output has been
completely written if and only if the returned value is nonnegative and less than count.
When an error has occurred, errno contains a value indicating the type of error that has
been detected.

See Also:
bprintf, cprintf, fprintf, printf, sprintf,vaarg,vaend,vastart,vbprintf, vcprintf, vfprintf, vprintf, vsprintf

958

vsnprintf, vsnwprintf

Example: The following shows the use of vsnprintf in a general error message routine.

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>

char *fmtmsg(char *format, ...)
{

char *msgbuf;
int len;valistarglist;vastart(arglist,format);
len = vsnprintf(NULL, 0, format, arglist);vaend(arglist);
len = len + 1 + 7;
msgbuf = malloc(len);
strcpy(msgbuf, "Error: ");vastart(arglist,format);
vsnprintf(&msgbuf[7], len, format, arglist);vaend(arglist);
return(msgbuf);

}

void main(void)
{

char *msg;

msg = fmtmsg("%s %d %s", "Failed", 100, "times");
printf("%s\n", msg);
free(msg);

}

Classification: vsnprintf is ANSI, vsnwprintf is ANSI

Systems: vsnprintf - All, Netware
vsnwprintf - All

 959

vsnprintf_s, vsnwprintf_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdarg.h>
#include <stdio.h>intvsnprintfs(char*restricts,rsizetnconstchar*restrictformat,valistarg);
#include <stdarg.h>
#include <wchar.h>intvsnwprintfs(char*restricts,rsizetn,constwchart*restrictformat,valistarg);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked andvsnprintfs will return a non-zero value
to indicate an error, or the runtime-constraint handler aborts the program.

Neither s nor format shall be a null pointer. The n argument shall neither equal zero nor be
greater than
RSIZEMAX. The number of characters (including the trailing null) required

for the result to be written to the array pointed to by s shall not be greater than n. The %n
specifier (modified or not by flags, field width, or precision) shall not appear in the string
pointed to by format. Any argument tovsnprintfs corresponding to a %s specifier
shall not be a null pointer. No encoding error shall occur.

If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than
zero and less than
RSIZEMAX, then thevsnprintfs function sets s[0] to the null

character.

Description: Thevsnprintfs function is equivalent to the vsnprintf function except for the
explicit runtime-constraints listed above.

Thevsnprintfs function, unlikevsprintfs, will truncate the result to fit within
the array pointed to by s.

Thevsnwprintfs function is identical tovsnprintfs except that it accepts a
wide-character string argument for format and produces wide character output.

Returns: Thevsnprintfs function returns the number of characters that would have been written
had n been sufficiently large, not counting the terminating null character, or a negative value
if a runtime-constraint violation occurred. Thus, the null-terminated output has been
completely written if and only if the returned value is nonnegative and less than n.

Thevsnprintfs function returns the number of wide characters that would have been
written had n been sufficiently large, not counting the terminating wide null character, or a
negative value if a runtime-constraint violation occurred. Thus, the null-terminated output
has been completely written if and only if the returned value is nonnegative and less than n.

960

vsnprintf_s, vsnwprintf_s

See Also:
bprintf, cprintf, fprintf, printf, sprintf,vbprintf, vcprintf,

vfprintf, vprintf, vsprintf

Example: The following shows the use ofvsnprintfs in a general error message routine.#defineSTDCWANTLIBEXT11
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>

char *fmtmsg(char *format, ...)
{

char *msgbuf;
int len;valistarglist;vastart(arglist,format);
len = vsnprintf(NULL, 0, format, arglist);vaend(arglist);
len = len + 1 + 7;
msgbuf = malloc(len);
strcpy(msgbuf, "Error: ");vastart(arglist,format);vsnprintfs(&msgbuf[7],len,format,arglist);vaend(arglist);
return(msgbuf);

}

void main(void)
{

char *msg;

msg = fmtmsg("%s %d %s", "Failed", 100, "times");printfs("%s\n",msg);
free(msg);

}

Classification: vsnprintf_s is TR 24731, vsnwprintf_s is TR 24731

Systems:vsnprintfs�All,Netwarevsnwprintfs�All
 961

vsprintf, vswprintf

Synopsis: #include <stdarg.h>
#include <stdio.h>
int vsprintf(char *buf,

const char *format,valistarg);
#include <stdarg.h>
#include <wchar.h>intvswprintf(wchart*buf,sizetcount,constwchart*format,valistarg);

Safer C: The Safer C Library extension provides thevsprintfs function which is a safer
alternative to vsprintf. This newervsprintfs function is recommended to be used
instead of the traditional "unsafe" vsprintf function.

Description: The vsprintf function formats data under control of the format control string and writes
the result to buf. The format string is described under the description of the printf
function. The vsprintf function is equivalent to the sprintf function, with the variable
argument list replaced with arg, which has been initialized by thevastart macro.

The vswprintf function is identical to vsprintf except that the argument buf specifies
an array of wide characters into which the generated output is to be written, rather than
converted to multibyte characters and written to a stream. The maximum number of wide
characters to write, including a terminating null wide character, is specified by count. The
vswprintf function accepts a wide-character string argument for format

Returns: The vsprintf function returns the number of characters written, or a negative value if an
output error occurred. The vswprintf function returns the number of wide characters
written into the array, not counting the terminating null wide character, or a negative value if
count or more wide characters were requested to be generated.

See Also:
bprintf, cprintf, fprintf, printf, sprintf,vaarg,vaend,vastart,vbprintf, vcprintf, vfprintf, vprintf

Example: The following shows the use of vsprintf in a general error message routine.

#include <stdio.h>
#include <stdarg.h>
#include <string.h>

char msgbuf[80];

962

vsprintf, vswprintf

char *fmtmsg(char *format, ...)
{valistarglist;vastart(arglist,format);

strcpy(msgbuf, "Error: ");
vsprintf(&msgbuf[7], format, arglist);vaend(arglist);
return(msgbuf);

}

void main(void)
{

char *msg;

msg = fmtmsg("%s %d %s", "Failed", 100, "times");
printf("%s\n", msg);

}

Classification: vsprintf is ANSI, vswprintf is ANSI

Systems: vsprintf - All, Netware
vswprintf - All

 963

vsprintf_s, vswprintf_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdarg.h>
#include <stdio.h>intvsprintfs(char*restricts,rsizetnconstchar*restrictformat,valistarg);
#include <stdarg.h>
#include <wchar.h>intvswprintfs(char*restricts,rsizetn,constwchart*restrictformat,valistarg);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked andvsprintfs will return a non-zero value
to indicate an error, or the runtime-constraint handler aborts the program.

Neither s nor format shall be a null pointer. The n argument shall neither equal zero nor be
greater than
RSIZEMAX. The number of characters (including the trailing null) required

for the result to be written to the array pointed to by s shall not be greater than n. The %n
specifier (modified or not by flags, field width, or precision) shall not appear in the string
pointed to by format. Any argument tovsprintfs corresponding to a %s specifier shall
not be a null pointer. No encoding error shall occur.

If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than
zero and less than
RSIZEMAX, then thevsprintfs function sets s[0] to the null

character.

Description: Thevsprintfs function is equivalent to the vsprintf function except for the explicit
runtime-constraints listed above.

Thevsprintfs function, unlikevsnprintfs, treats a result too big for the array
pointed to by s as a runtime-constraint violation.

Thevswprintfs function is identical tovsprintfs except that it accepts a
wide-character string argument for format and produces wide character output.

Returns: If no runtime-constraint violation occurred, thevsprintfs function returns the number
of characters written in the array, not counting the terminating null character. If an encoding
error occurred,vsprintfs returns a negative value. If any other runtime-constraint
violation occurred,vsprintfs returns zero.

If no runtime-constraint violation occurred, thevswprintfs function returns the number
of wide characters written in the array, not counting the terminating null wide character. If
an encoding error occurred or if n or more wide characters are requested to be written,

964

vsprintf_s, vswprintf_svswprintfs returns a negative value. If any other runtime-constraint violation occurred,vswprintfs returns zero.

See Also:
bprintf, cprintf, fprintf, printf, sprintf,vbprintf, vcprintf,

vfprintf, vprintf, vsprintf

Example: The following shows the use ofvsprintfs in a general error message routine.#defineSTDCWANTLIBEXT11
#include <stdio.h>
#include <stdarg.h>
#include <string.h>

char msgbuf[80];

char *fmtmsg(char *format, ...)
{valistarglist;vastart(arglist,format);strcpys(msgbuf,sizeof(buffer),"Error:");vsprintfs(&msgbuf[7],sizeof(msgbuf)�7,

format, arglist);vaend(arglist);
return(msgbuf);

}

void main(void)
{

char *msg;

msg = fmtmsg("%s %d %s", "Failed", 100, "times");
printf("%s\n", msg);

}

Classification: vsprintf_s is TR 24731, vswprintf_s is TR 24731

Systems:vsprintfs�All,Netwarevswprintfs�All
 965

vsscanf, vswscanf

Synopsis: #include <stdio.h>
#include <stdarg.h>intvsscanf(constchar*instring,

const char *format,valistarg);intvswscanf(constwchart*instring,constwchart*format,valistarg);
Safer C: The Safer C Library extension provides thevsscanfs function which is a safer

alternative to vsscanf. This newervsscanfs function is recommended to be used
instead of the traditional "unsafe" vsscanf function.

Description: The vsscanf function scans input from the string designated by in_string under control of
the argument format. The format string is described under the description of the scanf
function.

The vsscanf function is equivalent to the sscanf function, with a variable argument list
replaced with arg, which has been initialized using thevastart macro.

The vswscanf function is identical to vsscanf except that it accepts a wide-character
string argument for format.

Returns: The vsscanf function returns EOF if the end of the input string was reached before any
conversion. Otherwise, the number of input arguments for which values were successfully
scanned and stored is returned.

See Also: cscanf, fscanf, scanf, sscanf,vaarg,vaend,vastart, vcscanf,
vfscanf, vscanf

Example: #include <stdio.h>
#include <stdarg.h>

void sfind(char *string, char *format, ...)
{valistarglist;vastart(arglist,format);

vsscanf(string, format, arglist);vaend(arglist);
}

966

vsscanf, vswscanf

void main(void)
{

int day, year;
char weekday[10], month[10];

sfind("Saturday April 18 1987",
"%s %s %d %d",
weekday, month, &day, &year);

printf("\n%s, %s %d, %d\n",
weekday, month, day, year);

}

Classification: vsscanf is ISO C99, vswscanf is ISO C99

Systems: vsscanf - All, Netware
vswscanf - All

 967

vsscanf_s, vswscanf_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdarg.h>
#include <stdio.h>intvsscanfs(constchar*restricts,

const char * restrict format,valistarg);
#include <stdarg.h>
#include <wchar.h>intvswscanfs(constwchart*restricts,constwchart*restrictformat,valistarg);

Constraints: If any of the following runtime-constraints is violated, the currently active
runtime-constraint handler will be invoked andvsscanfs will return a non-zero value to
indicate an error, or the runtime-constraint handler aborts the program.

Neither s not format shall be a null pointer. Any argument indirected through in order to
store converted input shall not be a null pointer.

If there is a runtime-constraint violation, thevsscanfs function does not attempt to
perform further input, and it is unspecified to what extentvsscanfs performed input
before discovering the runtime-constraint violation.

Description: Thevsscanfs function is equivalent tosscanfs, with the variable argument list
replaced by arg, which shall have been initialized by thevastart macro (and possibly
subsequentvaarg calls). Thevsscanfs function does not invoke thevaend macro.

Thevswscanfs function is identical tovsscanfs except that it accepts
wide-character string arguments for s and format.

Returns: Thevsscanfs function returns EOF if an input failure occurred before any conversion or
if there was a runtime-constraint violation. Otherwise, thevsscanfs function returns the
number of input items successfully assigned, which can be fewer than provided for, or even
zero.

When a file input error occurs, the errno global variable may be set.

See Also: cscanf, fscanf, scanf, sscanf,vaarg,vaend,vastart, vcscanf,
vfscanf, vscanf, vsscanf

968

vsscanf_s, vswscanf_s

Example:
#defineSTDCWANTLIBEXT11
#include <stdio.h>
#include <stdarg.h>

void sfind(char *string, char *format, ...)
{valistarglist;vastart(arglist,format);vsscanfs(string,format,arglist);vaend(arglist);
}

void main(void)
{

int day, year;
char weekday[10], month[10];

sfind("Friday August 0013 2004",
"%s %s %d %d",
weekday, sizeof(weekday),
month, sizeof(month),
&day, &year);printfs("\n%s,%s%d,%d\n",

weekday, month, day, year);
}

produces the following:

Friday, August 13, 2004

Classification: vsscanf_s is TR 24731, vswscanf_s is TR 24731

Systems:vsscanfs�All,Netwarevswscanfs�All

 969

wait

Synopsis: #include <process.h>
int wait(int *status);

Description: The wait function suspends the calling process until any of the caller’s immediate child
processes terminate.

Under Win32, there is no parent-child relationship amongst processes so the wait function
cannot and does not wait for child processes to terminate. To wait for any process, you must
specify its process id. For this reason, the cwait function should be used (one of its
arguments is a process id).

If status is not NULL, it points to a word that will be filled in with the termination status
word and return code of the terminated child process.

If the child process terminated normally, then the low order byte of the status word will be
set to 0, and the high order byte will contain the low order byte of the return code that the
child process passed to the DOSEXIT function. The DOSEXIT function is called whenever
main returns, or exit orexit are explicity called.

If the child process did not terminate normally, then the high order byte of the status word
will be set to 0, and the low order byte will contain one of the following values:

Value Meaning

1 Hard-error abort

2 Trap operation

3 SIGTERM signal not intercepted

Note: This implementation of the status value follows the OS/2 model and differs
from the Microsoft implementation. Under Microsoft, the return code is
returned in the low order byte and it is not possible to determine whether a
return code of 1, 2, or 3 imply that the process terminated normally. For
portability to Microsoft compilers, you should ensure that the application that is
waited on does not return one of these values. The following shows how to
handle the status value in a portable manner.

970

wait

 cwait(&status,processid,WAITCHILD);#ifdefined(WATCOMC)
switch(status & 0xff) {
case 0:

printf("Normal termination exit code = %d\n", status >> 8
);

break;
case 1:

printf("Hard-error abort\n");
break;

case 2:
printf("Trap operation\n");
break;

case 3:
printf("SIGTERM signal not intercepted\n");
break;

default:
printf("Bogus return status\n");

}#elseifdefined(MSCVER)
switch(status & 0xff) {
case 1:

printf("Possible Hard-error abort\n");
break;

case 2:
printf("Possible Trap operation\n");
break;

case 3:
printf("Possible SIGTERM signal not intercepted\n");
break;

default:
printf("Normal termination exit code = %d\n", status);

}

#endif

Returns: The wait function returns the child’s process id if the child process terminated normally.
Otherwise, wait returns -1 and sets errno to one of the following values:

Constant Meaning

ECHILD No child processes exist for the calling process.

EINTR The child process terminated abnormally.

See Also: exit,exit, spawn Functions

 971

wait

Example: #include <stdlib.h>
#include <process.h>

void main()
{intprocessid,status;processid=spawnl(PNOWAIT,"child.exe",

"child", "parm", NULL);
wait(&status);

}

Classification: WATCOM

Systems: Win32, QNX, OS/2 1.x(all), OS/2-32

972

wcstombs

Synopsis: #include <stdlib.h>sizetwcstombs(char*s,constwchart*pwcs,sizetn);
#include <mbstring.h>sizetfwcstombs(charfar*s,constwchartfar*pwcs,sizetn);

Safer C: The Safer C Library extension provides thewcstombss function which is a safer
alternative to wcstombs. This newerwcstombss function is recommended to be used
instead of the traditional "unsafe" wcstombs function.

Description: The wcstombs function converts a sequence of wide character codes from the array
pointed to by pwcs into a sequence of multibyte characters and stores them in the array
pointed to by s. The wcstombs function stops if a multibyte character would exceed the
limit of n total bytes, or if the null character is stored. At most n bytes of the array pointed to
by s will be modified.

The function is a data model independent form of the wcstombs function that accepts far
pointer arguments. It is most useful in mixed memory model applications.

Returns: If an invalid multibyte character is encountered, the wcstombs function returns(sizet)�1. Otherwise, the wcstombs function returns the number of array elements
modified, not including the terminating zero code if present.

See Also:wcstombss, mblen, mbtowc, mbstowcs,mbstowcss, wctomb,wctombs
Example: #include <stdio.h>

#include <stdlib.h>wchartwbuffer[]={
0x0073,
0x0074,
0x0072,
0x0069,
0x006e,
0x0067,
0x0000

};

void main()
{

char mbsbuffer[50];
int i, len;

 973

wcstombs

len = wcstombs(mbsbuffer, wbuffer, 50);
if(len != -1) {

for(i = 0; i < len; i++)
printf("/%4.4x", wbuffer[i]);

printf("\n");
mbsbuffer[len] = ’\0’;
printf("%s(%d)\n", mbsbuffer, len);

}
}

produces the following:

/0073/0074/0072/0069/006e/0067
string(6)

Classification: wcstombs is ANSI, wcstombs is ANSI

Systems: All, Netware

974

wcstombs_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdlib.h>errnotwcstombss(sizet*restrictretval,

char * restrict dst,rsizetdstmax,constwchart*restrictsrc,rsizetlen);errnotfwcstombss(sizetfar*restrictretval,charfar*restrictdst,rsizetdstmax,constwchartfar*restrictsrc,rsizetlen);
Constraints: If any of the following runtime-constraints is violated, the currently active

runtime-constraint handler will be invoked andwcstombss will return a non-zero value
to indicate an error, or the runtime-constraint handler aborts the program.

Neither retval nor src shall be a null pointer. If dst is not a null pointer, then neither len nor
dstmax shall be greater than
RSIZEMAX. If dst is a null pointer, then dstmax shall equal

zero. If dst is not a null pointer,then dstmax shall not equal zero. If dst is not a null pointer
and len is not less than dstmax, then the conversion shall have been stopped (see below)
because a terminating null wide character was reached or because an encoding error
occurred.

If there is a runtime-constraint violation, thenwcstombss does the following. If retval is
not a null pointer,thenwcstombss sets *retval to (size_t)(-1). If dst is not a null pointer
and dstmax is greater than zero and less than

RSIZEMAX, thenwcstombss sets dst[0]
to the null character.

Description: Thewcstombss function converts a sequence of wide characters from the array pointed
to by src into a sequence of corresponding multibyte characters that begins in the initial shift
state. If dst is not a null pointer,the converted characters are then stored into the array
pointed to by dst. Conversion continues up to and including a terminating null wide
character, which is also stored.

Conversion stops earlier in two cases:
when a wide character is reached that does not correspond to a valid multibyte character;
(if dst is not a null pointer) when the next multibyte character would exceed the limit of n
total bytes to be stored into the array pointed to by dst. If the wide character being converted
is the null wide character, then n is the lesser of len or dstmax. Otherwise, n is the lesser of
len or dstmax-1.

 975

wcstombs_s

If the conversion stops without converting a null wide character and dst is not a null pointer,
then a null character is stored into the array pointed to by dst immediately following any
multibyte characters already stored. Each conversion takes place as if by a call to the
wcrtomb function.

Regardless of whether dst is or is not a null pointer, if the input conversion encounters a wide
character that does not correspond to a valid multibyte character, an encoding error occurs:
thewcstombss function stores the value (size_t)(-1) into *retval. Otherwise, thewcstombss function stores into *retval the number of bytes in the resulting multibyte
character sequence, not including the terminating null character (if any).

All elements following the terminating null character (if any) written bywcstombss in
the array of dstmax elements pointed to by dst take unspecified values whenwcstombss
returns.

If copying takes place between objects that overlap, the objects take on unspecified values.

The
fwcstombss function is a data model independent form of the wcstombs_s

function that accepts far pointer arguments. It is most useful in mixed memory model
applications.

Returns: Thewcstombss function returns zero if there was no runtime-constraint violation.
Otherwise, a non-zero value is returned.

See Also: wcstombs, mblen, mbtowc, mbstowcs,mbstowcss, wctomb,wctombs
Example:
#defineSTDCWANTLIBEXT11
#include <stdio.h>
#include <stdlib.h>

976

wcstombs_swchartwbuffer[]={
0x0073,
0x0074,
0x0072,
0x0069,
0x006e,
0x0067,
0x0073,
0x0074,
0x0072,
0x0069,
0x006e,
0x0067,
0x0000

};

int main()
{

char mbsbuffer[50];
int i;sizetretval;errnotrc;rc=wcstombss(&retval,mbsbuffer,50,wbuffer,sizeof(

wbuffer));
if(rc == 0) {

for(i = 0; i < retval; i++)
printf("/%4.4x", wbuffer[i]);

printf("\n");
mbsbuffer[retval] = ’\0’;
printf("%s(%d)\n", mbsbuffer, retval);

}
return(rc);

}

produces the following:

/0073/0074/0072/0069/006e/0067
string(6)

Classification: wcstombs_s is TR 24731

Systems: All, Netware

 977

wctomb

Synopsis: #include <stdlib.h>intwctomb(char*s,wchartwc);
#include <mbstring.h>intfwctomb(charfar*s,wchartwc);

Safer C: The Safer C Library extension provides thewctombs function which is a safer alternative
to wctomb. This newerwctombs function is recommended to be used instead of the
traditional "unsafe" wctomb function.

Description: The wctomb function determines the number of bytes required to represent the multibyte
character corresponding to the wide character contained in wc. If s is not a NULL pointer,
the multibyte character representation is stored in the array pointed to by s. At mostMBCURMAX

 characters will be stored.

The function is a data model independent form of the wctomb function that accepts far
pointer arguments. It is most useful in mixed memory model applications.

Returns: If s is a NULL pointer, the wctomb function returns zero if multibyte character encodings
are not state dependent, and non-zero otherwise. If s is not a NULL pointer, the wctomb
function returns:

Value Meaning

-1 if the value of wc does not correspond to a valid multibyte character

len the number of bytes that comprise the multibyte character corresponding to the
value of wc.

See Also:wctombs, mblen, mbstowcs,mbstowcss, mbtowc, wcstombs,wcstombss
Example: #include <stdio.h>

#include <stdlib.h>wchartwchar={0x0073};
char mbbuffer[2];

void main()
{

int len;

978

wctomb

printf("Character encodings are %sstate dependent\n",
(wctomb(NULL, 0))
? "" : "not ");

len = wctomb(mbbuffer, wchar);
mbbuffer[len] = ’\0’;
printf("%s(%d)\n", mbbuffer, len);

}

produces the following:

Character encodings are not state dependent
s(1)

Classification: wctomb is ANSI, wctomb is ANSI

Systems: All, Netware

 979

wctomb_s

Synopsis:
#defineSTDCWANTLIBEXT11
#include <stdlib.h>errnotwctombs(int*restrictstatus,

char * restrict s,rsizetsmax,wchartwc);errnotfwctombs(intfar*restrictstatus,charfar*restricts,rsizetsmax,wchartwc);
Constraints: If any of the following runtime-constraints is violated, the currently active

runtime-constraint handler will be invoked andwctombs will return a non-zero value to
indicate an error, or the runtime-constraint handler aborts the program.

Let n denote the number of bytes needed to represent the multibyte character corresponding
to the wide character given by wc (including any shift sequences).

If s is not a null pointer, then smax shall not be less than n, and smax shall not be greater thanRSIZEMAX. If s is a null pointer, then smax shall equal zero.

If there is a runtime-constraint violation,wctombs does not modify the int pointed to by
status, and if s is not a null pointer, no more than smax elements in the array pointed to by s
will be accessed.

Description: Thewctombs function determines n and stores the multibyte character representation of
wc in the array whose first element is pointed to by s (if s is not a null pointer). The number
of characters stored never exceeds
MBCURMAX

 or smax. If wc is a null wide character, a
null byte is stored, preceded by any shift sequence needed to restore the initial shift state, and
the function is left in the initial conversion state.

The implementation shall behave as if no library function calls thewctombs function.

If s is a null pointer,thewctombs function stores into the int pointed to by status a nonzero
or zero value, if multibyte character encodings, respectively, do or do not have
state-dependent encodings.

If s is not a null pointer,thewctombs function stores into the int pointed to by status either
n or -1 if wc, respectively, does or does not correspond to a valid multibyte character.

In no case will the int pointed to by status be set to a value greater than the
MBCURMAX

macro.

980

wctomb_s

The
fwctombs function is a data model independent form of the wctomb_s function that

accepts far pointer arguments. It is most useful in mixed memory model applications.

Returns: Thewctombs function returns zero if there was no runtime-constraint violation.
Otherwise, a non-zero value is returned.

See Also: wctomb, mblen, mbstowcs,mbstowcss, mbtowc, wcstombs,wcstombss
Example:
#defineSTDCWANTLIBEXT11
#include <stdio.h>
#include <stdlib.h>wchartwchar={0x0073};
char mbbuffer[2];

int main()
{

int status;errnotrc;rc=wctombs(&status,NULL,0,wchar);
printf("Character encodings are %sstate dependent\n",

(status) ? "" : "not ");rc=wctombs(&status,mbbuffer,2,wchar);
if(rc != 0) {

printf("Character encoding error\n");
} else {

mbbuffer[status] = ’\0’;
printf("%s(%d)\n", mbbuffer, status);

}
return(rc);

}

produces the following:

Character encodings are not state dependent
s(1)

Classification: wctomb_s is TR 24731

Systems: All, Netware

 981

wctrans

Synopsis: #include <wctype.h>wctranstwctrans(constchar*property);
Description: The wctrans function constructs a value with typewctranst that describes a mapping

between wide characters identified by the string argument property. The constructed value is
affected by the
LCCTYPE category of the current locale; the constructed value becomes

indeterminate if the category’s setting is changed.

The two strings listed below are valid in all locales as property arguments to the wctrans
function.

Constant Meaning

tolower uppercase characters are mapped to lowercase

toupper lowercase characters are mapped to uppercase

Returns: If property identifies a valid class of wide characters according to the
LCCTYPE category

of the current locale, the wctrans function returns a non-zero value that is valid as the
second argument to the towctrans function; otherwise, it returns zero.

See Also: isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, iswctype, isxdigit, tolower, toupper,
towctrans

Example: #include <stdio.h>
#include <wctype.h>

char *translations[2] = {
"tolower",
"toupper"

};

void main(void)
{

int i;winttwc=’A’;wintttwc;
982

wctrans

for(i = 0; i < 2; i++) {
twc = towctrans(wc, wctrans(translations[i]));
printf("%s(%lc): %lc\n", translations[i], wc, twc);

}
}

produces the following:

tolower(A): a
toupper(A): A

Classification: wctrans is ANSI, wctrans is ANSI

Systems: All, Netware

 983

wctype

Synopsis: #include <wctype.h>wctypetwctype(constchar*property);
Description: The wctype function constructs a value with typewctypet that describes a class of wide

characters identified by the string argument, property. The constructed value is affected by
the
LCCTYPE category of the current locale; the constructed value becomes indeterminate

if the category’s setting is changed.

The eleven strings listed below are valid in all locales as property arguments to the wctype
function.

Constant Meaning

alnum any wide character for which one of iswalpha or iswdigit is true

alpha any wide character for which iswupper or iswlower is true, that is, for
any wide character that is one of an implementation-defined set for which
none of iswcntrl, iswdigit, iswpunct, or iswspace is true

cntrl any control wide character

digit any wide character corresponding to a decimal-digit character

graph any printable wide character except a space wide character

lower any wide character corresponding to a lowercase letter, or one of an
implementation-defined set of wide characters for which none of
iswcntrl, iswdigit, iswpunct, or iswspace is true

print any printable wide character including a space wide character

punct any printable wide character that is not a space wide character or a wide
character for which iswalnum is true

space any wide character corresponding to a standard white-space character or is
one of an implementation-defined set of wide characters for which
iswalnum is false

upper any wide character corresponding to a uppercase letter, or if c is one of an
implementation-defined set of wide characters for which none of
iswcntrl, iswdigit, iswpunct, or iswspace is true

984

wctype

xdigit any wide character corresponding to a hexadecimal digit character

Returns: If property identifies a valid class of wide characters according to the
LCCTYPE category

of the current locale, the wctype function returns a non-zero value that is valid as the
second argument to the iswctype function; otherwise, it returns zero.

See Also: isalnum, isalpha, isblank, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, iswctype, isxdigit, tolower, toupper,
towctrans

Example: #include <stdio.h>
#include <wchar.h>

char *types[11] = {
"alnum",
"alpha",
"cntrl",
"digit",
"graph",
"lower",
"print",
"punct",
"space",
"upper",
"xdigit"

};

void main(void)
{

int i;winttwc=’A’;
for(i = 0; i < 11; i++)

if(iswctype(wc, wctype(types[i])))
printf("%s\n", types[i]);

}

produces the following:

alnum
alpha
graph
print
upper
xdigit

 985

wctype

Classification: wctype is ANSI, wctype is ANSI

Systems: All

986

_wrapon

Synopsis: #include <graph.h>shortFARwrapon(shortwrap);
Description: Thewrapon function is used to control the display of text when the text output reaches the

right side of the text window. This is text displayed with theouttext andoutmem
functions. The wrap argument can take one of the following values:

_GWRAPON causes lines to wrap at the window border

_GWRAPOFF causes lines to be truncated at the window border

Returns: Thewrapon function returns the previous setting for wrapping.

See Also: outtext,outmem,settextwindow
Example: #include <conio.h>

#include <graph.h>
#include <stdio.h>

main()
{

int i;
char buf[80];setvideomode(TEXTC80);settextwindow(5,20,20,30);wrapon(GWRAPOFF);
for(i = 1; i <= 3; ++i) {settextposition(2*i,1);

sprintf(buf, "Very very long line %d", i);outtext(buf);
}wrapon(GWRAPON);
for(i = 4; i <= 6; ++i) {settextposition(2*i,1);

sprintf(buf, "Very very long line %d", i);outtext(buf);
}
getch();setvideomode(DEFAULTMODE);

}

Classification: _wrapon is PC Graphics

 987

_wrapon

Systems: DOS, QNX

988

write

Synopsis: #include <unistd.h>
int write(int fildes, void *buffer, unsigned len);

Description: The write function writes data at the operating system level. The number of bytes
transmitted is given by len and the data to be transmitted is located at the address specified
by buffer.

The fildes value is returned by the open function. The access mode must have included
either
OWRONLY

 or
ORDWR

 when the open function was invoked.

The data is written to the file at the end when the file was opened with
OAPPEND included

as part of the access mode; otherwise, it is written at the current file position for the file in
question. This file position can be determined with the tell function and can be set with
the lseek function.

When
OBINARY

 is included in the access mode, the data is transmitted unchanged. WhenOTEXT
 is included in the access mode, the data is transmitted with extra carriage return

characters inserted before each linefeed character encountered in the original data.

A file can be truncated under DOS and OS/2 2.0 by specifying 0 as the len argument. Note,
however, that this doesn’t work under OS/2 2.1, Windows NT/2000, and other operating
systems. To truncate a file in a portable manner, use the chsize function.

Returns: The write function returns the number of bytes (does not include any extra carriage-return
characters transmitted) of data transmitted to the file. When there is no error, this is the
number given by the len argument. In the case of an error, such as there being no space
available to contain the file data, the return value will be less than the number of bytes
transmitted. A value of -1 may be returned in the case of some output errors. When an error
has occurred, errno contains a value indicating the type of error that has been detected.

See Also: chsize, close, creat, dup, dup2, eof, exec Functions, fdopen, filelength,
fileno, fstat, lseek, open, read, setmode, sopen, stat, tell, umask

Example: #include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

char buffer[]
= { "A text record to be written" };

 989

write

void main()
{

int fildes;intsizewritten;
/* open a file for output */
/* replace existing file if it exists */
fildes = open("file",OWRONLY|OCREAT|OTRUNC,SIRUSR|SIWUSR|SIRGRP|SIWGRP);
if(fildes != -1) {

/* write the text */sizewritten=write(fildes,buffer,
sizeof(buffer));

/* test for error */if(sizewritten!=sizeof(buffer)){
printf("Error writing file\n");

}

/* close the file */
close(fildes);

}
}

Classification: POSIX 1003.1

Systems: All, Netware

990

4 Re-entrant Functions

The following functions in the C library are re-entrant:

abs atoi atol bsearchbsearchsdiv fabsfmbsrtowcssfmbstowcssfmemccpyfmemchrfmemcmpfmemcpyfmemicmpfmemmovefmemsetfstrcatfstrchrfstrcmpfstrcpyfstrcspnfstricmpfstrlenfstrlwrfstrncatfstrncmpfstrncpyfstrnicmpfstrnsetfstrpbrkfstrrchrfstrrevfstrsetfstrspnfstrstrfstruprfwcrtombssfwcsrtombssfwcstombssfwctombs
isalnum isalpha isascii isblank
iscntrl isdigit isgraph islower
isprint ispunct isspace isupper
isxdigit itoa labs ldiv
lfind longjmp

lrotllrotr
lsearch ltoa makepathmblenmbsrtowcssmbstowcsmbstowcssmbtowc
memccpy memchr memcmp memcpymemcpysmemicmpmemmove memmoves
memset movedata qsort qsortsrotlrotrsegread setjmpsplitpathstrcatstrcatsstrchr
strcmp strcoll strcpy strcpysstrcspnstrerrorsstrerrorlensstricmp
strlen strlwr strncat strncats
strncmp strncpy strncpysstrnicmpstrnlensstrnsetstrpbrk strrchr
strrev strset strspn strstrstrtoksstruprswab tolower
toupper ultoa utoa wcrtombsswcscatswcscpyswcserrorswcserrorlenswcsncatswcsncatswcsncpyswcsnlenswcsrtombsswcstokswcstombswcstombss
wctomb wctombswmemcpyswmemmoves

Re-entrant Functions 991

992 Re-entrant Functions

Appendices

Appendices

994

Implementation-Defined Behavior of the C Library

A. Implementation-Defined Behavior of the C
Library

This appendix describes the behavior of the 16-bit and 32-bit Watcom C libraries when the
ANSI/ISO C Language standard describes the behavior as implementation-defined. The term
describing each behavior is taken directly from the ANSI/ISO C Language standard. The
numbers in parentheses at the end of each term refers to the section of the standard that
discusses the behavior.

A.1 NULL Macro

The null pointer constant to which the macro NULL expands (7.1.6).

The macro NULL expands to 0 in small data models and to 0L in large data models.

A.2 Diagnostic Printed by the assert Function

The diagnostic printed by and the termination behavior of the assert function (7.2).

The assert function prints a diagnostic message to stderr and calls the abort routine if
the expression is false. The diagnostic message has the following form:

Assertion failed: [expression], file [name], line [number]

A.3 Character Testing

The sets of characters tested for by the isalnum, isalpha, iscntrl, islower, isprint,
and isupper functions (7.3.1).

Character Testing 995

Appendices

Function Characters Tested For

isalnum Characters 0-9, A-Z, a-z
isalpha Characters A-Z, a-z
iscntrl ASCII 0x00-0x1f, 0x7f
islower Characters a-z
isprint ASCII 0x20-0x7e
isupper Characters A-Z

A.4 Domain Errors

The values returned by the mathematics functions on domain errors (7.5.1).

When a domain error occurs, the listed values are returned by the following functions:

Function Value returned

acos 0.0
acosh - HUGE_VAL
asin 0.0
atan2 0.0
atanh - HUGE_VAL
log - HUGE_VAL
log10 - HUGE_VAL
log2 - HUGE_VAL
pow(neg,frac) 0.0
pow(0.0,0.0) 1.0
pow(0.0,neg) - HUGE_VAL
sqrt 0.0
y0 - HUGE_VAL
y1 - HUGE_VAL
yn - HUGE_VAL

A.5 Underflow of Floating-Point Values

Whether the mathematics functions set the integer expression errno to the value of the
macro ERANGE on underflow range errors (7.5.1).

The integer expression errno is not set to ERANGE on underflow range errors in the
mathematics functions.

996 Underflow of Floating-Point Values

Implementation-Defined Behavior of the C Library

A.6 The fmod Function

Whether a domain error occurs or zero is returned when the fmod function has a second
argument of zero (7.5.6.4).

Zero is returned when the second argument to fmod is zero.

A.7 The signal Function

The set of signals for the signal function (7.7.1.1).

See the description of the signal function presented earlier in this book. Also see the QNX
System Architecture manual.

The semantics for each signal recognized by the signal function (7.7.1.1).

See the description of the signal function presented earlier in this book. Also see the QNX
System Architecture manual.

The default handling and the handling at program startup for each signal recognized by the
signal function (7.7.1.1).

See the description of the signal function presented earlier in this book. Also see the QNX
System Architecture manual.

A.8 Default Signals

If the equivalent of signal(sig, SIG_DFL) is not executed prior to the call of a signal
handler, the blocking of the signal that is performed (7.7.1.1).

The equivalent of
 signal(sig,SIGDFL);

is executed prior to the call of a signal handler.

Default Signals 997

Appendices

A.9 The SIGILL Signal

Whether the default handling is reset if the SIGILL signal is received by a handler specified
to the signal function (7.7.1.1).

The equivalent of
 signal(SIGILL,SIGDFL);

is executed prior to the call of the signal handler.

A.10 Terminating Newline Characters

Whether the last line of a text stream requires a terminating new-line character (7.9.2).

The last line of a text stream does not require a terminating new-line character.

A.11 Space Characters

Whether space characters that are written out to a text stream immediately before a new-line
character appear when read in (7.9.2).

All characters written out to a text stream will appear when read in.

A.12 Null Characters

The number of null characters that may be appended to data written to a binary stream
(7.9.2).

No null characters are appended to data written to a binary stream.

998 Null Characters

Implementation-Defined Behavior of the C Library

A.13 File Position in Append Mode

Whether the file position indicator of an append mode stream is initially positioned at the
beginning or end of the file (7.9.3).

When a file is open in append mode, the file position indicator initially points to the end of the
file.

A.14 Truncation of Text Files

Whether a write on a text stream causes the associated file to be truncated beyond that point
(7.9.3).

Writing to a text stream does not truncate the file beyond that point.

A.15 File Buffering

The characteristics of file buffering (7.9.3).

Disk files accessed through the standard I/O functions are fully buffered. The default buffer
size is 1024 bytes for both 16 and 32-bit systems.

A.16 Zero-Length Files

Whether a zero-length file actually exists (7.9.3).

A file with length zero can exist.

A.17 File Names

The rules of composing valid file names (7.9.3).

A valid file specification consists of an optional node name (which is always preceded by two
slashes), a series of optional directory names (each preceded by one slash), and a file name. If
a node name or directory name precedes the file name, then the file name must also be
preceded by a slash.

File Names 999

Appendices

Directory names and file names can contain up to 48 characters. Case is respected.

A.18 File Access Limits

Whether the same file can be open multiple times (7.9.3).

It is possible to open a file multiple times.

A.19 Deleting Open Files

The effect of the remove function on an open file (7.9.4.1).

The remove function deletes a file, even if the file is open.

A.20 Renaming with a Name that Exists

The effect if a file with the new name exists prior to a call to the rename function (7.9.4.2).

The rename function will succeed if you attempt to rename a file using a name that exists.

A.21 Printing Pointer Values

The output for %p conversion in the fprintf function (7.9.6.1).

Two types of pointers are supported: near pointers (%hp), and far pointers (%lp). The output
for %p depends on the memory model being used.

In 16-bit mode, the fprintf function produces hexadecimal values of the form XXXX for
16-bit near pointers, and XXXX:XXXX (segment and offset separated by a colon) for 32-bit
far pointers.

In 32-bit mode, the fprintf function produces hexadecimal values of the form
XXXXXXXX for 32-bit near pointers, and XXXX:XXXXXXXX (segment and offset
separated by a colon) for 48-bit far pointers.

1000 Printing Pointer Values

Implementation-Defined Behavior of the C Library

A.22 Reading Pointer Values

The input for %p conversion in the fscanf function (7.9.6.2).

The fscanf function converts hexadecimal values into the correct address when the %p
format specifier is used.

A.23 Reading Ranges

The interpretation of a - character that is neither the first nor the last character in the
scanlist for %[conversion in the fscanf function (7.9.6.2).

The "-" character indicates a character range. The character prior to the "-" is the first
character in the range. The character following the "-" is the last character in the range.

A.24 File Position Errors

The value to which the macro errno is set by the fgetpos or ftell function on failure
(7.9.9.1, 7.9.9.4).

When the function fgetpos or ftell fails, they set errno to EBADF if the file number is
bad. The constants are defined in the <errno.h> header file.

A.25 Messages Generated by the perror Function

The messages generated by the perror function (7.9.10.4).

The perror function generates the following messages.

Error Message

0 "No error"
1 "Operation not permitted"
2 "No such file or directory"
3 "No such process"
4 "Interrupted function call"

Messages Generated by the perror Function 1001

Appendices

5 "I/O error"
6 "No such device or address"
7 "Arg list too big"
8 "Exec format error"
9 "Bad file descriptor"
10 "No child processes"
11 "Resource unavailable; try again"
12 "Not enough memory"
13 "Permission denied"
14 "Bad address"
15 "Block device required"
16 "Resource busy"
17 "File exists"
18 "Improper link"
19 "No such device"
20 "Not a directory"
21 "Is a directory"
22 "Invalid argument"
23 "Too many files in the system"
24 "Too many open files"
25 "Inappropriate I/O control operation"
26 "Text file busy"
27 "File too large"
28 "No space left on device"
29 "Invalid seek"
30 "Read-only file system"
31 "Too many links"
32 "Broken pipe"
33 "Math arg out of domain of func"
34 "Result too large"
35 "No message of desired type"
36 "Identifier removed"
37 "Channel number out of range"
38 "Level 2 not synchronized"
39 "Level 3 halted"
40 "Level 3 reset"
41 "Link number out of range"
42 "Protocol driver not attached"
43 "No CSI structure available"
44 "Level 2 halted"
45 "Resource deadlock avoided"
46 "No locks available"

1002 Messages Generated by the perror Function

Implementation-Defined Behavior of the C Library

62 "Too many levels of symbolic links or prefixes"
78 "Filename too long"
83 "Can’t access shared library"
84 "Accessing a corrupted shared lib"
85 ".lib section in a.out corrupted"
86 "Attempting to link in too many libs"
87 "Attempting to exec a shared lib"
89 "Function not implemented"
93 "Directory not empty"
103 "Operation not supported"
122 "Potentially recoverable I/O error"
1000 "Must be done on local machine"
1001 "Need an NDP (8087...) to run"
1002 "Corrupted file system detected"
1003 "32 bit integer fields were used"
1004 "no proc entry avail for virtual process"
1005 "process manager-to-net enqueuing failed"
1006 "could not find net manager for node no."
1007 "told to allocate a vid buf too small"
1008 "told to allocate a vid buf too big"
1009 "More to do; send message again"
1010 "Remap to controlling terminal"
1011 "No license"

A.26 Allocating Zero Memory

The behavior of the calloc, malloc, or realloc function if the size requested is zero
(7.10.3).

The value returned will be NULL. No actual memory is allocated.

A.27 The abort Function

The behavior of the abort function with regard to open and temporary files (7.10.4.1).

The abort function does not close any files that are open or temporary, nor does it flush any
output buffers.

The abort Function 1003

Appendices

A.28 The atexit Function

The status returned by the exit function if the value of the argument is other than zero,EXITSUCCESS, orEXITFAILURE (7.10.4.3).

The exit function returns the value of its argument to the operating system regardless of its
value.

A.29 Environment Names

The set of environment names and the method for altering the environment list used by the
getenv function (7.10.4.4).

The set of environment names is unlimited. Environment variables can be set from the QNX
command line using the EXPORT or SET commands. A program can modify its environment
variables with the putenv function. Such modifications last only until the program
terminates.

A.30 The system Function

The contents and mode of execution of the string by the system function (7.10.4.5).

The system function always executes an executable binary or a shell file, using /bin/sh.

A.31 The strerror Function

The contents of the error message strings returned by the strerror function (7.11.6.2).

The strerror function generates the following messages.

Error Message

0 "No error"
1 "Operation not permitted"
2 "No such file or directory"
3 "No such process"

1004 The strerror Function

Implementation-Defined Behavior of the C Library

4 "Interrupted function call"
5 "I/O error"
6 "No such device or address"
7 "Arg list too big"
8 "Exec format error"
9 "Bad file descriptor"
10 "No child processes"
11 "Resource unavailable; try again"
12 "Not enough memory"
13 "Permission denied"
14 "Bad address"
15 "Block device required"
16 "Resource busy"
17 "File exists"
18 "Improper link"
19 "No such device"
20 "Not a directory"
21 "Is a directory"
22 "Invalid argument"
23 "Too many files in the system"
24 "Too many open files"
25 "Inappropriate I/O control operation"
26 "Text file busy"
27 "File too large"
28 "No space left on device"
29 "Invalid seek"
30 "Read-only file system"
31 "Too many links"
32 "Broken pipe"
33 "Math arg out of domain of func"
34 "Result too large"
35 "No message of desired type"
36 "Identifier removed"
37 "Channel number out of range"
38 "Level 2 not synchronized"
39 "Level 3 halted"
40 "Level 3 reset"
41 "Link number out of range"
42 "Protocol driver not attached"
43 "No CSI structure available"
44 "Level 2 halted"
45 "Resource deadlock avoided"

The strerror Function 1005

Appendices

46 "No locks available"
62 "Too many levels of symbolic links or prefixes"
78 "Filename too long"
83 "Can’t access shared library"
84 "Accessing a corrupted shared lib"
85 ".lib section in a.out corrupted"
86 "Attempting to link in too many libs"
87 "Attempting to exec a shared lib"
89 "Function not implemented"
93 "Directory not empty"
103 "Operation not supported"
122 "Potentially recoverable I/O error"
1000 "Must be done on local machine"
1001 "Need an NDP (8087...) to run"
1002 "Corrupted file system detected"
1003 "32 bit integer fields were used"
1004 "no proc entry avail for virtual process"
1005 "process manager-to-net enqueuing failed"
1006 "could not find net manager for node no."
1007 "told to allocate a vid buf too small"
1008 "told to allocate a vid buf too big"
1009 "More to do; send message again"
1010 "Remap to controlling terminal"
1011 "No license"

A.32 The Time Zone

The local time zone and Daylight Saving Time (7.12.1).

The time zone is set in the system initialization file for your node, (e.g.
/etc/config/sysinit.2). See the QNX User’s Guide.

A.33 The clock Function

The era for the clock function (7.12.2.1).

The clock function’s era begins with a value of 0 when the program starts to execute.

1006 The clock Function

Index

* [

* 233 [233

/ A

/usr/include/ftw.h 39 abort 63, 756, 995, 1003
/usr/include/ioctl.h 39 abort_handler_s 64
/usr/include/libc.h 39 abs 65
/usr/include/sgtty.h 39 acos 66, 996
/usr/include/shadow.h 39 acosh 67, 996
/usr/include/sys/dir.h 39 alloca 68
/usr/include/sys/file.h 39 alnum 984
/usr/include/sys/ioctl.h 40 alpha 984
/usr/include/sys/statfs.h 40 _amblksiz 40, 673
/usr/include/sys/termio.h 40 ANALOGCOLOR 297
/usr/include/sys/time.h 40 ANALOGMONO 297
/usr/include/termcap.h 39 ANSI classification 60
/usr/include/termio.h 39 _arc 69, 51, 256, 267, 612
/usr/include/ustat.h 39 _arc_w 69
/usr/include/utmp.h 39 _arc_wxy 69

__argc 40
__argv 40
asctime 72, 72, 134
asin 74, 9968
asinh 75
assert 76, 31, 995
assert.h 31

8086 Interrupts atan 77
int386 337 atan2 78, 996
int386x 338 atanh 79, 996
int86 340 atexit 80, 162, 164, 549
int86x 341 atof 81
intr 343 atoi 82

atol 83
atoll 84
_atouni 85

1007

Index

ceil 107
CENTER 727

B CGA 296, 746
cgets 108
CHAR_MAX 391
Character Manipulation Functions 7-8BASE 727

isalnum 344basename 86
isalpha 345_bcalloc 14, 95, 105
isascii 346bcmp 89
isblank 348bcopy 90
iscntrl 350bessel 88
__iscsym 352_bexpand 95, 166
__iscsymf 354_bfree 14, 223
isdigit 356_bfreeseg 91
isgraph 359_bgetcmd 93
islower 362_bheapchk 312
isprint 366_bheapmin 317
ispunct 368_bheapseg 95, 91
isspace 370_bheapset 319
isupper 372_bheapshrink 321
iswalnum 344_bheapwalk 323
iswalpha 345_bmalloc 14, 95, 423
iswascii 346_bmsize 544
iswblank 348bool 34
iswcntrl 350BOTTOM 727
iswdigit 356_bprintf 97, 934
iswgraph 359_brealloc 14, 95, 655
iswlower 362bsearch 98
iswprint 366bsearch_s 100
iswpunct 368btom 441
iswspace 370BUFSIZ 697
iswupper 372_bwprintf 97
iswxdigit 376bzero 103
isxdigit 376
_mbctohira 432
_mbctokata 434
_tolower 901C
_toupper 903
towlower 901
towupper 903
wctype 984c 233

chdir 109cabs 104
chsize 111, 410, 989calloc 105, 14, 105, 223, 544, 1003
classes of functions 48CAP 727

1008

Index

_clear87 113 wmemcmp 456
clearenv 114 complex 33
clearerr 115 Concatenation Functions
_clearscreen 116, 685 _fstrcat 804
clock 117, 1006 _fstrncat 837
CLOCKS_PER_SEC 117 strcat 804
close 118 strlcat 830
closedir 119, 553, 652, 667 strncat 837
_cmdname 121 wcscat 804
cntrl 984 wcslcat 830
COLOR 297 wcsncat 837
COLUMNS 114 conio.h 31
COMMODE.OBJ 201, 204 Console I/O 25, 31
Comparison Functions cgets 108

bcmp 89 cprintf 128
_fmemcmp 456 cputs 129
_fmemicmp 460 cscanf 133
_fstrcmp 807 getch 261
_fstricmp 824 getche 263
_fstrncmp 839 kbhit 380
_fstrnicmp 845 putch 630
memcmp 456 stdin 19
memicmp 460 stdout 19
strcasecmp 803 ungetch 917
strcmp 807 vcprintf 936
strcmpi 809 vcscanf 938
strcoll 810 const 59
_stricmp 824 _control87 122
_stricoll 826 _controlfp 124
strncasecmp 836 Conversion Functions 12
strncmp 839 atof 81
_strncoll 841 atoi 82
_strnicmp 845 atol 83
_strnicoll 847 atoll 84
strxfrm 884 _ecvt 151
wcscmp 807 _fcvt 171
wcscmpi 809 _gcvt 252
wcscoll 810 _itoa 378
_wcsicmp 824 _itow 378
_wcsicoll 826 _lltoa 413
wcsncmp 839 _lltow 413
_wcsncoll 841 _ltoa 415
_wcsnicmp 845 _ltow 415
_wcsnicoll 847 _strdate 814

1009

Index

_strtime 865 memcpy 458
strtod 866 memmove 462
strtoimax 874 movedata 475
strtol 870 strcpy 811
strtoll 872 _strdup 817
strtoul 876 strlcpy 831
strtoull 878 strncpy 843
strtoumax 880 wcscpy 811
_tolower 901 _wcsdup 817
_toupper 903 wcslcpy 831
towctrans 905 wcsncpy 843
towlower 901 wmemcpy 458
towupper 903 wmemmove 462
_ulltoa 909 cos 126
_ulltow 909 cosh 127
_ultoa 911 cprintf 128, 936
_ultow 911 cputs 129
_utoa 925 creat 130, 32, 118, 173, 410, 913
_utow 925 cscanf 133, 938
wcstod 866 _ctime 134, 44, 72, 134
wcstoimax 874 ctype.h 31
wcstol 870 currency_symbol 391-392
wcstoll 872 cwait 970
wcstoul 876
wcstoull 878
wcstoumax 880
wctrans 982 D
_wfcvt 171
_wgcvt 252
_wstrdate 814

d_stat 553, 652_wstrtime 865
data_wtof 81

/usr/include/ftw.h 39_wtoi 82
/usr/include/ioctl.h 39_wtol 83
/usr/include/libc.h 39_wtoll 84
/usr/include/sgtty.h 39coordinate systems 50
/usr/include/shadow.h 39Coordinated Universal Time 42-43
/usr/include/sys/dir.h 39Copying Functions
/usr/include/sys/file.h 39bcopy 90
/usr/include/sys/ioctl.h 40_fmemcpy 458
/usr/include/sys/statfs.h 40_fmemmove 462
/usr/include/sys/termio.h 40_fstrcpy 811
/usr/include/sys/time.h 40_fstrdup 817
/usr/include/termcap.h 39_fstrncpy 843

1010

Index

/usr/include/termio.h 39 stddef.h 34
/usr/include/ustat.h 39 stderr 41
/usr/include/utmp.h 39 stdin 41
_amblksiz 40 stdint.h 34
__argc 40 stdio.h 34
__argv 40 stdlib.h 34
assert.h 31 stdout 42
conio.h 31 string.h 34
ctype.h 31 sys/con_msg.h 36
daylight 40 sys/console.h 36
dirent.h 31 sys/debug.h 36
env.h 31 sys/dev.h 36
environ 40 sys/dev_msg.h 36
errno 41 sys/disk.h 36
errno.h 32 sys/dumper.h 36
fcntl.h 32 sys/fd.h 36
fenv.h 32 sys/fsys.h 36
float.h 32 sys/fsys_msg.h 36
fltused_ 41 sys/fsysinfo.h 36
fnmatch.h 32 sys/inline.h 36
graph.h 32 sys/io_msg.h 36
grp.h 32 sys/irqinfo.h 36
i86.h 32 sys/kernel.h 36
inttypes.h 32 sys/lmf.h 36
limits.h 33 sys/locking.h 37
locale.h 33 sys/magic.h 37
malloc.h 33 sys/mman.h 37
math.h 33 sys/mous_msg.h 37
mmintrin.h 33 sys/mouse.h 37
optarg 41 sys/name.h 37
opterr 41 sys/osinfo.h 37
optind 41 sys/osstat.h 37
optopt 41 sys/prfx.h 37
_osmajor 41 sys/proc_msg.h 37
_osminor 41 sys/proxy.h 37
process.h 33 sys/psinfo.h 37
pwd.h 33 sys/qioctl.h 37
regex.h 33 sys/qnx_glob.h 37
search.h 33 sys/qnxterm.h 37
setjmp.h 33 sys/sched.h 37
share.h 33 sys/seginfo.h 38
signal.h 34 sys/select.h 38
stdarg.h 34 sys/sendmx.h 38
stdbool.h 34 sys/ser_msg.h 38

1011

Index

sys/sidinfo.h 38 dirent.h 31
sys/stat.h 38 dirname 140
sys/sys_msg.h 38 _disable 141, 155
sys/timeb.h 38 _displaycursor 143
sys/timers.h 38 div 144
sys/times.h 38 div_t 144
sys/trace.h 38 _dmsbintoieee 145
sys/tracecod.h 38 DOMAIN 425
sys/types.h 38 DOSEXIT 779, 970
sys/uio.h 38 dup 147, 118, 173, 410
sys/utsname.h 38 dup2 149, 118, 173, 410
sys/vc.h 39
sys/wait.h 39
tar.h 34
term.h 34 E
termios.h 34
time.h 35
timezone 42

EACCES 109, 111, 131, 399, 467, 552, 554, 669,tzname 42
772, 800, 918, 923unistd.h 35

EAGAIN 136, 763unix.h 35
EBADF 111, 118-119, 147, 149, 157, 243-244,utime.h 35

399, 411, 653, 1001varargs.h 35
EBADFSYS 131wchar.h 35
EBUSY 131, 669, 918wctype.h 35
ECHILD 971daylight 40, 43, 907
ecvt 151, 151, 171DEFAULTMODE 745
EDEADLOCK 399delay 136
EDOM 66-67, 74, 78-79, 88, 401-403, 618, 791,_dieeetomsbin 137

870, 872, 874, 876, 878, 880difftime 139
EEXIST 467, 669digit 984
EGA 297, 746DIR 31, 553, 652
EILSEQ 179, 181, 217, 259, 262Directory Functions 23
EINTR 118-119, 131, 971_bgetcmd 93
EINVAL 244, 268, 399, 411, 757chdir 109
EIO 118, 244, 800closedir 119
EISDIR 131getcmd 265
_ellipse 153, 51, 274getcwd 268
_ellipse_w 153mkdir 466
_ellipse_wxy 153opendir 553
EMFILE 131, 147, 149, 552, 772readdir 652
EMLINK 467rewinddir 667
_enable 155, 141rmdir 669

dirent 553, 652

1012

Index

ENAMETOOLONG 109, 131, 467, 554, 669, clearerr 115
800, 918, 923 _control87 122

ENFILE 132 _controlfp 124
ENHANCED 297 feof 175
ENOENT 109, 132, 248, 467, 552, 554, 669, 772, ferror 176

801, 918, 923 _fpreset 212
ENOMEM 109, 114, 248, 268, 634, 705 matherr 425
ENOSPC 111, 118, 132, 467 perror 564
ENOSYS 244, 467 raise 647
ENOTDIR 109, 132, 467, 554, 670, 801, 918, signal 756

923 _status87 802
ENOTEMPTY 670 stderr 19
env.h 31 strerror 819
environ 40, 114, 417, 704 _wperror 564
environment 270, 272, 633, 704 ESPIPE 411
EOF 157, 133, 170, 179, 181, 217-218, 220, 231, exception 33

233, 259, 262, 629, 631, 638-639, 675, exec 158, 21-22, 33, 119, 553, 652, 667, 777, 887
683, 793, 795, 915, 917, 938, 944, 946, execl 159
952, 954, 966, 968 execle 159

EPERM 918, 923 execlp 159
ERANGE 127, 165, 248, 268, 762, 867, 870, 872, execlpe 159-160

874, 876, 878, 880, 996 execv 159
ERESCOLOR 745 execve 159
ERESNOCOLOR 745 execvp 159
EROFS 132, 468, 670, 918, 923 execvpe 159-160
errno 32, 41, 59, 66-67, 74, 78-79, 81, 88, 97, exit 162, 162, 164, 417, 756, 970, 1004

109, 111, 114, 118-119, 127, 129, 131, EXIT_FAILURE 1004
133, 136, 147, 149, 157, 160, 165, 169, EXIT_SUCCESS 1004
173, 177, 179, 181, 183-184, 188, 191, exp 165
196, 201, 213, 217-218, 220-221, 226, 231, _expand 166, 166
233, 235, 237, 239, 242, 244, 246, 248, extern 32
251, 259, 262, 268, 286, 328, 396, 398,
401-403, 411, 425, 467, 552-553, 564,
618-619, 629, 631, 634, 638, 650, 652,
664-665, 669, 673, 683, 705, 757, 762-764, F
766, 772, 779, 787, 791, 795, 800, 822,
867, 870, 872, 874, 876, 878, 880, 887,
889-891, 894, 918, 920, 923, 936, 938,

fabs 168940, 944, 946, 948, 954, 956, 958, 968,
false 34971, 989, 996, 1001
_fcalloc 14, 105errno.h 32
fclose 169, 5errno_t 692
fcloseall 170Error Handling 32, 41
fcntl 32, 111, 118, 173, 410, 772_clear87 113

1013

Index

fcntl.h 32 fileno 191, 19
_fcvt 171, 171, 151 _finite 192, 625
_fdopen 173, 173, 170, 201 fixed-point 622, 677
fenv.h 32 float.h 32
feof 175, 221 _floodfill 193, 274
ferror 176, 221, 639 _floodfill_w 193
_fexpand 166 floor 195
fflush 177, 196, 201, 204-205, 238, 915 fltused_ 41
_ffree 14, 223, 817 flushall 196, 201, 204
ffs 178 _fmalloc 14, 315, 423, 817
fgetc 179, 181, 259 _fmemccpy 453
_fgetchar 181, 181 _fmemchr 454
fgetpos 183, 237, 1001 _fmemcmp 456
fgets 184, 286 _fmemcpy 458
fgetwc 179 _fmemicmp 460
_fgetwchar 181 _fmemmove 462
fgetws 184 _fmemset 464
_fheapchk 312 fmod 197, 997
_fheapgrow 315 _fmsbintoieee 198
_fheapmin 317 _fmsize 544
_fheapset 319 fnmatch 32
_fheapshrink 321 fnmatch.h 32
_fheapwalk 323 fopen 200, 5, 170, 173, 226, 235
_fieeetomsbin 186 fopen_s 203
FILE 18, 34 fork 119, 553, 652, 667
File Operations 24 fp 226

mkstemp 470 FP_INFINITE 210
remove 664 FP_NAN 210
rename 665 FP_NORMAL 210
stat 799 FP_OFF 206, 32, 469
tmpnam 899 FP_SEG 208, 32, 469
tmpnam_s 897 FP_SUBNORMAL 210
unlink 918 FP_ZERO 210

__FILE__ 76 fpclassify 210
filelength 188 _fpreset 212
Filename Parsing Functions fprintf 213, 215, 564, 764, 766, 787, 940, 1000

_fullpath 248 fprintf_s 215
_makepath 421 fputc 217, 629
_splitpath 782 _fputchar 218, 218
_splitpath2 784 fputs 220
_wmakepath 421 fputwc 217
_wsplitpath 782 _fputwchar 218
_wsplitpath2 784 fputws 220

FILENAME_MAX 190 fread 221, 5

1014

Index

_frealloc 14, 655 fwprintf_s 215
free 223, 14, 105, 223, 248, 268, 418, 654, 817 fwrite 251, 5
_freect 225 fwscanf 231
freopen 226, 19-20, 170, 235 fwscanf_s 233
freopen_s 228
frexp 230
fscanf 231, 233, 944, 1001
fscanf_s 233, 683, 795, 946 G
fseek 235, 201, 205, 238, 246, 915
fsetpos 237, 183, 201, 205, 238, 915
_fsopen 238

GAND 284, 636, 725fstat 241, 35, 38
GBORDER 153, 613, 615, 657_fstati64 242, 800
GCLEARSCREEN 116_fstrcat 804
GCURSOROFF 143_fstrchr 806
GCURSORON 143_fstrcmp 807
_gcvt 252, 252_fstrcpy 811
_getactivepage 254_fstrcspn 813
_getarcinfo 256_fstrdup 817
_getargv 417-418_fstricmp 824
_getbkcolor 258_fstrlen 832
getc 259, 262_fstrlwr 834
getch 261, 263, 380, 917_fstrncat 837
getchar 262_fstrncmp 839
getche 263, 133, 261, 380, 917, 938_fstrncpy 843
_getcliprgn 264_fstrnicmp 845
getcmd 265, 417_fstrnset 852
_getcolor 266_fstrpbrk 854
_getcurrentposition 267_fstrrchr 856
_getcurrentposition_w 267_fstrrev 857
getcwd 268_fstrset 859
getenv 270, 42, 159, 633, 704, 778, 1004_fstrspn 861
getenv_s 272_fstrspnp 862
_getfillmask 274_fstrstr 864
_getfontinfo 275_fstrtok 868
_getgtextextent 277_fstrupr 882
_getgtextvector 278fsync 244
_getimage 279, 54, 330, 636ftell 246, 235, 1001
_getimage_w 279ftime 247, 38
_getimage_wxy 279_fullpath 248
_getlinestyle 281function 756
getlogcoord 300function classification 3
getopt 41fwide 250
_getphyscoord 282fwprintf 213

1015

Index

_getpixel 283 grouping 391
_getpixel_w 283 grp.h 32
_getplotaction 284 _grstatus 307
gets 286, 184 _grtext 309, 290, 293, 309, 555, 557, 562, 698,
gets_s 287 700, 727, 733, 735
_gettextcolor 288 _grtext_w 309
_gettextcursor 289 GSCROLLDOWN 685
_gettextextent 290 GSCROLLUP 685
_gettextposition 292, 741 GVIEWPORT 116
_gettextsettings 293, 698 GWINDOW 116
_gettextwindow 295 GWRAPOFF 987
_getvideoconfig 296, 49, 254, 302, 660, 694, 752 GWRAPON 987
_getviewcoord 300 GXOR 284, 636, 725
_getviewcoord_w 300
_getviewcoord_wxy 300
_getvisualpage 302
getwc 259, 262 H
getwchar 262
_getwindowcoord 304
_getws 286

HALF 727GFILLINTERIOR 153, 613, 615, 657
halloc 311, 315, 327GMT 42
hardware port 334-336, 559-561_gmtime 305, 305
Heap Functions 15GOR 284, 636, 725

_bheapchk 312GPRESET 636
_bheapmin 317GPSET 284, 636, 725
_bheapset 319graph 984
_bheapshrink 321graph.h 32
_bheapwalk 323graphic page 49
_fheapchk 312graphics adapters 48
_fheapgrow 315graphics functions 47
_fheapmin 317graphics header files 57
_fheapset 319graphics library 47
_fheapshrink 321GRCLIPPED 307
_fheapwalk 323Greenwich Mean Time 42
_heapchk 312GRERROR 307
_heapenable 314GRFONTFILENOTFOUND 307
_heapgrow 315GRINSUFFICIENTMEMORY 307
_heapmin 317GRINVALIDFONTFILE 307
_heapset 319GRINVALIDPARAMETER 307
_heapshrink 321GRMODENOTSUPPORTED 307
_heapwalk 323GRNOOUTPUT 307
_nheapchk 312GRNOTINPROPERMODE 307
_nheapgrow 315GROK 307

1016

Index

_nheapmin 317 IA MMX functions 27
_nheapset 319 ignore_handler_s 329
_nheapshrink 321 _imagesize 330, 279
_nheapwalk 323 _imagesize_w 330

_HEAPBADBEGIN 312, 319, 324 _imagesize_wxy 330
_HEAPBADNODE 312, 319, 324 imaxabs 332
_HEAPBADPTR 324 imaxdiv 333
_heapchk 312, 312, 319, 323 imaxdiv_t 333
_HEAPEMPTY 312, 319, 324 INCLUDE 635, 705
_heapenable 314 infinity 192, 625
_HEAPEND 324 inp 334
_heapgrow 315 inpd 335
_heapinfo 323-324 inpw 336
_heapmin 317, 317, 321 int 720, 927
_HEAPOK 312, 319, 324 int386 337
_heapset 319, 312, 319, 323 int386x 338
_heapshrink 321, 317, 321 __int64 623, 679
_heapwalk 323, 312, 319, 323 int86 340
HERCMONO 745 int86x 341, 343
HERCULES 296 Intel classification 60
hfree 327 Intel-Specific Functions 26
HGC 746 Interrupt Functions
HRES16COLOR 745 _disable 141
HRESBW 745 _enable 155
HUGE_VAL 867 INTMAX_MAX 874
Hyperbolic Functions INTMAX_MIN 874

acos 66 intmax_t 623, 678
acosh 67 INTPACK 32
asinh 75 intr 343
atan 77 inttypes.h 32
atanh 79 _IOFBF 743
cosh 127 _IOLBF 743
sinh 762 _IONBF 743
tanh 890 isalnum 344, 995-996

hypot 328 isalpha 345, 344, 995-996
__isascii 346, 346
isblank 348
iscntrl 350, 995-996
__iscsym 352I
__iscsymf 354
isdigit 356, 344
isfinite 358

i86.h 32 isgraph 359, 366
IA MMX 33 isinf 361

1017

Index

islower 362, 345, 995-996
isnan 364

Jisnormal 365
ISO classification 60
isprint 366, 359, 995-996
ispunct 368 j0 88
isspace 370 j1 88
isupper 372, 345, 995-996 jistojms 428
iswalnum 344, 348, 368, 370, 984 jmp_buf 404, 713
iswalpha 345, 344, 984 jmstojis 430
iswascii 346 jn 88
iswblank 348 jtohira 432
iswcntrl 350, 345, 362, 372, 984 jtokata 434
iswctype 374, 985
iswctype(wc, wctype("alnum")) 374
iswctype(wc, wctype("alpha")) 374
iswctype(wc, wctype("cntrl")) 374 K
iswctype(wc, wctype("digit")) 374
iswctype(wc, wctype("graph")) 374
iswctype(wc, wctype("lower")) 374
iswctype(wc, wctype("print")) 374 kbhit 380, 261, 263, 917
iswctype(wc, wctype("punct")) 374
iswctype(wc, wctype("space")) 374
iswctype(wc, wctype("upper")) 374
iswctype(wc, wctype("xdigit")) 374 L
iswdigit 356, 344-345, 362, 372, 984
iswgraph 359
iswlower 362, 984

L_tmpnam 900iswlower is true, or any wide character that is one
L_tmpnam_s 897of an 345
labs 381iswprint 366
LC_ALL 717iswpunct 368, 345, 362, 372, 984
LC_COLLATE 717iswspace 370, 345, 362, 372, 984
LC_CTYPE 717, 982, 984-985iswupper 372, 345, 984
LC_MESSAGES 717iswxdigit 376
LC_MONETARY 717isxdigit 376
LC_NUMERIC 717_itoa 378, 378
LC_TIME 717_itow 378
ldexp 382
ldiv 383
ldiv_t 383
LEFT 727
lfind 384, 33
limits.h 33

1018

Index

__LINE__ 76
LINES 114

M_lineto 386, 51, 267, 476
_lineto_w 386
_LK_LOCK 398
_LK_LOCK, LK_LOCK 398 __m64 33
_LK_NBLCK 398 _m_packssdw 477
_LK_NBLCK, LK_NBLCK 398 _m_packsswb 479
_LK_NBRLCK, LK_NBRLCK 398 _m_packuswb 481
_LK_RLCK, LK_RLCK 398 _m_paddb 483
_LK_UNLCK, LK_UNLCK 398 _m_paddd 484
llabs 388 _m_paddsb 485
lldiv 389 _m_paddsw 487
lldiv_t 389 _m_paddusb 488
LLONG_MAX 872 _m_paddusw 490
LLONG_MIN 872 _m_paddw 491
_lltoa 413, 413 _m_pand 492
_lltow 413 _m_pandn 493
Locale Functions _m_pcmpeqb 494

localeconv 390 _m_pcmpeqd 495
setlocale 717 _m_pcmpeqw 496
_wsetlocale 717 _m_pcmpgtb 497

locale.h 33 _m_pcmpgtd 498
localeconv 390 _m_pcmpgtw 499
_localtime 394, 44, 394 _m_pmaddwd 500
lock 396, 111, 772 _m_pmulhw 502
locking 398, 398, 37, 111, 772 _m_pmullw 503
log 401, 996 _m_por 504
log10 402, 996 _m_pslld 505
log2 403, 996 _m_pslldi 506
long double 623, 679 _m_psllq 507
long long 623 _m_psllqi 508
LONG_MAX 870 _m_psllw 509
LONG_MIN 870 _m_psllwi 510
longjmp 404, 33, 647, 713, 756 _m_psrad 511
lower 984 _m_psradi 512
_lrotl 406 _m_psraw 513
_lrotr 407 _m_psrawi 514
lsearch 408, 33 _m_psrld 515
lseek 410, 650, 891, 989 _m_psrldi 516
_lseeki64 891 _m_psrlq 517
lstat 553, 652, 800 _m_psrlqi 518
_ltoa 415, 415 _m_psrlw 519
_ltow 415

1019

Index

_m_psrlwi 520 fmod 197
_m_psubb 521 _fmsbintoieee 198
_m_psubd 523 frexp 230
_m_psubsb 524 hypot 328
_m_psubsw 526 j0 88
_m_psubusb 527 j1 88
_m_psubusw 529 jn 88
_m_psubw 530 ldexp 382
_m_punpckhbw 531 log 401
_m_punpckhdq 533 log10 402
_m_punpckhwd 535 log2 403
_m_punpcklbw 537 matherr 425
_m_punpckldq 539 modf 474
_m_punpcklwd 541 pow 618
_m_pxor 543 sin 761
_m_to_int 546 sinh 762
_magic 37 sqrt 791
main 417, 40, 970 tan 889
main program 417 tanh 890
_makepath 421 y0 88
malloc 423, 14, 223, 225, 248, 268, 315, 423, y1 88

544, 817, 1003 yn 88
malloc.h 33 matherr 425, 33, 66-67, 74, 78-79, 88, 104, 127,
math.h 33 165, 328, 401-403, 618, 762, 791, 890
Mathematical Functions 16, 33 max 427

acos 66 _MAX_DIR 421, 782
acosh 67 _MAX_EXT 421, 782
asin 74 _MAX_FNAME 421, 782
asinh 75 _MAX_NODE 421, 782
atan 77 _MAX_PATH 248, 421, 782
atan2 78 _MAX_PATH2 784
atanh 79 MAXCOLORMODE 745
bessel Functions 88 MAXRESMODE 745
cabs 104 MB_CUR_MAX 450, 978, 980
ceil 107 _mbcjistojms 428
cos 126 _mbcjmstojis 430
cosh 127 _MBCS 439, 441, 443, 849
_dieeetomsbin 137 _mbctohira 432
_dmsbintoieee 145 _mbctokata 434
exp 165 _mbctolower 13
fabs 168 _mbctoupper 13
_fieeetomsbin 186 mblen 436
_finite 192 mbrtowc 447
floor 195 _mbslwr 13

1020

Index

mbstate_t 35 free 223
mbstowcs 445 _freect 225
mbstowcs_s 447 halloc 311
_mbsupr 13 _heapchk 312
mbtowc 450 _heapgrow 315
MCGA 297, 746 _heapmin 317
MDPA 296, 746 _heapset 319
_memavl 452 _heapshrink 321
memccpy 453 _heapwalk 323
memchr 454 hfree 327
memcmp 456, 89 malloc 423
memcpy 458, 462 _memavl 452
memicmp 460 _memmax 461
_memmax 461, 452 _msize 544
memmove 462, 90, 458, 811, 831, 843 _ncalloc 105
Memory Allocation 13 _nexpand 166

alloca 68 _nfree 223
_bcalloc 105 _nheapchk 312
_bexpand 166 _nheapgrow 315
_bfree 223 _nheapmin 317
_bfreeseg 91 _nheapset 319
_bheapchk 312 _nheapshrink 321
_bheapmin 317 _nheapwalk 323
_bheapseg 95 _nmalloc 423
_bheapset 319 _nmsize 544
_bheapshrink 321 _nrealloc 654
_bheapwalk 323 realloc 654
_bmalloc 423 sbrk 673
_bmsize 544 stackavail 797
_brealloc 654 Memory Manipulation Functions 8
calloc 105 memset 464, 103
_expand 166 min 465
_fcalloc 105 Miscellaneous Functions 29
_fexpand 166 Miscellaneous QNX Functions 26
_ffree 223 MK_FP 469, 32
_fheapchk 312 mkdir 466, 913
_fheapgrow 315 mkfifo 913
_fheapmin 317 mkstemp 470
_fheapset 319 mktime 472, 44
_fheapshrink 321 mmintrin.h 33
_fheapwalk 323 MMX 33
_fmalloc 423 MMX functions 27
_fmsize 544 modf 474
_frealloc 654 mon_grouping 391

1021

Index

MONO 297 longjmp 404
movedata 475 setjmp 713
_moveto 476, 267, 292, 555, 737 NORMAL 727
_moveto_w 476 nosound 547, 774
MRES16COLOR 745 _nrealloc 14, 655
MRES256COLOR 745 NULL 418, 849, 995, 1003
MRES4COLOR 745 _NULLOFF 105, 423, 655
MRESNOCOLOR 745 _NULLSEG 95, 312, 321
_msize 544, 166, 544
mtob 439
Multibyte Character Functions 8, 11-12

mblen 436 O
mbstowcs 445
mbtowc 450
wcstombs 973

O_APPEND 550, 770, 989wctomb 978
O_BINARY 650, 719, 989Multimedia Extension 33
O_CREAT 132, 550, 770-771Multimedia Extension functions 27
O_EXCL 550, 770_mxfer_entry 38
O_RDONLY 550, 650, 770
O_RDWR 132, 550, 650, 770, 989
O_TEMP 550, 770
O_TEXT 650, 989N
O_TRUNC 132, 550, 770
O_WRONLY 132, 550, 770, 989
offsetof 548, 34

n_sign_posn 391 onexit 549, 162
NaN 192, 625 open 550, 32, 118, 173, 191, 410, 650, 891, 913,
_ncalloc 14, 105 989
NDEBUG 76 opendir 553, 119, 553, 652, 667
new 720 optarg 41
_nexpand 166 opterr 41
_nfree 14, 223 optind 41
_nheapchk 312 optopt 41
_nheapgrow 225, 315, 452, 461 OS/2 Functions
_nheapmin 317 wait 970
_nheapset 319 _osmajor 41
_nheapshrink 321 _osminor 41
_nheapwalk 323 _outgtext 555, 277-278, 309, 555, 557, 562, 659,
_nmalloc 14, 225, 423 709, 712
_nmsize 544 _outmem 557, 52, 288, 292, 309, 555, 557, 562,
NO_EXT_KEYS 30 702, 729, 737, 741, 751, 987
NODISPLAY 296 outp 559
Non-local Jumps 33 outpd 560

1022

Index

outpw 561 PG_LINECHART 582
_outtext 562, 52, 288, 292, 309, 555, 557, 562, PG_NOPERCENT 582

702-703, 729, 737, 741, 751, 987 PG_PERCENT 582
OVERFLOW 425 PG_PIECHART 582

PG_PLAINBARS 582
PG_POINTANDLINE 582
PG_POINTONLY 582
_pg_resetpalette 596P
_pg_resetstyleset 599
PG_SCATTERCHART 582
_pg_setchardef 602

P_NOWAIT 33, 776, 779 _pg_setpalette 604
P_NOWAITO 33, 776, 779 _pg_setstyleset 607
P_OVERLAY 21, 33, 777 PG_STACKEDBARS 582
p_sign_posn 391 _pg_vlabelchart 610
P_WAIT 22, 33, 776, 779 physical coordinates 50
PATH 114 _pie 612, 51, 256, 274
PATH_DOWN 735 _pie_w 612
PATH_LEFT 735 _pie_wxy 612
PATH_MAX 268 pipe 173
PATH_RIGHT 735 PLOSS 425
PATH_UP 735 _polygon 615, 51, 274
_pentry 324 _polygon_w 615
perror 564, 41, 1001 _polygon_wxy 615
PFU 720 port
PFV 720 hardware 334-336, 559-561
_pg_analyzechart 565 Port I/O 25, 31
_pg_analyzechartms 565 inp 334
_pg_analyzepie 567 inpd 335
_pg_analyzescatter 570 inpw 336
_pg_analyzescatterms 570 outp 559
PG_BARCHART 582 outpd 560
_pg_chart 573, 565 outpw 561
_pg_chartms 573, 565 positive_sign 391
_pg_chartpie 576, 567 POSIX 1003.1 classification 60
_pg_chartscatter 579, 570 POSIX 1003.2 classification 60
_pg_chartscatterms 579, 570 POSIX 1003.4 classification 60
PG_COLUMNCHART 582 POSIX classification 60
_pg_defaultchart 582 POSIX Realtime Timer Functions 25
_pg_getchardef 584 POSIX Shared Memory Functions 25
_pg_getpalette 586 POSIX Terminal Control Functions 25
_pg_getstyleset 589 _POSIX_SOURCE 30
_pg_hlabelchart 592 pow 618
_pg_initchart 594, 55 pow(0.0,0.0) 996

1023

Index

pow(0.0,neg) 996 punct 984
pow(neg,frac) 996 putc 629
Prime Meridian 43 putch 630, 128-129, 936
print 984 putchar 631, 218
printf 619, 41, 97, 128, 213, 622, 627, 737, 764, putenv 633, 633, 42, 159, 270, 272, 704, 778,

766, 787, 934, 936, 940, 948, 956, 958, 962 1004
printf_s 627 _putimage 636, 54, 279
Process Functions 21, 23, 33 _putimage_w 636

abort 63 puts 638, 129
abort_handler_s 64 _putw 639
atexit 80 putwc 629
_bgetcmd 93 putwchar 631
clearenv 114 _putws 638
execl 158 pwd.h 33
execle 158
execlp 158
execlpe 158
execv 158 Q
execve 158
execvp 158
execvpe 158

QNX classification 60_exit 162
QNX commandgetcmd 265

date 42, 134, 305, 394, 893, 907getenv 270
export 42, 159, 270, 272, 633, 704, 778ignore_handler_s 329

QNX Functionsmain 417
chsize 111onexit 549
delay 136_putenv 633
nosound 547set_constraint_handler_s 692
sleep 763_setenv 704
sound 774spawnl 776
swab 886spawnle 776

QNX I/O Functions 24spawnlp 776
close 118spawnlpe 776
creat 130spawnv 776
dup 147spawnve 776
dup2 149spawnvp 776
eof 157spawnvpe 776
_fdopen 173system 887
filelength 188_wgetenv 270
fileno 191_wputenv 633
fstat 241_wsetenv 704
lock 396process.h 33
_locking 398ptrdiff_t 34, 623, 678

1024

Index

lseek 410 rename 665, 1000
open 550 return 417
read 650 rewind 666, 115, 201, 205, 238, 915
setmode 719 rewinddir 667, 119, 553, 652, 667
sopen 770 RIGHT 727
tell 891 rmdir 669
umask 913 Rotate Functions
unlock 920 _lrotl 406
utime 923 _lrotr 407
write 989 _rotl 671

QNX Low-level Functions 26 _rotr 672
QNX System Architecture 997 _rotl 671
_QNX_SOURCE 30-31 _rotr 672
qnx_spawn 160, 779 RSIZE_MAX 100, 272, 287, 447, 645, 897, 975,
qsort 643 980
qsort_s 645
quot 144, 333, 383, 389

S

R

s 233
S_IEXEC 131, 242, 467, 551, 771, 799, 914

raise 647, 34, 404, 757 S_IREAD 131, 241, 467, 551, 771, 799, 914
rand 649, 792 S_IRGRP 130, 242, 466, 551, 771, 800, 913
RAND_MAX 649 S_IROTH 130, 242, 466, 551, 771, 800, 913
Random Numbers S_IRUSR 130, 241-242, 466, 551, 771, 799,

rand 649 913-914
srand 792 S_IRWXG 130, 242, 466, 551, 771, 800, 913

read 650 S_IRWXO 130, 242, 466, 551, 771, 800, 913
readdir 652, 119, 553, 652, 667 S_IRWXU 130, 241-242, 466, 551, 771, 799, 913
realloc 654, 14, 223, 544, 655, 1003 S_ISBLK(m) 241, 799
_rectangle 657, 51, 274 S_ISCHR(m) 241, 799
_rectangle_w 657 S_ISDIR(m) 241, 799
_rectangle_wxy 657 S_ISFIFO(m) 241, 799
regex.h 33 S_ISGID 242, 800
_registerfonts 659, 54, 709, 922 S_ISLNK(m) 241, 799
REGPACK 32 S_ISREG(m) 241, 799
REGS 32 S_ISUID 242, 800
rem 144, 333, 383, 389 S_IWGRP 130, 242, 466, 551, 771, 800, 913
_remapallpalette 660 S_IWOTH 131, 242, 466, 551, 771, 800, 913
_remappalette 662 S_IWRITE 131, 241, 467, 551, 771, 799, 914
remove 664, 918, 1000

1025

Index

S_IWUSR 130, 241-242, 466, 551, 771, 799, Searching Functions 17
913-914 SEEK_CUR 235, 410

S_IXGRP 130, 242, 466, 551, 771, 800, 913 SEEK_END 235, 410
S_IXOTH 131, 242, 466, 551, 771, 800, 913 SEEK_SET 235, 410
S_IXUSR 130, 241-242, 466, 551, 771, 799, 913 segread 689, 338, 341
SA_NOCLDSTOP 757 select 38
sbrk 673, 315 _selectpalette 690
scanf 675, 133, 231, 793, 938, 944, 952, 966 set_constraint_handler_s 692
scanf_s 683, 954 _set_new_handler 720, 720
_scrolltextwindow 685 _setactivepage 694
Search Functions _setbkcolor 696

_fmemchr 454 setbuf 697
_fstrchr 806 _setcharsize 698, 53
_fstrcspn 813 _setcharsize_w 698
_fstrpbrk 854 _setcharspacing 700
_fstrrchr 856 _setcharspacing_w 700
_fstrspn 861 _setcliprgn 702, 264
_fstrspnp 862 _setcolor 703, 51, 729
_fstrstr 864 setenv 704, 704, 42, 159, 270, 272, 778
_fstrtok 868 _setfillmask 707, 51
lfind 384 _setfont 709, 54, 275, 555, 594, 659, 922
lsearch 408 _setgtextvector 712
memchr 454 setjmp 713, 33, 404
_searchenv 687 setjmp.h 33
strchr 806 _setlinestyle 715, 51
strcspn 813 setlocale 717, 33, 810, 884
strpbrk 854 setlogorg 750
strrchr 856 _setmbcp 826, 841, 847
strspn 861 setmode 719
_strspnp 862 _setmx 38
strstr 864 _setpixel 723
strtok 868 _setpixel_w 723
wcschr 806 _setplotaction 725, 51
wcscspn 813 _settextalign 727, 53
wcspbrk 854 _settextcolor 729, 53, 557, 562, 703
wcsrchr 856 _settextcursor 731, 289
wcsspn 861 _settextorient 733, 53
_wcsspnp 862 _settextpath 735
wcsstr 864 _settextposition 737, 52, 267, 292, 476, 557, 562,
wcstok 868 741
wcsxfrm 884 _settextrows 739, 749
wmemchr 454 _settextwindow 741, 53, 292, 295, 685, 702, 751

search.h 33 setvbuf 743
_searchenv 687 _setvideomode 745, 49, 594, 749

1026

Index

_setvideomoderows 749 spawnlp 777-778, 887
_setvieworg 750, 50, 282, 300 spawnlpe 777-778
_setviewport 751, 264, 267, 282, 300, 754 spawnv 777-778
_setvisualpage 752 spawnve 777-778
_setwindow 754, 50, 300, 304 spawnvp 777-778
SH_COMPAT 239, 772 spawnvpe 777-778
SH_DENYNO 239, 772 splitpath 782, 785
SH_DENYRD 239, 772 _splitpath2 784
SH_DENYRW 239, 772 sprintf 787, 97, 789, 962
SH_DENYWR 239, 772 sprintf_s 789, 768
share.h 33 sqrt 791, 996
SHELL 114, 887 srand 792, 649
sig_atomic_t 756 SREGS 32
SIG_DFL 756-757, 997 sscanf 793, 966
SIG_ERR 757 sscanf_s 795, 968
SIG_IGN 756-757 st_mode 241, 799
sigaction 757 stackavail 797
SIGCHLD 162, 757 stat 799, 38, 241, 553, 652, 799
SIGCONT 162 _status87 802
SIGHUP 162 stdarg.h 34
SIGILL 998 stdbool.h 34
SIGKILL 756-757 __STDC_CONSTANT_MACROS 34
siglongjmp 756 __STDC_FORMAT_MACROS 33
signal 756, 34, 647, 997-998 __STDC_LIMIT_MACROS 34
signal.h 34 stddef.h 34
signbit 760 stderr 19, 41, 66-67, 74, 76, 78-79, 88, 127, 165,
sigsetjmp 756 170, 191, 401-403, 425, 564, 618, 762,
SIGSTOP 756-757 791, 995
sin 761 STDERR_FILENO 191
SING 425 stdin 19, 41, 170, 181, 191, 262, 286-287, 675
sinh 762 STDIN_FILENO 191
size_t 34-35, 233, 623, 678 stdint.h 34
sleep 763 stdio.h 34
_snprintf 764, 766, 768, 956, 958 stdlib.h 34
snprintf_s 768, 789 stdout 19, 42, 170, 191, 218, 619, 631, 638, 737,
snwprintf 764, 766 948
snwprintf_s 768 STDOUT_FILENO 191
sopen 770, 32, 34, 118, 173, 410, 913 strcasecmp 803
sound 774 strcat 804
space 984 strchr 806
spawn 776, 21-22, 33, 119, 317, 321, 553, 652, strcmp 807, 810

667, 887 strcmpi 809
spawnl 777-778 strcoll 810, 884
spawnle 777-778 strcpy 811, 634

1027

Index

strcspn 813 fwscanf 231
_strdate 814 fwscanf_s 233
_strdec 815 getc 259
strdup 817, 817, 634, 900 getchar 262
Stream I/O Functions 18, 20 gets 286

_bprintf 97 getwc 259
_bwprintf 97 getwchar 262
clearerr 115 _getws 286
fclose 169 Multibyte Character Functions 20
fcloseall 170 perror 564
fdopen 173 printf 619
feof 175 printf_s 627
ferror 176 putc 629
fflush 177 putchar 631
fgetc 179 puts 638
_fgetchar 181 _putw 639
fgetpos 183 putwc 629
fgets 184 putwchar 631
fgetwc 179 _putws 638
_fgetwchar 181 rewind 666
fgetws 184 scanf 675
flushall 196 scanf_s 683
fopen 200 setbuf 697
fopen_s 203 setvbuf 743
fprintf 213 snprintf_s 768
fprintf_s 215 snwprintf_s 768
fputc 217 sprintf_s 789
_fputchar 218 sscanf_s 795
fputs 220 swprintf_s 789
fputwc 217 swscanf_s 795
_fputwchar 218 tmpfile 894
fputws 220 tmpfile_s 895
fread 221 ungetc 177, 915
freopen 226 ungetwc 915
freopen_s 228 vfprintf 940
fscanf 231 vfprintf_s 942
fscanf_s 233 vfscanf 944
fseek 201, 205, 235, 238 vfscanf_s 946
fsetpos 237 vfwprintf 940
_fsopen 238 vfwprintf_s 942
ftell 246 vfwscanf 944
fwprintf 213 vfwscanf_s 946
fwprintf_s 215 vprintf 948
fwrite 251 vprintf_s 950

1028

Index

vscanf 952 _fstrlen 832
vscanf_s 954 _fstrlwr 834
vsnprintf_s 960 _fstrncat 837
vsnwprintf_s 960 _fstrncmp 839
vsprintf_s 964 _fstrncpy 843
vsscanf_s 968 _fstrnicmp 845
vswprintf_s 964 _fstrnset 852
vswscanf_s 968 _fstrpbrk 854
vwprintf 948 _fstrrchr 856
vwprintf_s 950 _fstrrev 857
vwscanf 952 _fstrset 859
vwscanf_s 954 _fstrspn 861
_wfdopen 173 _fstrspnp 862
_wfopen 200 _fstrstr 864
_wfopen_s 203 _fstrtok 868
_wfreopen 226 _fstrupr 882
_wfreopen_s 228 memccpy 453
_wfsopen 238 memset 464
Wide Character Functions 20 snprintf 764, 766
_wperror 564 snwprintf 764, 766
wprintf 619 sprintf 787
wprintf_s 627 sscanf 793
wscanf 675 strcasecmp 803
wscanf_s 683 strcat 804

strerror 819, 41, 1004 strchr 806
strftime 820, 44, 717 strcmp 807
_stricmp 824, 824, 803, 809 strcmpi 809
_stricoll 826 strcoll 810
_strinc 827 strcpy 811
String Functions 9 strcspn 813

bcmp 89 _strdec 815
bcopy 90 _strdup 817
bzero 103 strerror 819
_cmdname 121 _stricmp 824
ffs 178 _stricoll 826
_fmemccpy 453 _strinc 827
_fmemset 464 strlcat 830
_fstrcat 804 strlcpy 831
_fstrchr 806 strlen 832
_fstrcmp 807 _strlwr 834
_fstrcpy 811 strncasecmp 836
_fstrcspn 813 strncat 837
_fstrdup 817 strncmp 839
_fstricmp 824 _strncnt 439, 441

1029

Index

_strncoll 841 wcsncmp 839
strncpy 843 _wcsncnt 439, 441
_strnextc 443 _wcsncoll 841
_strnicmp 845 wcsncpy 843
_strnicoll 847 _wcsnextc 443
_strninc 849 _wcsnicmp 845
_strnset 852 _wcsnicoll 847
strpbrk 854 _wcsninc 849
strrchr 856 _wcsnset 852
_strrev 857 wcspbrk 854
_strset 859 wcsrchr 856
strspn 861 _wcsrev 857
_strspnp 862 _wcsset 859
strstr 864 wcsspn 861
strtok 868 _wcsspnp 862
_strupr 882 wcsstr 864
strxfrm 884 wcstok 868
swprintf 787 _wcsupr 882
swscanf 793 wcsxfrm 884
_vbprintf 934 wmemset 464
_vbwprintf 934 string.h 34
vsnprintf 956, 958 strlcat 830
vsnwprintf 956, 958 strlcpy 831
vsprintf 962 strlen 832
vsscanf 966 _strlwr 834, 834, 13
vswprintf 962 strncasecmp 836
vswscanf 966 strncat 837
wcscat 804 strncmp 839, 884
wcschr 806 _strncnt 439, 441
wcscmp 807 _strncoll 841
wcscmpi 809 strncpy 843, 884
wcscoll 810 _strnextc 443
wcscpy 811 _strnicmp 845, 845, 836
wcscspn 813 _strnicoll 847
_wcsdec 815 _strninc 849
_wcsdup 817 _strnset 852, 852
_wcsicmp 824 strpbrk 854
_wcsicoll 826 strrchr 856
_wcsinc 827 _strrev 857, 857
wcslcat 830 _strset 859, 859
wcslcpy 831 strspn 861
wcslen 832 _strspnp 862, 862
_wcslwr 834 strstr 864
wcsncat 837 _strtime 865

1030

Index

strtod 866 sys/irqinfo.h 36
strtoimax 874 sys/kernel.h 36
strtok 868 sys/lmf.h 36
strtol 870 sys/locking.h 37
strtoll 872 sys/magic.h 37
strtoul 876 sys/mman.h 37
strtoull 878 sys/mous_msg.h 37
strtoumax 880 sys/mouse.h 37
struct 548 sys/name.h 37
struct lconv 390 sys/osinfo.h 37
struct tm 35, 472 sys/osstat.h 37
structure sys/prfx.h 37

complex 33 sys/proc_msg.h 37
exception 33 sys/proxy.h 37
INTPACK 32 sys/psinfo.h 37
__m64 33 sys/qioctl.h 37
REGPACK 32 sys/qnx_glob.h 37
REGS 32 sys/qnxterm.h 37
SREGS 32 sys/sched.h 37
stat 38 sys/seginfo.h 38

_strupr 882, 882, 13 sys/select.h 38
strxfrm 884 sys/sendmx.h 38
SVGA 297, 746 sys/ser_msg.h 38
SVRES16COLOR 745 sys/sidinfo.h 38
SVRES256COLOR 745 sys/stat.h 38
swab 886 sys/sys_msg.h 38
swprintf 787 sys/timeb.h 38
swprintf_s 789 sys/timers.h 38
swscanf 793 sys/times.h 38
swscanf_s 795 sys/trace.h 38
sys 36 sys/tracecod.h 38
sys/con_msg.h 36 sys/types.h 38
sys/console.h 36 sys/uio.h 38
sys/debug.h 36 sys/utsname.h 38
sys/dev.h 36 sys/vc.h 39
sys/dev_msg.h 36 sys/wait.h 39
sys/disk.h 36 system 887, 22, 33, 317, 321, 1004
sys/dumper.h 36 System Database Functions 25
sys/fd.h 36
sys/fsys.h 36
sys/fsys_msg.h 36
sys/fsysinfo.h 36
sys/inline.h 36
sys/io_msg.h 36

1031

Index

TLOSS 425
tm 35, 305, 394

T tm_hour 472
tm_isdst 472
tm_mday 472
tm_min 472tan 889
tm_mon 472tanh 890
tm_sec 472tar.h 34
tm_wday 472_tcsnbcnt 439
tm_yday 472_tcsnccnt 441
TMP_MAX 899_tcsnextc 443
TMP_MAX_S 897_tcsninc 849
TMPDIR 899tell 891, 411, 650, 989
tmpfile 894, 164TERM 114
tmpfile_s 895term.h 34
tmpnam 899TERMINFO 114
tmpnam_s 897termios.h 34
tolower 901, 901, 13, 834, 982TEXTBW40 745
TOP 727TEXTBW80 745
toupper 903, 903, 13, 882, 982TEXTC40 745
towctrans 905, 982TEXTC80 745
towctrans(wc, wctrans("tolower")) 905TEXTMONO 745
towctrans(wc, wctrans("toupper")) 905time 893, 134, 394, 472
towlower 901, 13Time Functions 17, 35
towupper 903, 13_asctime 72
TR 24731 classification 60clock 117
Trigonometric Functions 16_ctime 134

acos 66difftime 139
acosh 67ftime 247
asin 74_gmtime 305
asinh 75_localtime 394
atan 77mktime 472
atan2 78strftime 820
atanh 79time 893
cos 126__wasctime 72
cosh 127wcsftime 820
hypot 328__wctime 134
sin 761_wstrftime_ms 820
sinh 762time zone 42, 134, 305, 394, 893, 907
tan 889time.h 35
tanh 890time_t 893

true 34timeb 38
TZ 42-44, 114, 134, 305, 394, 893, 907timezone 42-43, 907
tzname 42-44, 907

1032

Index

tzset 907, 40, 42-44, 134, 394, 472, 822

V

U
va_arg 927, 930, 932, 946, 954, 968
va_end 930, 927, 932, 946, 954, 968
va_list 927UINTMAX_MAX 880
va_start 932, 927, 930, 934, 936, 938, 940, 944,uintmax_t 623, 678

946, 948, 952, 954, 956, 958, 962, 966, 968ULLONG_MAX 878
varargs.h 35_ulltoa 909, 909
variable arguments 18_ulltow 909

va_arg 927ULONG_MAX 876
va_end 930_ultoa 911, 911
va_start 932_ultow 911

_vbprintf 934umask 913, 466, 551, 771
_vbwprintf 934uname 39
vcprintf 936undefined references
vcscanf 938fltused_ 41
vfprintf 940UNDERFLOW 425
vfprintf_s 942ungetc 915, 177, 235
vfscanf 944ungetch 917
vfscanf_s 946ungetwc 915
vfwprintf 940_UNICODE 439, 441, 443, 849
vfwprintf_s 942union 548
vfwscanf 944unistd.h 35
vfwscanf_s 946UNIX classification 60
VGA 297, 746unix.h 35
view coordinates 50UNKNOWN 296
void 417, 720unlink 918
vprintf 948, 942, 950unlock 920
vprintf_s 950_unregisterfonts 922
VRES16COLOR 745unsigned 720
VRES256COLOR 745upper 984
VRES2COLOR 745URES256COLOR 745
vscanf 952UTC 42-43
vscanf_s 954utimbuf 35
vsnprintf 956, 958, 960utime 923, 35
vsnprintf_s 960, 964utime.h 35
vsnwprintf 956, 958_utoa 925, 925
vsnwprintf_s 960_utow 925
vsprintf 962, 964utsname 39
vsprintf_s 964, 960

1033

Index

vsscanf 966 wcsncpy 843
vsscanf_s 968 _wcsnextc 443
vswprintf 962 _wcsnicmp 845
vswprintf_s 964 _wcsnicoll 847
vswscanf 966 _wcsninc 849
vswscanf_s 968 _wcsnset 852
vwprintf 948 wcspbrk 854
vwprintf_s 950 wcsrchr 856
vwscanf 952 _wcsrev 857
vwscanf_s 954 _wcsset 859

wcsspn 861
_wcsspnp 862
wcsstr 864
wcstod 866W
wcstoimax 874
wcstok 868
wcstol 870

wait 970, 162, 776, 779 wcstoll 872
waitpid 162 wcstombs 973
__wasctime 72 wcstombs_s 975
WATCOM classification 60 wcstoul 876
wchar.h 35 wcstoull 878
wchar_t 35, 454, 456, 458, 462, 464, 622, 868 wcstoumax 880
wcscat 804 _wcsupr 882, 13
wcschr 806 wcsxfrm 884
wcscmp 807, 884 __wctime 134
wcscmpi 809 wctomb 978
wcscoll 810, 884 wctomb_s 980
wcscpy 811 wctrans 982, 905
wcscspn 813 wctrans_t 982
_wcsdec 815 wctype 984, 374
_wcsdup 817 wctype.h 35
wcsftime 820 wctype_t 35, 984
_wcsicmp 824 WEOF 35, 179, 181, 217-218, 220, 259, 262,
_wcsicoll 826 629, 631, 638, 915
_wcsinc 827 _wexecl 160
wcslcat 830 _wexecle 160
wcslcpy 831 _wexeclp 160
wcslen 832 _wexeclpe 160
_wcslwr 834, 13 _wexecv 160
wcsncat 837 _wexecve 160
wcsncmp 839 _wexecvp 160
_wcsncnt 439, 441 _wexecvpe 160
_wcsncoll 841 _wfcvt 171

1034

Index

_wfdopen 173 snwprintf_s 768
_wfopen 200 swprintf_s 789
_wfopen_s 203 swscanf 793
_wfreopen 226 swscanf_s 795
_wfreopen_s 228 towctrans 905
_wfsopen 238 towlower 901
_wfstat 242, 800 towupper 903
_wfstati64 242, 800 _ulltow 909
_wgcvt 252 _ultow 911
_wgetargv 417-418 ungetwc 915
_wgetenv 270 _utow 925
Wide Character Functions 7, 11-12 _vbwprintf 934

_bwprintf 97 vfwprintf 940
fgetwc 179 vfwprintf_s 942
_fgetwchar 181 vfwscanf 944
fgetws 184 vfwscanf_s 946
fputwc 217 vsnwprintf 956, 958
_fputwchar 218 vsnwprintf_s 960
fputws 220 vswprintf 962
fwprintf 213 vswprintf_s 964
fwprintf_s 215 vswscanf 966
fwscanf 231 vswscanf_s 968
fwscanf_s 233 vwprintf 948
getwc 259 vwprintf_s 950
getwchar 262 vwscanf 952
_getws 286 vwscanf_s 954
iswalnum 344 __wasctime 72
iswascii 346 wcscat 804
iswblank 348 wcschr 806
iswcntrl 350 wcscmp 807
iswdigit 356 wcscmpi 809
iswgraph 359 wcscoll 810
iswlower 362 wcscpy 811
iswprint 366 wcscspn 813
iswpunct 368 _wcsdec 815
iswspace 370 _wcsdup 817
iswupper 372 wcsftime 820
iswxdigit 376 _wcsicmp 824
_itow 378 _wcsicoll 826
_lltow 413 _wcsinc 827
_ltow 415 wcslcat 830
putwc 629 wcslcpy 831
putwchar 631 wcslen 832
_putws 638 _wcslwr 834

1035

Index

wcsncat 837 wscanf 675
wcsncmp 839 wscanf_s 683
_wcsncnt 439, 441 _wsetenv 704
_wcsncoll 841 _wsetlocale 717
wcsncpy 843 _wsplitpath 782
_wcsnextc 443 _wsplitpath2 784
_wcsnicmp 845 _wstrdate 814
_wcsnicoll 847 _wstrftime_ms 820
_wcsninc 849 _wstrtime 865
_wcsnset 852 _wtof 81
wcspbrk 854 _wtoi 82
wcsrchr 856 _wtol 83
_wcsrev 857 _wtoll 84
_wcsset 859 Win32 Functions
wcsspn 861 wait 970
_wcsspnp 862 window coordinates 50
wcsstr 864 wint_t 35
wcstod 866 wmain 417
wcstoimax 874 _wmakepath 421
wcstok 868 wmemchr 454
wcstol 870 wmemcmp 456
wcstoll 872 wmemcpy 458
wcstombs 973 wmemmove 462
wcstoul 876 wmemset 464
wcstoull 878 _wperror 564
wcstoumax 880 wprintf 619, 622
_wcsupr 882 wprintf_s 627
wcsxfrm 884 _wputenv 633
__wctime 134 _wrapon 987
wctomb 978 write 989
wctrans 982 wscanf 675
wctype 984 wscanf_s 683
_wfdopen 173 _wsetenv 704
_wfopen 200 _wsetlocale 717
_wfopen_s 203 _wspawnl 778
_wfreopen 226 _wspawnle 778
_wfreopen_s 228 _wspawnlp 778
_wfsopen 238 _wspawnlpe 778
_wgetenv 270 _wspawnv 778
_wmakepath 421 _wspawnve 778
_wperror 564 _wspawnvp 778
wprintf 619 _wspawnvpe 778
wprintf_s 627 _wsplitpath 782
_wputenv 633 _wsplitpath2 784

1036

Index

_wstrdate 814
_wstrftime_ms 820, 820
_wstrtime 865
_wtof 81
_wtoi 82
_wtol 83
_wtoll 84

X

xdigit 985
XRES16COLOR 745
XRES256COLOR 745

Y

y0 88, 996
y1 88, 996
yn 88, 996

1037

